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The uncertain future of climate uncertainty

A. Hannart

Institut Franco-Argentin d’Etudes sur le Climat et ses Impacts, CNRS/CONICET/UBA, Argentine

M. Ghil

Geosciences Department and Laboratoire de Météorologie Dynamique (CNRS and IPSL), Ecole Normale
Supérieure, Paris, France, and Department of Atmospheric & Oceanic Sciences and Institute of Geophysics &

Planetary Physics, University of California, Los Angeles, USA
J.-L. Dufresne

Laboratoire de Météorologie Dynamique, IPSL, CNRS/ENS/UPMC/X, France

P. Naveau

Laboratoire des Sciences du Climat et de ’Environnement, IPSL, CNRS/CEA, France

This paper presents a stochastic model for the evolution
in time of the probability distribution of climate sensitivity.
The analysis of this model shows that the future trajectory
of climate uncertainty may itself be highly uncertain, even
when assuming steady progress in climate research. Uncer-
tainties in climate model feedbacks play a key role in these
considerations.

1. Introduction and motivation

Strong scientific consensus prevails over the fact that
Earth’s climate is currently warming and will be warming
further over the coming decades, as a consequence of the
radiative perturbation caused by anthropogenic greenhouse-
gas (GHG) emissions. The conclusions of the IPCC’s Fourth
Assessment Report (AR4: Solomon et al. [2007], [AR4] here-
after) further buttress this consensus.

There is, however, substantial uncertainty regarding the
extent of future warming, as pointed out in the same re-
port and in many of its references. This uncertainty renders
decision making on appropriate mitigation and adaptation
steps more difficult. In addition, the uncertainty level re-
garding future climate evolution has not decreased signifi-
cantly over the past decades, an observation that paves the
way for climate-warming naysayers and is sometimes used
as an argument to discredit climate science and its findings
as a whole. Credence given to the naysayers tends, in turn,
to slow down or even stop action on this issue; it also tends
to interfere with a healthy, truly scientific debate on the real
extent of and on the reasons for the uncertainty. These two
reasons motivate us to (a) revisit here a key cause for the
persisting uncertainties, in order to potentially reduce them,;
and (b) try to anticipate their future evolution as research
makes further progress.

Uncertainties regarding future climate warming are usu-
ally divided into three categories: (i) those regarding the
GHG increase scenarios [AR4]; (ii) those arising from the
climate system’s internal variability [Ghil et al., 2008]; and
(iii) those due to model formulation and properties. The rel-
ative importance of either type of causes varies considerably
according to lead time, spatial scale and geographic location
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(Hawkins and Sutton [2009]). The contribution of internal
variability may vanish after a few decades, while scenario
uncertainty is part and parcel of humankind’s future course
of action. This letter focuses, therefore, on model uncer-
tainty and we thus refer to it henceforth simply as climate
uncertainty.

Climate sensitivity is often defined as the change AT in
global equilibrium surface temperature 7" associated with
a given change Apco, in atmospheric CO2 concentration
pco,. The diversity of plausible long-term future climate
states is determined, to a large extent, by the range of this
sensitivity v = AT/Apco,-

A metric widely used as a summary quantification of
climate uncertainty consists in the dispersion of the mul-
tiple values of climate sensitivity obtained by general cir-
culation model (GCM) simulations and by various other
studies. According to [AR4], this range is still as high as
AT = 2°C — 4.5°C for a doubling of pco,. It is critical
for socio-economic and political decision making to know
whether or not it is reasonable to expect it to decrease in
the future (e.g., Stainforth et al [2005]; Knutti and Hegerl
[2008]; Hannart et al. [2009]; Zaliapin and Ghil [2010] and
references therein).

The purpose of this letter is to contribute to the debate
on the question above. We argue that the future trajectory
of climate uncertainty may be itself quite uncertain, even
when assuming future progress in climate research. Our ar-
guments rely on simple mathematical considerations on the
role of feedbacks, within a probabilistic framework.

2. Feedback, sensitivity and uncertainty: A
simple framework

The most frequent explanation of high climate uncer-
tainty does indeed rely on the uncertainty in feedbacks and
most critically, in the cloud-radiative feedback (Dufresne
and Bony [2008]; Soden and Held [2006]; Colman [2003]).
This argument can be qualitatively illustrated using a highly
idealized feedback-sensitivity equation, cf. Hansen et al
[1984]:

AT
e (}; (1)

here ATy is the temperature change for CO2 doubling in the
absence of feedbacks, f = 0.

Equation (1) is derived from a simple, linearized energy
balance model (EBM). The inverse relationship between

AT =
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feedbacks f and sensitivity AT in Eq. (1) has two impli-
cations. The first one is obvious: the average sensitivity in-
creases faster as the value of the overall feedback parameter
f approaches one [Roe and Baker, 2007; Hannart et al., 2009;
Zaliapin and Ghil, 2010]. GCM simulations find, on aver-
age, f = 0.65 and ATy = 1.2°C; the value of AT = 3.4°C
obtained by plugging these values into Eq. (1) is consistent
with average AT values found in numerous studies; hence
this linearized-EBM framework may be useful indeed, as
long as f stays well below one [Zaliapin and Ghil, 2010].

More relevant to the focus of this letter, Eq. (1) has
an interesting implication on the dispersion of sensitivity
[Hannart et al., 2009]. Due again to the inverse relationship
between AT and 1 — f, when the feedback parameter f is
large enough, but not too close to unity, a small fluctuation
of f around its average My results in a large fluctuation of
the sensitivity value. The uncertainty in sensitivity is thus
also subject to a feedback amplification effect.

More precisely, following Hannart et al. [2009], we de-
fine Sy and Sar to be the feedback spread and sensitivity
spread, respectively; they are linked by

ATy

S ~ -7
ST - M)

Sy . (2)

Equation (2) shows that the uncertainty amplification
factor associated with Sar is quadratically magnified with
respect to the amplification factor for AT in Eq. (1). With
Sy = 0.13 from GCM studies, and the same values for
My = 0.65 and ATy = 1.2°C as above, Eq. (2) leads to
Sar = 1.25°C, i.e. an uncertainty range of 2x Sar = 2.5°C,
which is consistent with the AR4 range. The implications
of Egs. (1) and (2) appear in Fig. 1.

3. Implications for the future of climate
uncertainty
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Figure 1. Climate sensitivity AT and uncertainty
spread Sar as a function of the feedback parameter f, its
mean My and its spread Sy, respectively. (a) Assumed
probability density function (pdf) of f (blue curve), AT
from Eq. (1) (black curve), and pdf of AT (red curve)
with current values (M; = 0.65, Sy = 0.13); after Roe
and Baker [2007]. (b) Sar as a linear function of Sy for
several fixed My values; and (c) as a nonlinear function
of My for several fixed Sy values.
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Let us now explore the implications of the linearized-EBM
framework of Egs. (1, 2) and Fig. 1 for the future evolu-
tion of climate uncertainty. In doing so, we stick to the
central idea that uncertainty in sensitivity is caused merely
by uncertainty in the feedbacks, and we project ourselves
into the future. At any given future instant ¢ > ¢y, with
to the present time, the state of our knowledge on the cli-
mate system can be described by a probability distribution
function (pdf) P(f | t) for the feedback parameter f. The
time-evolving mean E(f | t) = My (t) of this distribution
thus represents our best guess on overall feedbacks based
on P(f | t), and its spread parameter S¢(t) represents the
extent of the uncertainty, resulting from the incomplete un-
derstanding and modeling of the physical processes that un-
derlie the feedbacks. In this highly simplified, linear frame-
work, the uncertainty on climate sensitivity AT is similarly
modeled by a pdf P(AT | t) with spread Sar(t).

Future progress in climate research can be modeled in this
framework simply through a change in the feedback spread
S¢(t). More specifically, one would expect that progress in
climate science will lead to a reduction in S¢(t). One might
also hope that an increase in the amount of effort and re-
sources dedicated to climate research would reduce S¢(t) at
a faster pace.

Leaving aside the latter speculation on the pace of the
decrease, we are now getting to the central point of our ar-
gument. Let us assume that some significant improvements
in our understanding and modeling of feedbacks will have
been obtained and that these improvements translate into a
decrease of Sy by one half, say. How will this reduction in
Sy affect the sensitivity spread Sar, by which we measure
here climate uncertainty ?

Considering the linearity of Eq. (2) in Sy, it is tempting
to go for the straightforward answer, i.e. that Sar will also
decrease by a half. This answer, however, assumes that My
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Figure 2. The combined effect of changing the mean
My and spread Sy of the feedback parameter f. (a) PDF
of f; and (b) pdf of AT with present values (M; = 0.65,
Sy =0.13). (c) Possible future pdfs of f for a halving of
Sy (reduction by 50%), and using three updated values of
My, modified by —20%, 0% and +20%, respectively; and
(d) resulting pdfs of AT. The curves in panels (c,d) are
blue, black and red for the successively increasing values
of Mf.
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— which reflects our current best guess for the value of f —
has not been modified. But it is most likely that the mean
My of the feedback parameter’s pdf, too, has been modified,
along with its spread Sy. Furthermore, because the initial
uncertainty in f at the present time was large, this change
in My is expected to be large as well.

This has important consequences for Sar(t) at t > to,
because if M/ is reduced, then the quadratic amplification
term in Eq. (2) gets smaller, thus enhancing further the re-
sulting decrease in Sar. Conversely, it My (t) has increased
at t > to, then the resulting decrease in Sar may be re-
duced or even changed to a net increase.To illustrate this
effect, let us assume for instance that My is reduced by 20%
while halving Sy. In this case, the 50% reduction of Sy is
further amplified and converts into a 75% reduction of Sar.
Conversely, if My is increased by 20%, the same decrease in
St now results in an increase of Sar by 25%, instead of a
decrease. This example is illustrated in Fig. 2.

Beyond this illustrative example, we now proceed to de-
rive the so-called elasticities that measure the relative influ-
ence of My and Sy on Sar. The elasticity ey|x of Y = Y(X)
with respect to X is defined as the logarithmic derivative
d(logY)/0(log X) = (X/Y)(9Y/0X), and we get:

2 M;

d
1= M, an

ESariMy; = ESarlSy = L 3)

Since the ratio of elasticities 5SAT\Mf/ESAT\Sf obtained
from Eq. (3) is equal to 3.7 for My = 0.65, the spread
Sar is thus much more sensitive to a change in the mean
My than it is to a change of similar magnitude in the spread
St.
Finally, we need to examine the relative magnitude of si-
multaneous changes in My and Sy, as a result of improved
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Figure 3. Sample scenarios of the evolution in time of
the spread Sy (t) and the mean My (t) of the feedback fac-
tor f, and resulting scenarios of the evolution of the cli-
mate uncertainty Sar(t). (a) Linear decrease in Sy; (b)
stochastic trajectories of My (light blue lines) and 10%,
30%, 50%, 70% and 90% quantiles (heavy black lines);
and (c) stochastic trajectories of Sar (light blue lines)
and 10%, 30%, 50%, 70% and 90% quantiles (heavy black
lines). (d) Trajectory of the 90% range of future values of
Sar; (e) trajectory of the probability that Sar is larger
than its initial value; and (f) pdf of the ratio of Sar
to its initial value for a halving of Sy (heavy line), and
partitioning between an enhanced decrease (Sar < 0.5),
a weaker decrease (0.5 < Sar < 1) and an increase
(1 < Sar) of the sensitivity spread Sar.
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knowledge of feedbacks f. For this purpose, we formulate
a Bayesian model of pdf evolution that is described in Ap-
pendix A. Given certain hypotheses on the progress of cli-
matic research that are explicitly stated there, one obtains
two coupled relationships between M; and S; at times ¢t and
t 4+ 1, which also involve the mean u: and spread o; of the
knowledge acquisition process:

o? S?
St = —5 (4)

ant—&—S?,ut
o + 8%

Ve =T
This model enables us to generate a set of plausible tra-
jectories of My for a given trajectory of decrease in Sy, from
which we then obtain a set of trajectories for Sar by using
Eq. (2). The main results of this probabilistic modeling of
uncertainty evolution are illustrated in Figs. 3(a—c).

From the results in this figure, it follows that — given the
present state of our knowledge on feedbacks — the envelope
of plausible future trajectories of climate uncertainty is very
broad with respect to its current width: it ranges from an
enhanced decrease to a substantial increase in width, cf.
Fig. 3(c). In probabilistic terms, while climate uncertainty
is more likely to decrease as we learn more about the sys-
tem, there is still a significant chance that it may paradox-
ically increase even though we improve our understanding
of the climate system; see Figs. 3(e,f). For instance when
feedback uncertainty is halved, there is still a relatively high
probability, p ~ 20%, to obtain an increase in climate uncer-
tainty. Thus, the effect illustrated in the preceding example,
in connection with Eq. (3), appears to be both realistic and
worrisome. The slightly paradoxical aspects of this effect
are further explained in Appendix B.

4. Conclusions

Feedbacks f are recognized as important, yet uncertain
factors in determining climate sensitivity v = AT/Apco,;
we have considered here, instead of v and according to the
custom in the more applied climate change literature, that
AT for CO3 doubling is an indicator for 7. As a consequence
of the inverse relationship in Eq. (1) between AT and the
feedback parameter f, the uncertainty in climate sensitivity
is amplified as f increases.

As time goes by, we hope and expect to improve our
knowledge of feedbacks, thus reducing the uncertainties in
f. And yet, if one wishes the feedback parameter f in the
present, linearized-EBM setting to capture the behavior of
fully nonlinear models with internal variability [Ghil et al.,
2008; Zaliapin and Ghil, 2010], one also expects the best
estimate of M} to fluctuate within the spread Sy of the cur-
rently known range of f.

These fluctuations in My will affect in turn the value of
the amplification factor (I — M;)™2 and thus the spread
Sar of climate sensitivity. A simple probabilistic model is
introduced in Appendix A here to represent the simultane-
ous changes in My (t) and Sf(t), and the resulting evolution
in time of the sensitivity spread Sar(t).

Using this model, we find that the future trajectory of
Sar(t), i.e. of climate uncertainty, is influenced partly by
the future decrease of Sy — an outcome of our collective
research effort — but also to a large extent by the unknown
future evolution of My. In other words, even when assuming
steady, deterministic progress in climate research, climate
uncertainty may have an uncertain future ahead. The im-
plications for socio-economic and political responses to such
an uncertain evolution of Sar(¢) may be quite complex, de-
pending on whether future societies find high uncertainty
more worrisome than the current range or less so [Hiller-
brand and Ghil, 2008].
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In any case, it follows that surprises may occur in the
future evolution of our assessment of climate sensitivity
— even when only considering linear effects in a climatic-
equilibrium, EBM-type setting. This being said, the sur-
prises associated with nonlinear behavior may be even
greater, as discussed by Zaliapin and Ghil [2010]. In fact, the
currently accepted estimate of mean sensitivity, My = 0.65,
is not that far from the point at which linearized-EBM ap-
proximations break down. It would thus be interesting to
set up a stochastic model for estimates of the distance be-
tween the current climatic equilibrium — or, more precisely,
the current mean of natural climatic variability — and the
closest bifurcation [Ghil, 2001] or “tipping point” [Lenton et
al., 2002].
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Appendix A:

A stochastic model of uncertainty dynamics.

We introduce here a stochastic-process model for the evo-
lution in time ¢ of the probability distribution P(f | ¢) of
the climate feedback parameter f in Egs. (1)—(3) of the
main text. Given the mean My (t) and spread Sy(t) of f
at a given instant ¢ > to — where to is the present time,
at which we (think we) know M; and Sy — one can ob-
tain the climate sensitivity spread Sar(t) and elasticity ra-
tio €50 M /ESar|s, at that time ¢ from Egs. (2) and (3),
respectively.

For the sake of convenience and simplicity, we let the pdf
P(f|t) = P(f | M, S:) that summarizes the information
available on f at instant ¢t be Gaussian; here M; and S; are
the mean and standard deviation of this distribution, and
the index f is henceforth omitted. In our model, the gain of
information on f between time ¢ and time ¢+41 is represented
by a change in the distribution p(f | My, S¢) that is obtained
by updating it with a set of new, independent informations
acquired at time ¢. This new set of informations is assumed
to have a Gaussian distribution p(f | pt, 0¢) with mean pu,
and standard deviation o;. We note merely that the in-
formation content of a Gaussian distribution, measured by
its Shannon entropy, is equal to minus the logarithm of its
standard deviation.

With these assumptions, we apply the update equation
obtained from Bayes’ theorem:

p(f | Megr, Se1) o< p(f | My, Se) - p(f | pe,00) . (5)

From Eq. (5), it is straightforward to obtain the coupled
evolution of M; and S;. For clarity and completeness, we
thus restate here the equation already mentioned in Sec-
tion 3 of the main text,

U?Mt+st2,ut
=

2 o2
o; St

Mt+1 = m

2
St+1 =

(6)

In order to simulate M; and S; from Eq. (6), we need to
further specify the evolution of y: and o+, which jointly de-
scribe the knowledge acquisition process. Regarding u:, we
introduce its prior distribution, denoted by m(ut | fit, op,t),
which again is assumed to be Gaussian. This distribution
represents the a priori range, seen at instant ¢, of the possible
outcomes of the new informations to be acquired between ¢
and t + 1.

We assume next that the knowledge acquisition process
is self-consistent or, in other words, that what we know at
any time is true. Mathematically, this simply means that by
integrating the distribution of f at the instant ¢+ 1, as seen
at the instant ¢, with respect to the set of all updates that
may plausibly occur between ¢ and ¢ + 1, we should obtain
the same distribution back at instant ¢:

p(f | M, St) = /P(f | Misa, Sevr) - m(pue | fie, ope) dpse.
(M)
After a bit of algebra, this yields

ony =5 +oi, jir = My, (8)

where the overbar (-) denotes the mean. Hence pu; is spec-
ified by p: = M; + (S? + 02)Y?n,, with 7, = N(0,1) a
standard Gaussian random variable.

To complete our model specification, we need to also de-
scribe how o, — which characterizes the intensity of the
knowledge acquisition process — evolves between the in-
stants t and ¢ + 1. From Eq. (6), it is clear that the evolu-
tion of S is entirely determined by that of o and vice-versa,.
We choose therefore to control S; rather than o; because it
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seems more relevant to define future scenarios of uncertainty
reduction directly in terms of their outcome rather than in
terms of a parameter that indirectly drives them.

By combining Eqgs. (6) through (8) and eliminating o
and p¢, our stochastic model boils down to a single equa-
tion that yields the evolution in time of My, based on
a prescribed scenario of uncertainty reduction chosen for
{Sk :k=0,1,2,...,t}:

t—1

M; = My + Z(S}é’ - SI§+1)1/2771€ ) 9)

k=0

where 75 are independent, identically distributed Gaussian
variables, n, = N(0,1).

Finally, we need to define a scenario S = S; of future
uncertainty. For this purpose, we use here a simple power

law: N
S, = So {1—3} . t<m
T

a >0, (10)
where 7 is the time at which S; is assumed to vanish, and
« gives the shape of the decrease. In such a scenario, the
amount of new information obtained at instant ¢, measured
by —log oy, is proportional to the amount of existing infor-
mation — log S;.

It follows that M; can be rewritten as:

t—1 1 a1l
2 2 t 2
M, = Mo+ 50> (—f) {1—;} M -

k=0

(11)

The actual value of 7 is irrelevant here because the time unit
is arbitrary. We simply assume that the actual feedback
value f will eventually be known at some future, unknown
date t = 7, no matter how long it will take.

In practice, we arbitrarily chose 7 = 100 and we normal-
ized the time so that ¢’ = t/7 lie in the unit interval [0, 1].
For the shape of the decrease, the basic scenario assumes
a linear decrease, a = 1. We also considered two alterna-
tive scenarios, in which o = 2 and 0.5, representing a faster
decrease at the beginning or at the end of the process, re-
spectively. Note that, in the latter case, M; is just a pure
random walk.

As a final remark, note that the stochastic process given
by Egs. (10) and (11) converges to a distribution with
spread S; = 0, i.e. a Dirac mass positioned at M, that
represents complete knowledge of f = M,. Because the
process is assumed to be self-consistent, the distribution of
the value M, seen from ¢ = 0, should match the initial dis-
tribution, i.e. M, should be distributed with mean M, and
spread So. This is easy to verify analytically, as we imme-
diately obtain from Eq. (9) that E(M; |t = 0) = My, while
its variance V(M |t =0) = ;;(1) Si—Sii1=55.

Appendix B:

An apparent paradox and its explanation.

The central result of our model may at first glance ap-
pear to be contrary to basic common sense. Indeed, how
could we possibly obtain more information on the climate
system, and yet at the same time increase the uncertainty
on a key climate variable such as AT ? One way to resolve
this paradox is to consider the question from the point of
view of information theory.

This convenient framework provides useful metrics to
quantify the amount of information gained at each succes-
sive step t of the learning process in our model. Let X be
any variable of interest of this model and P(X | ¢) the in-
formation on X available at time ¢; here X will be taken
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to be either f or AT. The information gain on X between
t and t + 1 can be measured by using the Kullback-Leibler
divergence (KLD):

Pz |t+1)

Pz (1) dz. (12)

DKL(X|t):/P(a:\t+1)log

T

The KLD is not a true distance metric in the mathemat-
ical sense, in particular it is not symmetric with respect to
the two pdfs whose distance it measures. Still, it has has
two key properties that are of great interest for the present
argument. First, it is nonnegative for any two distributions
P(X | t) and P(X | t +1). In particular, the information
gain is positive even if the spread at £+ 1 is greater than the
spread at t, i.e. an increase in spread is not incompatible
with an acquisition of new information. Second, the KLD
is invariant under a smooth transformation of variables, i.e.
Dk (Y |t) = Drxr (X | t) for Y = ¢(X), where ¢ is a dif-
feomorphism. Thus the information gain on f and AT in
our model is equal at any step ¢ of the learning process, even
though the evolution of their respective uncertainties may
differ.

It follows from the above considerations that the assumed
relationship between the information gain and the uncer-
tainty reduction, respectively, for variables f and AT is of
the essence in explaining the apparent paradox. Indeed, we
assumed here that scientific research drives a direct reduc-
tion of the uncertainty Sy on feedbacks, which in turn drives
— albeit indirectly — the evolution of uncertainty Sar in
climate sensitivity. Had we made a symmetric assumption
on f and AT, the result would be symmetric, too. We do be-
lieve, however, that such a symmetric assumption is not re-
alistic. Indeed, in agreement with previous studies, most of
the learning concerns climate processes that relate directly
to feedbacks, and only indirectly to climate sensitivity.
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