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Chapter 1

A Mathematical Theory of Climate Sensitivity or,

How to Deal With Both Anthropogenic Forcing and Natural Variability?

Michael Ghil

Ecole Normale Supérieure, 75005 Paris, FRANCE, and
University of California, Los Angeles, CA 90095, USA

ghil@lmd.ens.fr∗

Recent estimates of climate evolution over the coming century still differ by several degrees. This
uncertainty motivates the work presented here. There are two basic approaches to apprehend the
complexity of climate change: deterministically nonlinear and stochastically linear, i.e. the Lorenz
and the Hasselmann approach. The grand unification of these two approaches relies on the theory
of random dynamical systems. We apply this theory to study the random attractors of nonlinear,
stochastically perturbed climate models. Doing so allows one to examine the interaction of internal
climate variability with the forcing, whether natural or anthropogenic, and to take into account the
climate system’s non-equilibrium behavior in determining climate sensitivity.

This non-equilibrium behavior is due to a combination of nonlinear and random effects. We give
here a unified treatment of such effects from the point of view of the theory of dynamical systems
and of their bifurcations. Energy balance models are used to illustrate multiple equilibria, while
multi-decadal oscillations in the thermohaline circulation illustrate the transition from steady states
to periodic behavior. Random effects are introduced in the setting of random dynamical systems,
which permit a unified treatment of both nonlinearity and stochasticity. The combined treatment of
nonlinear and random effects is applied to a stochastically perturbed version of the classical Lorenz
convection model.

Climate sensitivity is then defined mathematically as the derivative of an appropriate functional
or other function of the systems state with respect to the bifurcation parameter. This definition is
illustrated by using numerical results for a model of the El Niño–Southern Oscillation.

1.1. Introduction

The global climate system is composed of a num-

ber of subsystems — atmosphere, biosphere,

cryosphere, hydrosphere and lithosphere — each

of which has distinct characteristic times, from

days and weeks to centuries and millennia. Each

subsystem, moreover, has its own internal vari-

ability, all other things being constant, over a

fairly broad range of time scales. These ranges

overlap between one subsystem and another.

The interactions between the subsystems thus

give rise to climate variability on all time scales.

We outline here the rudiments of the way

in which dynamical systems theory provides an

understanding of this vast range of variability.

Such an understanding proceeds through the

study of successively more complex patterns of

behavior. These spatio-temporal patterns are

studied within narrower ranges of time scales,

such as intraseasonal, interannual, interdecadal

and multi-millennial. The main results of dy-

namical systems theory that have demonstrated

their importance for the study of climate vari-

ability involve bifurcation theory and the ergodic

theory of dynamical systems. More recently, the
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theory of random dynamical systems has made

substantial contributions as well.

In the next section, we describe the cli-

mate systems dominant balance between incom-

ing solar radiation, dominated by short waves,

and outgoing terrestrial radiation, dominated

by long waves. This balance is consistent with

the existence of multiple equilibria of surface

temperatures.

Such multiple equilibria are also present for

other balances of climatic actions and reactions.

Thus, on the intraseasonal time scale, the ther-

mal driving of the mid-latitude westerly winds

is countered by surface friction and mountain

drag. Multiple equilibria typically arise from

saddle-node bifurcations of the governing equa-

tions. Transitions from one equilibrium to an-

other may result from small and random pushes

— a typical case of minute causes having large

effects in the long term.

In Sec. 1.3, we sketch the oceans overturning

circulation between cold regions, where water is

heavier and sinks, and warm regions, where it is

lighter and rises. The effect of temperature on

the water masses density and, hence, motion is

in competition with the effect of salinity: density

increases, through evaporation and brine forma-

tion, compete further with decreases in salinity

and, hence, density through precipitation and

river run-off. These competing effects can also

give rise to two distinct equilibria.

In the present-day oceans, a thermohaline

circulation prevails, in which the temperature

effects dominate. In the remote past, about 50

Myr ago, a halothermal circulation may have

obtained, with salinity effects dominating. In a

simplified mathematical setting, these two equi-

libria arise by a pitchfork bifurcation that breaks

the problems mirror symmetry. On shorter time

scales, of decades-to-millennia, oscillations of in-

tensity and spatial pattern in the thermohaline

circulation seem to be the dominant mode of

variability. We show how interdecadal oscilla-

tions in the oceans circulation arise by Hopf

bifurcation.

In Sec. 1.4, we address the way that faster

processes, modeled as random effects, can inter-

act with the slower, nonlinear ones. The com-

bined treatment of the nonlinear and stochastic

processes can reveal amazingly fine structure in

the climate systems behavior, but also — and

rather surprisingly — add robustness and pre-

dictability to the results.

In Sec. 1.5, we discuss the way that climate

sensitivity can be defined in the stochastic vs.

the deterministic context. Concluding remarks

follow in Sec. 1.6.

1.2. Energy-Balance Models and the

Modeling Hierarchy

The concepts and methods of the theory of de-

terministic dynamical systems (Andronov and

Pontryagin, 1937; Arnol’d, 1983; Guckenheimer

and Holmes, 1983) have been applied first

to simple models of atmospheric and oceanic

flows, starting about fifty years ago (Lorenz,

1963; Stommel, 1961). More powerful comput-

ers now allow their application to fairly realistic

and detailed models of the atmosphere, ocean,

and the coupled atmosphereocean system. We

start therefore by presenting such a hierarchy

of models.

This presentation is interwoven with that of

the successive bifurcations that lead from simple

to more complex solution behavior for each cli-

mate model. Useful tools for comparing model

behavior across the hierarchy and with observa-

tions are provided by ergodic theory (Eckmann

and Ruelle, 1985; Ghil et al., 2008a). Among

these, advanced methods for the analysis and

prediction of uni- and multivariate time series

play an important role.

1.2.1. Radiation balance and energy-

balance models (EBMs)

The concept of a modeling hierarchy in cli-

mate dynamics was introduced by Schneider

and Dickinson (1974); it is discussed in greater

detail by Ghil and Robertson (2000) and by
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Dijkstra and Ghil (2005). At present, the best-

developed hierarchy is for atmospheric mod-

els. These models were originally developed for

weather simulation and prediction on the time

scale of hours to days. Currently they serve in

a stand-alone mode or coupled to oceanic and

other models to address climate variability on

all time scales.

The first rung of the modeling hierarchy for

the atmosphere is formed by zero-dimensional

(0-D) models, where the number of dimensions,

from zero to three, refers to the number of in-

dependent space variables used to describe the

model domain, i.e. to physical-space dimensions.

Such 0-D models essentially attempt to follow

the evolution of global surface-air temperature

as a result of changes in global radiative balance:

c
dT̄

dt
= Ri −Ro, (1.1a)

Ri = µQ0{1− α(T̄ )}, (1.1b)

Ro = σm(T̄ )(T̄ )4. (1.1c)

Here Ri and Ro are incoming solar radiation

and outgoing terrestrial radiation. The heat ca-

pacity c is that of the global atmosphere, plus

that of the global ocean or some fraction thereof,

depending on the time scale of interest: one

might only include in c the ocean mixed layer

when interested in subannual time scales but the

entire ocean when studying paleoclimate.

The rate of change of T̄ with time t is given

by dT̄ /dt, while Q0 is the solar radiation re-

ceived at the top of the atmosphere, σ is the Ste-

fanBoltzmann constant, and m is an insolation

parameter, equal to unity for present-day con-

ditions. To have a closed, self-consistent model,

the planetary reflectivity or albedo α and gray-

ness factor m have to be expressed as functions

of T̄ ; m = 1 for a perfectly black body and

0 < m < 1 for a grey body like planet Earth.

There are two kinds of one-dimensional (1-

D) atmospheric models, for which the single spa-

tial variable is latitude or height, respectively.

The former are so-called energy-balance mod-

els (EBMs), which consider the generalization of

the model (2.1) for the evolution of surface-air

temperature T = T (x, t), say,

c(x)
∂T̄

∂t
= Ri −Ro +D. (1.2)

Here the terms on the right-hand side can be

functions of the meridional coordinate x (lat-

itude, co-latitude, or sine of latitude), as well

as of time t and temperature T . The horizontal

heat-flux term D expresses heat exchange be-

tween latitude belts; it typically contains first

and second partial derivatives of T with respect

to x. Hence the rate of change of local tempera-

ture T with respect to time also becomes a par-

tial derivative, ∂T̄ /∂t. Such models were intro-

duced independently by Budyko (1969) and by

Sellers (1969).

The first striking results of theoretical cli-

mate dynamics were obtained in showing that

Eq. (1.2) could have two stable steady-state so-

lutions, depending on the value of the insolation

parameter µ, cf. Eq. (1.1b). This multiplicity of

stable steady states, or physically possible cli-

mates of our planet, can be explained, in its sim-

plest form, in the 0-D model given by Eq. (1.1).

The physical explanation resides in the fact

that — for a fairly broad range of µ-values

around µ = 1.0 — the curves for Ri and Ro as a

function of T̄ intersect in 3 points. One of these

points corresponds to the present climate (high-

est T̄ -value), and another one to an ice-covered

planet (lowest T̄ -value); both of these are sta-

ble, while the third one (intermediate T̄ -value)

is unstable. To obtain this result, it suffices to

make two assumptions: (i) that α = α(T̄ ) is a

piecewise-linear function of T̄ , with high albedo

at low temperature, due to the presence of snow

and ice, and low albedo at high T̄ , due to their

absence; and (ii) that m = m(T̄ ) is a smooth,

increasing function of T̄ that attempts to cap-

ture in its simplest from the greenhouse effect of

trace gases and water vapor.

The bifurcation diagram of a 1-D EBM, like

the one of Eq. (1.2), is shown in Fig. 1.1. It

displays the model’s mean temperature T̄ as a

function of the fractional change µ in the inso-
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lation Q = Q(x) at the top of the atmosphere.

The S-shaped curve in the figure arises from two

back-to-back saddle-node bifurcations.

Fig. 1.1. Bifurcation diagram for the solutions of an

energy-balance model (EBM), showing the global-mean

temperature T̄ vs. the fractional change µ of insolation
at the top of the atmosphere. The arrows pointing up

and down at about µ = 1.4 indicate the stability of

the branches: towards a given branch if it is stable and
away if it is unstable. The other arrows show the hys-

teresis cycle that global temperatures would have to un-
dergo for transition from the upper stable branch to the

lower one and back. The angle γ gives the measure of

the present climates sensitivity to changes in insolation.
[After Ghil and Childress (1987) with permission from

Springer-Verlag.]

The normal form of the first one is

Ẋ = µ−X2. (1.3)

Here X stands for a suitably normalized form

of T̄ and Ẋ is the rate of change of X, while µ

is a parameter that measures the stress on the

system, in particular a normalized form of the

insolation parameter.

The uppermost branch corresponds to the

steady-state solution X = +µ1/2 of Eq. (1.3)

and it is stable. This branch matches rather well

Earth’s present-day climate for µ = 1.0; more

precisely the steady-state solution T = T (x;µ)

of the full 1-D EBM (not shown) matches closely

the annual mean temperature profile from in-

strumental data over the last century.

The intermediate branch starts out at the

left as the second solution, X = −µ1/2, of

Eq. (1.3) and it is unstable. It blends smoothly

into the upper branch of a coordinate-shifted

and mirror-reflected version of Eq. (1.3), say

Ẋ = µ−X2. (1.4)

This branch, X = X0+(µ0−µ)1/2, is also un-

stable. Finally, the lowermost branch in Fig. 1.1

is the second steady-state solution of Eq. (1.4),

X = X0(µ0 − µ)1/2, and it is stable, like the

uppermost branch. The lowermost branch cor-

responds to an ice-covered planet at the same

distance from the Sun as Earth.

The fact that the upper-left bifurcation point

(µc, Tc) in Fig. 1.1 is so close to present-

day insolation values created great concern in

the climate dynamics community in the mid-

1970s, when these results were obtained. In-

deed, much more detailed computations (see be-

low) confirmed that a reduction of about 2–5%

of insolation values would suffice to precipitate

Earth into a deep freeze. The great distance of

the lower-right bifurcation point (µd, Td) from

present-day insolation values, on the other hand,

suggests that one would have to nearly double

atmospheric opacity, say, for the Earth’s climate

to jump back to more comfortable temperatures.

The results here follow Ghil (1976). Held and

Suarez (1974) and North North (1975) obtained

similar results, and a detailed comparison be-

tween EBMs appears in Chapter 10 of Ghil and

Childress (1987).

1.2.2. Other atmospheric processes

and models

The 1-D atmospheric models in which the de-

tails of radiative equilibrium are investigated

with respect to a height coordinate z (geo-

metric height, pressure, etc.) are often called
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radiative-convective models (Ramanathan and

Coakley, 1978). This name emphasizes the key

role that convection plays in vertical heat trans-

fer. While these models preceded historically

EBMs as rungs on the modeling hierarchy, it

was only recently shown that they, too, could

exhibit multiple equilibria (Li et al., 1997). The

word (stable) equilibrium, here and in the rest

of this article, refers simply to a (stable) steady

state of the model, rather than a to true ther-

modynamic equilibrium.

Two-dimensional (2-D) atmospheric models

are also of two kinds, according to the third

space coordinate that is not explicitly included.

Models that resolve explicitly two horizontal co-

ordinates, on the sphere or on a plane tangent to

it, tend to emphasize the study of the dynamics

of large-scale atmospheric motions. They often

have a single layer or two. Those that resolve ex-

plicitly a meridional coordinate and height are

essentially combinations of EBMs and radiative-

convective models and emphasize therewith the

thermodynamic state of the system, rather than

its dynamics.

Yet another class of horizontal 2-D models

is the extension of EBMs to resolve zonal, as

well as meridional surface features, in particu-

lar land-sea contrasts. We shall see in Sec. 1.3.2

how such a 2-D EBM is used, when coupled to

an oceanic model.

Schneider and Dickinson (1974) and Ghil

and Robertson (2000) discuss additional types of

1-D and 2-D atmospheric models and give refer-

ences to these and to the types discussed above,

along with some of their main applications. Fi-

nally, to encompass and resolve the main at-

mospheric phenomena with respect to all three

spatial coordinates, general circulation models

(GCMs) occupy the pinnacle of the modeling

hierarchy.

The dependence of mean zonal temperature

on the insolation parameter µ (the normalized

“solar constant”) — as obtained for 1-D EBMs

and shown in Fig. 1.1 here — was confirmed, to

the extent possible, by using a simplified GCM,

coupled to a swamp ocean model. More pre-

cisely, forward integrations with a GCM cannot

confirm the presence of the intermediate, unsta-

ble branch. Nor was it possible in the mid-70s,

when this numerical experiment was done, to

reach the deep-freeze stable branch, because of

the GCMs computational limitations. But the

parabolic shape of the upper, present-daylike

branch near the upper-left bifurcation point in

our figure, cf. Eq. (1.3), was well supported by

the GCM simulations.

Ghil and Robertson (2000) also describe the

separate hierarchies that have grown over the

last quarter-century in modeling the ocean and

the coupled oceanatmosphere system. More re-

cently, an overarching hierarchy of earth-system

models that encompass all the subsystems of

interest, atmosphere, biosphere, cryosphere, hy-

drosphere and lithosphere has been developing.

Eventually, the partial results about each sub-

systems variability, outlined in this section and

the next one, will have to be verified from one

rung to the next of the Earth-system modeling

hierarchy.

1.3. Oscillations in the Oceans’

Thermohaline Circulation

1.3.1. Theory and simple models

Historically, the thermohaline circulation

(THC) was first among the climate systems

major processes to be studied using a very sim-

ple mathematical model. Stommel (1961) for-

mulated a two-box model and showed that it

possessed multiple equilibria.

A sketch of the Atlantic Oceans THC

and its interactions with the atmosphere and

cryosphere on long time scales is shown in

Fig. 1.2. These interactions can lead to climate

oscillations with multi-millennial periods, such

as the Heinrich events, and are summarized in

the figures caption. An equally schematic view

of the global THC is provided by the widely

known “conveyor belt” diagram. The latter dia-

gram captures greater horizontal, 2-D detail but
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it does not commonly include the THCs inter-

actions with water in both its gaseous and solid

phases, which our Fig. 1.2 here does include.

Fig. 1.2. Diagram of an Atlantic meridional cross sec-

tion from North Pole (NP) to South Pole (SP), showing
mechanisms likely to affect the thermohaline circulation

(THC) on various time-scales. Changes in the radiation

balance Rin − Rout are due, at least in part, to changes
in extent of Northern Hemisphere (NH) snow and ice

cover V , and to how these changes affect the global tem-

perature T ; the extent of Southern Hemisphere ice is
assumed constant, to a first approximation. The change

in hydrologic cycle expressed in the terms Prain − Pevap

for the ocean and Psnow − Pabl for the snow and ice is
due to changes in ocean temperature. Deep-water forma-

tion in the North Atlantic Subpolar Sea (North Atlantic

Deep Water: NADW) is affected by changes in ice volume
and extent, and regulates the intensity C of the THC;
changes in Antarctic Bottom Water (AABW) formation

are neglected in this approximation. The THC intensity
C in turn affects the systems temperature, and is also

affected by it. [After Ghil et al. (1987) with permission
from Springer-Verlag.]

Basically, the THC is due to denser wa-

ter sinking, lighter water rising, and water-

mass continuity closing the circuit through near-

horizontal flow between the areas of rising and

sinking. The effects of temperature and salinity

on the ocean waters density, ρ = ρ(T, S), op-

pose each other: the density ρ decreases as T

increases and it increases as S increases. It is

these two effects that give the thermohaline cir-

culation its name, from the Greek words for T

and S. In high latitudes, ρ increases as the wa-

ter loses heat to the air above and, if sea ice is

formed, as the water underneath is enriched in

brine. In low latitudes, ρ increases due to evap-

oration but decreases due to sensible heat flux

into the ocean.

For the present climate, the temperature ef-

fect is stronger than the salinity effect, and

ocean water is observed to sink in certain areas

of the high-latitude North Atlantic and South-

ern Ocean — with very few and limited areas of

deep-water formation elsewhere — and to rise

everywhere else. Thus, in a thermohaline regime,

T is more important than S and hence comes

before it. During some remote geological times,

deep water may have formed in the global ocean

near the equator; such an overturning circula-

tion of opposite sign to that prevailing today

has been dubbed halothermal, S before T . The

quantification of the relative effects of T and S

on the oceanic water masses buoyancy in high

and low latitudes is far from complete, especially

for paleocirculations; the association of the lat-

ter with salinity effects that exceed the thermal

ones (Kennett and Stott, 1991) is thus rather

tentative.

To study the reversal of the abyssal circu-

lation, due to the opposite effects of T and S,

Stommel considered a two-box model, with two

pipes connecting the two boxes. He showed that

the system of two nonlinear, coupled ordinary

differential equations that govern the temper-

ature and salinity differences between the two

well-mixed boxes has two stable steady-state

solutions; these two steady states are distin-

guished by the direction of flow in the upper and

lower pipe. Stommel’s paper was primarily con-

cerned with distinct local convection regimes,

and hence vertical stratifications, in the North

Atlantic and the Mediterranean or the Red Sea,

say. Today, we mainly think of one box as rep-

resenting the low latitudes and the other one

the high latitudes in the global THC (Marotzke,

2000).

The next step in the hierarchical modeling of

the THC is that of 2-D meridional plane models,

in which the temperature and salinity fields are

governed by coupled nonlinear partial differen-

tial equations with two independent space vari-

ables, latitude and depth, say. Given boundary

conditions for such a model that are symmetric
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about the Equator, as the equations themselves

are, one expects a symmetric solution, in which

water either sinks near the poles and rises ev-

erywhere else (thermohaline) or sinks near the

Equator and rises everywhere else (halother-

mal). These two symmetric solutions would cor-

respond to the two equilibria of Stommel’s box

model of 1961.

In fact, symmetry breaking can occur, leading

gradually from a symmetric two-cell circulation

to an antisymmetric one-cell circulation. In be-

tween, all degrees of dominance of one cell over

the other are possible. A situation lying some-

where between the two seems to resemble most

closely the meridional overturning diagram of

the Atlantic Ocean in Fig. 1.2.

This symmetry breaking can be described by

a pitchfork bifurcation:

Ẋ = µ−X3. (1.5)

Here X stands for the amount of asymmetry in

the solution, so that X = 0 is the symmetric

branch, and µ is a parameter that measures the

stress on the system, in particular a normalized

form of the buoyancy flux at the surface. For

µ < 0 the symmetric branch is stable, while for

µ > 0 the two branches X = ±µ1/2 inherit its

stability.

In the 2-D THC problem, the left cell dom-

inates on one branch, while the right cell dom-

inates on the other: for a given value of µ, the

two stable steady-state solutions — on the {X =

+µ1/2} branch and on the {X = −µ1/2} branch

— are mirror images of each other. The idealized

THC in Fig. 1.2, with the North Atlantic Deep

Water extending to the Southern Oceans polar

front, corresponds to one of these two branches.

In theory, therefore, a mirror-image circulation,

with the Antarctic Bottom Water extending

to the North Atlantics polar front, is equally

possible.

1.3.2. Bifurcation diagrams for GCMs

Bryan (1986) was the first to document transi-

tion from a two-cell to a one-cell circulation in a

simplified ocean GCM with idealized, symmet-

ric forcing. Results of coupled oceanatmosphere

GCMs, however, have led to questions about the

realism of more than one stable THC equilib-

rium. The situation with respect to the THCs

pitchfork bifurcation (1.5) is thus subtler than

it was with respect to Fig. 1.1 for radiative equi-

librium. In the previous section, atmospheric

GCMs confirmed essentially the EBM results;

the results obtained in climbing the rungs of the

modeling hierarchy for the THC are still in need

of further clarification.

Internal variability of the THC with smaller

and more regular excursions than the huge and

totally irregular jumps associated with bistabil-

ity was studied intensively in the late 1980s and

the 1990s. These studies placed themselves on

various rungs of the modeling hierarchy, from

box models through 2-D models and all the way

to ocean GCMs. A summary of the different

kinds of oscillatory variability found in the latter

appears in Table 1.1. Such oscillatory behavior

seems to match more closely the instrumentally

recorded THC variability, as well as the paleo-

climatic records for the recent geological past,

than bistability.

The (multi)millennial oscillations interact

with variability in the surface features and pro-

cesses shown in Fig. 1.2. Chen and Ghil (1996),

in particular, studied some of the interactions

between atmospheric processes and the THC.

They used a so-called hybrid coupled model,

namely a (horizontally) 2-D EBM, coupled to

a rectangular-box version of the North At-

lantic rendered by a low-resolution ocean GCM.

This hybrid models regime diagram is shown in

Fig. 1.3(a). A steady state is stable for high val-

ues of the coupling parameter or of the EBMs

diffusion parameter d. Interdecadal oscillations

with a period of 40–50 years are self-sustained

and stable for low values of these parameters.

The self-sustained THC oscillations in ques-

tion are characterized by a pair of vortices of

opposite sign that grow and decay in quadra-

ture with each other in the oceans upper layers.
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Table 1.1. Oscillations in the oceans’ thermohaline circulation.

Time scale Phenomena Mechanisma

Decadal · Local migration of surface anomalies in the

northwest corner of the ocean basin

· Localized surface density anomalies due to

surface coupling
· Gyre advection in mid-latitudes · Gyre advection

Centennial Loop-type, meridional circulation Conveyor-belt advection of density anomalies

Millennial Relaxation oscillation, with “flushes” and su-
perimposed decadal fluctuations

Bottom water warming, due to strong braking
effect of salinity forcing

a Full references to these mechanisms are given in Ghil (1994).a) Regime diagram

b) Bifurcation diagram

a) Regime diagram

b) Bifurcation diagram

a) Regime diagram b) Bifurcation diagram

Fig. 1.3. Dependence of THC solutions on two parameters in a hybrid coupled model; the two parameters are the
atmosphere-ocean coupling coefficient λao and the atmospheric thermal diffusion coefficient d. (a) Schematic regime

diagram. The full circles stand for the models stable steady states, the open circles for stable limit cycles, and the solid

curve is the estimated neutral stability curve between the former and the latter. (b) Hopf bifurcation curve at fixed d
= 1.0 and varying λao; this curve was obtained by fitting a parabola to the models numerical-simulation results, shown

as full and open circles. [From Chen and Ghil (1996) with permission from the American Meteorological Society.]

Their centers follow each other anti-clockwise

through the northwestern quadrant of the mod-

els rectangular domain. Both the period and the

spatio-temporal characteristics of the oscillation

are thus rather similar to those seen in a fully

coupled GCM with realistic geometry. The tran-

sition from a stable equilibrium to a stable limit

cycle, via Hopf bifurcation, in this hybrid cou-

pled model, is shown in Fig. 1.3(b).

1.4. Randomness and Nonlinearity

1.4.1. What to expect

The geometric (Arnol’d, 1983; Guckenheimer

and Holmes, 1983) and the ergodic (Eckmann

and Ruelle, 1985) theory of dynamical systems

represent significant achievements of the 20th

century. The foundations of the stochastic calcu-

lus in its second half (Doob, 1953) also led to the

birth of a rigorous theory of time-dependent ran-

dom phenomena. Historically, theoretical devel-

opments in climate dynamics have been largely

motivated by these two complementary ap-

proaches, based on the work of E. N. Lorenz

and that of K. Hasselmann (Lorenz, 1963; Has-

selmann, 1976), respectively.

It now seems clear that these two approaches

complement, rather than exclude each other.

Incomplete knowledge of small-, subgrid-scale

processes, as well as computational limitations

will always require one to account for these

processes in a stochastic way. As a result of
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sensitive dependence on initial data and on pa-

rameters, numerical weather forecasts, as well

as climate projections are both expressed these

days in probabilistic terms. In addition to the

intrinsic challenge of addressing the nonlinear-

ity along with the stochasticity of climatic pro-

cesses, it is thus more convenient — and becom-

ing more and more necessary — to rely on a

model’s (or set of models’) probability density

function (PDF) rather than on its individual,

point-wise simulations or predictions.

We summarize here results on the surpris-

ingly complex statistical structure that charac-

terizes stochastic nonlinear systems. This com-

plex structure does provide meaningful phys-

ical information that is not described by the

PDF alone; it lives on a random attractor,

which extends the concepts of a strange attractor

and of the invariant measure that is supported

by it, from the deterministic to the stochastic

framework.

1.4.2. What one finds

On the road to including random effects, one

needs to realize first that the climate system —

as well as any of its subsystems, and on any

time scale — is not closed: it exchanges en-

ergy, mass and momentum with its surround-

ings, whether other subsystems or the inter-

planetary space and the solid earth. The typi-

cal applications of dynamical systems theory to

climate variability so far have only taken into

account exchanges that are constant in time,

thus keeping the model — whether governed by

ordinary, partial or other differential equations

— autonomous; i.e., the models had coefficients

and forcings that were constant in time.

Succinctly, one can write such a system as

Ẋ = f(X;µ), (1.6)

where X now may stand for any state vector or

climate field, while f is a smooth function of X

and of the vector of parameters µ, but does not

depend explicitly on time. This characteristic of

being autonomous greatly facilitated the analy-

sis of model solutions’ properties. For instance,

two distinct trajectories, X1(t) and X2(t), of a

well-behaved, smooth autonomous system can-

not pass through the same point in phase space,

which helps describe the systems phase portrait.

So does the fact that we only need to consider

the behavior of solutions X(t) as we let time

t tend to +∞: the resulting sets of points are

— possibly multiple — equilibria, periodic so-

lutions, and chaotic sets. In the language of

dynamical systems theory, these are called, re-

spectively: fixed points, limit cycles, and strange

attractors.

We know only too well, however, that the

seasonal cycle plays a key role in climate vari-

ability on many time scales, while orbital forc-

ing is crucial on the Quaternary time scales

of many millennia, and now anthropogenic forc-

ing is of utmost importance on interdecadal

time scales. How can one take into account such

time-dependent forcings, and analyze the non-

autonomous systems, written succinctly as

Ẋ = f(X, t;µ), (1.7)

to which they give rise? In Eq. (1.7), the depen-

dence of f on t may be periodic, f(X, t + P ) =

f(X, t), as in various El Niño–Southern Oscilla-

tion (ENSO) models, where the period P = 12

months, or monotone, f(X, t + τ) ≥ f(X, t) for

τ ≥ 0, as in studying scenarios of anthropogenic

climate forcing.

To illustrate the fundamental character of

the distinction between an autonomous system

like (1.6) and a non-autonomous one like (1.7),

consider the simple scalar version of these two

equations:

Ẋ = −βX, (1.8)

and

Ẋ = −βX + γt, (1.9)

respectively. We assume that both systems are

dissipative, i.e. β > 0, and that the forcing is

monotone increasing, γ ≥ 0, as would be the

case for anthropogenic forcing in the industrial
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era. Lorenz (1963) pointed out the key role of

dissipativity in giving rise to strange, but at-

tracting solution behavior, while Ghil and Chil-

dress (1987) emphasized its importance and per-

vasive character in climate dynamics. Clearly

the only attractor for the solutions of Eq. (1.8),

given any initial point X(0) = X0, is the fixed

point X = 0, attained as t→ +∞.

For the non-autonomous case of Eq. (1.9),

though, this forward-in-time approach yields

blow-up as t → +∞, for any initial point. To

make sense of what happens in the case of time-

dependent forcing, one introduces instead the

pullback approach, in which solutions are allowed

to still depend on the time t at which we observe

them, but also on a time s from which the solu-

tion is started, X(s) = X0; presumably s � t.

With this little change of approach, one can eas-

ily verify that

|X(s, t;X0)−A(t)| → 0 as s→ −∞,
(1.10)

for all t and X0, where

A(t) =
γ(t− 1/β)

β
. (1.11)

We thus obtain, in this pullback sense, the in-

tuitively obvious result that the solutions, if

started far enough in the past, all approach the

attractor set A(ω), which has a linear growth in

time and thus follows the linear forcing.

Let us return now to the more general, non-

linear case of Eq. (1.7) and add not only de-

terministic time dependence f(X, t), but also

random forcing (Ledrappier and Young, 1988;

Arnold, 1998),

dX = f(X, t)dt+ g(X)dη, (1.12)

where η = η(t;ω) represents a Wiener process

— and dη(t) is commonly referred to as “white

noise — while ω labels the particular realiza-

tion of this random process. The case g(X) =

const. is the case of additive noise, while in the

case of ∂g(X)/∂X 6= 0 we speak of multiplica-

tive noise. The distinction between dt and dω in

Eq. (1.12) is necessary since, roughly speaking

and following Einstein’s treatment of Brownian

motion (Einstein, 1905), it is the variance of a

Wiener process that is proportional to time and

thus dη ∼ (dt)1/2.

In the case of random forcing, we can illus-

trate the concepts introduced by the simple ex-

ample of Eqs. (1.10, 1.11) above by the random

attractor A(ω) (yellow band) of Fig. 1.4. In the

figure, dη(t;ω) = θ(t)ω is the random process

that drives the system (solid black line) and the

pullback attraction is depicted by the flow of an

arbitrary set B from “pullback times t = −τ2
and t = −τ1 onto the attractor (heavy blue

arrows).

{!(  )"}xt X{"}xX

!(  )"t

A(    )" #(  ,")    t A(    )=" t!( )"A(          )

$"

Pullback attraction to A(   )"

2!(%& )"
!(%& )"1

!(%&  )")B(
!(%&  )")B( 1

2

Fig. 1.4. Schematic diagram of a random attractor

A(ω) and of the pullback attraction to it; here ω labels
the particular realization of the random process θ(t)ω

that drives the system. We illustrate the evolution in
time t of the random process θ(t)ω (solid black line at

the bottom); the random attractor A(ω) itself (yellow
band in the middle) with the “snapshots” A(ω) = A(t =
0;ω) and A(t;ω) (the two vertical sections, heavy solid);

and the flow of an arbitrary set B from pullback times

t = −τ2 and t = −τ1 onto the attractor (heavy blue
arrows). [After Ghil et al. (2008a) with permission from

Elsevier.]

More explicitly, we show in Fig. 1.5 four

snapshots {Aj(ω) = A(ω; t = tj) : j = 1, 2, 3, 4}
that correspond to the vertical cross-sections

(heavy solid) in the attractor of Fig. 1.4; a

short video, from which these snapshots are

taken, appears as Supplementary Information in

Chekroun et al. (2011b). These snapshots were

calculated for the random attractor A(t;ω) of

a stochastically perturbed Lorenz system, given
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by

dX = Pr(Y −X)dt+ σXdη, (1.13a)

dX = (rX − Y −XZ)dt+ σY dη (1.13b)

dX = (−bZ +XY )dt+ σZdη. (1.13c)

Fig. 1.5. Four snapshots of the stochastically perturbed

Lorenz (1963) model’s random attractor A(ω) and the

invariant measure ν(ω) supported on it. The parame-
ter values are the classical ones — normalized Rayleigh

number r = 28, Prandtl number Pr = 10, and normal-

ized wave number b = 8/3 — while the noise intensity
is σ = 0.5 and the time step is δt = 5 · 103. The color

bar used is on a log-scale and quantifies the probability

to end up in a particular region of phase space; shown
is a projection of the 3-D phase space (X,Y, Z) onto

the (X,Z)-plane. Notice the complex, interlaced filament

structures between highly (yellow) and moderately (red)
populated regions. The time interval ∆t between two suc-
cessive snapshots — moving from left to right and from
top to bottom — is ∆t = 0.0875. Note that the sup-
port of the invariant measure ν(t;ω) may change quite

abruptly, from time t to time t+∆t; see the related short
video in Chekroun et al. (2011b). Weakly populated re-

gions cover an important part of the random attractor
and are, in turn, entangled with regions that have near-
zero probability (black). [After Chekroun et al. (2011b)
with permission from Elsevier.]

The parameters r, Pr and b in Eqs. (1.13)

have the usual meanings for 2-D thermal con-

vection: r = R/Rc is the Rayleigh number R

normalized by its critical value Rc at the onset

of convection, Pr is the Prandtl number, and b

is a normalized wave number for the most unsta-

ble wave at the onset of convection. The noise in

this case is multiplicative: its intensity σ = 0.5

is multiplied in each one of the three coupled,

nonlinear equations above by the corresponding

variable X,Y or Z.

To be precise, what is plotted in Fig. 1.5, and

in the associated video, is the density of the in-

variant measure ν(ω) supported on the random

attractor of the stochastically perturbed Lorenz

system governed by Eq. (1.13). This measure in-

dicates the probability of trajectories winding

up in a particular region of phase space and it is

very highly concentrated on the attractor, as in-

ferred from the huge range of density values: the

color bar in the figure is on a logarithmic scale,

and extends over more than 10 orders of mag-

nitude. The situation is thus very different from

that expected when studying additive noise —

in that case, the noise tends to smear out the

fine, Cantor-set–like structure of the determin-

istic, strange attractor and the associated PDF

has nonzero-volume support.

It hardly needs saying that additive noise has

been studied in climate dynamics much more

extensively than the multiplicative sort, for two

reasons: (i) it was easier to do so; and (ii) it was

suggested by the simple Brownian motion anal-

ogy of “weather ' water molecules” and “cli-

mate ' pollen particle,” as proposed by Has-

selmann (1976). Across the hierarchy of climate

models discussed in the previous two sections of

this article, however, it is clear that small-and-

fast scales of motion do not enter exclusively in

an additive manner: they pop up in many, if not

all terms of the governing equations, as summa-

rized in Eq. (1.12) above. The insights offered,

therefore, by Fig. 1.5 and the video are likely to

be of interest across the hierarchy of models, all

the way up to and including coupled GCMs and

Earth system models.

The invariant measure in Fig. 1.5 exhibits

amazing complexity, with fine, very intense fil-

amentation: there is no fuzziness whatsoever in

its topological structure, which does evoke the

Cantor-set foliation of the deterministic attrac-

tor. This fine structure strongly suggests that an
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object of vanishing volume supports this mea-

sure, i.e. that the random attractor A(ω) of sys-

tem (1.12) has — like the strange attractor of

the classical, deterministic version, with σ = 0

— dimension smaller than 3.

1.5. A Rigorous Definition of

Climate Sensitivity

1.5.1. Equilibrium climate sensitivity

The usual view of climate sensitivity — as re-

flected in the work of the Intergovernmental

Panel on Climate Change [IPCC: (Houghton et

al., 1991; Solomon et al., 2007)] — is that of cli-

mate being in equilibrium, in the absence of ex-

ternal perturbations. In the setting of determin-

istic, autonomous dynamical systems, this view

can be described by the change in the position

of a fixed point, X0 = X0(µ), as a function of a

parameter µ.

Going back to Fig. 1.1, we can see how the

scalar functional T̄ = T̄{X0(µ)}, namely the

global-mean temperature, varies as a function of

the fractional change µ of insolation at the top

of the atmosphere; here the fixed point X0 =

X0(µ) is the equilibrium solution T = T (x;µ)

of the EBM given by Eq. (1.2). Climate sensi-

tivity for the present climate is thus simply the

partial derivative ∂T̄ /∂µ, i.e. the tangent of the

angle γ between the upper branch of Fig. 1.1

and the abscissa. The sensitivity increases, in

general, as we approach the bifurcation point

(X0, µ0) in Eqs. (1.3) or (1.4), and it decreases

away from it.

But we have seen in Secs. 1.3 and 1.4 here

that internal climate variability can be better

described by limit cycles and strange attractors

than by fixed points. Moreover, the presence

of time-dependent forcing, deterministic as well

as stochastic, introduces additional complexities

into the proper definition of climate sensitivity.

1.5.2. Defining climate sensitivity in

the presence of variability

We illustrate in Fig. 1.6 the difference between

the ways that a change in a parameter can affect

a climate model’s behavior in the case of purely

periodic solutions vs. the case of equilibrium so-

lutions. One might still think of the former case

as the climate of a simpler world, in which ENSO

would be purely periodic, rather than irregular.

In this case, climate sensitivity can no longer be

defined by a single scalar, like ∂T̄ /∂µ, but needs

at least three scalars: the sensitivity of the mean

temperature along with that of the limit cycle’s

frequency (or period) and amplitude.

a) Equilibrium sensitivity

b) Nonequilibrium sensitivity

T
CO2

t

t

t

T,
CO2

T,
CO2

T,
CO2

Fig. 1.6. Climate sensitivity (a) for an equilibrium

model; and (b) for a nonequilibrium, oscillatory model.
As a forcing (atmospheric CO2 concentration, say, dash-

dotted line) changes suddenly, global temperature (heavy

solid) undergoes a transition: in panel (a) only the mean
temperature changes; in panel (b) the mean (shown now

as light dashed) adjusts as it does in panel (a), but the

amplitude of the oscillation can also decrease, increase
or stay the same.

More generally, the setting of non-

autonomous and of random dynamical systems,

as described in Sec. 1.4, allows one to examine
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the interaction of internal climate variability

with the forcing, whether natural or anthro-

pogenic, and to provide a definition of climate

sensitivity that takes into account the climate

systems non-equilibrium behavior and its time-

dependent forcing. Such a definition is of the

essence in studying systematically the sensitiv-

ity of global climate models (GCMs) to the un-

certainties in tens of semi-empirical parameters;

it will be given here in terms of the response of

the appropriate probability densities to changes

in the parameters. A comparison with numerical

results on parameter dependence for a somewhat

simplified GCM (Neelin et al., 2010) goes be-

yond the scope of this brief overview, and will

be given elsewhere.

As an illustration of the more general sensi-

tivity definition that we are proposing, we con-

sider here the case of an infinite-dimensional,

but still relatively simple ENSO model. The

model is due to Galanti and Tziperman (2000),

and its two dependent variables are sea surface

temperature T in the eastern Tropical Pacific

and thermocline depth h there, as a function of

time t:

Ṫ = f(T (t), h(t)), (1.14a)

h(t) = g(T, h, F )(t, τ1, τ2), (1.14b)

F (t) = 1 + εcos(ωt+ φ). (1.14c)

In Eqs. (1.14), F stands for the seasonal forc-

ing, with period 2π/ω = 12 months, and all

three variables — T, h and F — depend on the

time t and the delays τ1 and τ2; these delays

characterize the traveling times along the Equa-

tor of eastward Kelvin and westward Rossby

waves. Several authors have studied such delay-

differential models of ENSO; see Dijkstra (2005)

for a review and Ghil et al. (2008b) for fur-

ther mathematical details on this type of mod-

els. Note that this Galanti-Tziperman model is

non-autonomous, because of the seasonal forc-

ing, but it is still deterministic.

The solutions of Eqs. (1.14) exhibit periodic,

quasi-periodic and chaotic behavior, as well as

frequency locking to the time-dependent, sea-

sonal cycle. Thus, in principle, an infinite num-

ber of scalars are required to define the depen-

dence of these solutions on the parameters τ1
and τ2; these scalars need to include not just

the means of temperature T and depth h, but

also their variance and higher-order moments.

We have chosen in Fig. 1.7 to represent this de-

pendence for the zeroth, second and fourth mo-

ments of h(t); more precisely the plotted quanti-

ties are the mean, standard deviation and fourth

root of the kurtosis.
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Fig. 1.7. Relative changes in the statistical properties

of the thermocline depth h(t), for the delay-differential

ENSO model of Eq. (1.14) and changes of 05% in the de-
lay parameter τK associated with the Kelvin wave tran-

sit: (a) mean; (b) second moment; (c) fourth moment;

and (d) Wasserstein distance dW. Note intervals of both
smooth and rough dependence of the solution on the pa-
rameter. [Courtesy of M.D. Chekroun.]

The fourth quantity plotted in Fig. 1.7 is the

relative change in Wasserstein distance dW from

the same reference solution as for the other three

quantities. The Wasserstein distance or “earth

movers distance” dW is the distance between two

measures of equal mass on a metric space, i.e.,

on a space that has a metric attached to it, like

an n-dimensional Euclidean space (Dobrushin,

1970). Roughly speaking, dW represents the to-

tal work needed to move the “dirt” (i.e., the

measure) from a trench you are digging to
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another one you are filling, over the distance be-

tween the two trenches. In general, the shape of

the two trenches and the depth along the trench

— i.e., the support of the measure and its den-

sity — can differ. In the case at hand, the shape

and density of the invariant measure that is be-

ing moved are plotted in Fig. 1.8.
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Fig. 1.8. Time-dependent invariant measure of the

Galanti and Tziperman (2000) model, plotted in an iso-

metric projection with the probability density on the
perpendicular to the plane spanned by the coordinates

(h(t), h(t + 1)). The time here is in units of years, and

the density is highly concentrated on a very “thin” sup-
port, as for the stochastically perturbed Lorenz model in

Fig. 1.5. [Courtesy of M.D. Chekroun.]

It is quite clear from Fig. 1.7 that intervals

of smooth dependence of the solution on the pa-

rameter alternate with jumps and with intervals

of rough dependence. The jump points are the

same in all four panels of the figure and there

is agreement also in the smooth vs. rough inter-

vals, although the Wasserstein distance in panel

(d) shows some roughness even over intervals in

which the three statistical moments in panels

(a–c) behave smoothly. The latter point is not

too surprising, since dW contains more informa-

tion than each of the moments.

The very high concentration of probability

density in the peak at the extreme left of Fig. 1.8

might seem surprising but actually agrees with

such a peak in the stochastically perturbed

ENSO model of Timmermann and Jin (2002).

The latter model is based on three ordinary

differential equations, for sea surface tempera-

tures in the eastern and western Tropical Pa-

cific and for thermocline depth, and it was an-

alyzed in detail by Chekroun et al. (2011b).

The corresponding near-singularity in invari-

ant measure on the model’s random attrac-

tor evolves regularly in time and thus suggests

that the interaction of deterministic nonlineari-

ties with time-dependent forcing, including even

stochastic perturbations, can help seasonal-to-

interannual prediction, rather than hinder it.

Chekroun et al. (2011a) have taken some inter-

esting steps in exploiting this possibility.

With the results illustrated in Figs. 1.7 and

1.8 in hand, it becomes natural to define climate

sensitivity in the presence of internal variabil-

ity and of time-dependent forcing as the partial

derivative of the Wasserstein distance dW with

respect to a parameter µ, ∂dW/∂µ. Clearly, dW
has to be defined in turn with respect to the

particular climate whose sensitivity we wish to

evaluate. As usual, it would be awkward, diffi-

cult or even impossible to compute with abso-

lute accuracy the function dW = dW(µ) and its

derivative at µ = µ0; but reasonable approxima-

tions should become available shortly, as is the

case already for the calculation of the invariant

measures of models of intermediate complexity.

The definition outlined here for a deterministic

but non-autonomous ENSO model can be gen-

eralized further to the random case, assuming

the existence of the suitable invariant measures.

A complementary approach to climate sensi-

tivity out of equilibrium is the one based on the

fluctuation-dissipation theory of statistical me-

chanics (Leith, 1975; Ghil et al., 1985; Lucarini

and Sarno, 2011). The complementarity arises

from D. Ruelle’s extending the many-particle,

statistical-mechanics ideas to low-order dynami-

cal systems subject to certain mathematical con-

ditions on the latter (Ruelle, 1997; Chekroun et

al., 2011b).
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We thus expect the theory of random dy-

namical systems to provide robust tools for

studying the parameter dependence of a nonlin-

ear, randomly perturbed system’s various “met-

rics.” These metrics — a word used by the cli-

mate community in a much broader sense than

the standard mathematical term — can include

global quantities, like mean temperature or to-

tal energy, but also much finer functionals of the

state of the system, such as regional tempera-

tures or precipitation. In addition, this theory

can help improve prediction of future system

properties, by relying on a judicious combina-

tion of the history of its slow and fast behavior.

1.6. Concluding Remarks

A complete theory of climate variability, across

the entire range of time scales of interest, is

still in the future. We have shown, though, that

powerful conceptual and numerical tools exist

in order to organize the emerging knowledge so

far. The approach described herein relies on ap-

plying systematically dynamical systems theory,

both deterministic and stochastic, across a hi-

erarchy of models, from the simplest toy mod-

els to the most detailed, coupled GCMs. This

approach has progressed from its first modest

steps, taken half-a-century ago, to the analysis

of the behavior of atmospheric, oceanic and cou-

pled GCMs over the last two decades. Particu-

larly interesting strides have been taken over the

last decade in studying the interaction of the

faster time scales with the slower ones, within a

genuinely nonlinear framework.
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