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We study damage propagation in networks, with an emphasis on production-chain models. The
models are formulated as systems of Boolean delay equations. This formalism helps take into
account the complexity of the interactions between firms; it turns out to be well adapted to
investigating propagation of an initial damage due to a climatic or other natural disaster.
We consider in detail the effects of distinct delays and of forcing, which represents external inter-
vention to prevent economic collapse. We also account for the possible presence of randomness in
the links and in the delays. The paper concentrates on two different network structures, periodic
and random, respectively; their study allows one to understand the effects of multiple, concur-
rent production paths, and the role played by the network topology in damage propagation.
Applications to the recent network modeling of climate variability are discussed.
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1. Introduction and motivation

1.1. Motivation

This paper is dedicated to the contributions of Catherine Rouvas-Nicolis to applying the concepts and
tools of complex systems to a better understanding of weather and climate dynamics. There are two key
connections between the paper and her contributions. First, much of the recent concerns with weather and
climate have to do with possibly deleterious effects that global warming and its associated changes in the
distribution of extreme events may have on the economy [Solomon et al., 2007; Ghil et al., 2011]. It is such
deleterious effects that we study here, through a Boolean delay equation (BDE) model acting on several
types of production-chain networks.

Second, one of us (M.G.) developed BDEs as the result of reading Katy Nicolis’s paper [Nicolis, 1982]
that applied a related methodology, namely René Thomas’s kinetic logic [Thomas, 1979], to an oscillatory
paleoclimate model [Källén et al., 1979; Ghil, 1994]. Finally, there is a third, more general connection to
climate dynamics, since network models of climatic teleconnections are gaining in popularity [Tsonis &
Swanson, 2008; Donges et al., 2009].

1.2. Background

In most economic models, the production system is modeled either as a unique representative producer
— e.g., by using the Cobb-Douglas function [Cobb & Douglas, 1928], as done in the Solow growth model
[Solow, 1956] — or as a set of sectors, in which there is a unique representative producer per sector, e.g.,
in General Equilibrium Models [Arrow & Debreu, 1954]. The real production system, however, can best
be seen as a network composed of firms that produce different goods and services, and are connected by
links between suppliers and customers. In such a network, firm j supplies a fraction of its production to
firm i, which uses this production as an input for its own production function; see [Fig. 1], for instance, in
Section 2.1 below.

Introducing the role of networks in the economic system can lead to complex endogenous economic
dynamics [Helbing et al., 2004]. But the network formalism is also well adapted to study the cascade
effects generated by exogenous events; these events are positive in the case of new orders from the market
[Romanoff & Levine, 1981, 1986, 1981; Leung et al., 2007; Bak et al., 1993; Okuyama et al., 2004; Barker &
Santos, 2009] and negative in the case of a financial crisis [Delli Gatti et al., 2005], of local strikes affecting
production [Souma et al., 2001; Weisbuch & Battiston, 2007] or of natural disasters [Hallegatte, 2008;
Henriet, 2007; Henriet & Hallegatte, 2008; Henriet et al., 2010]. In classical economic models — where
the production system is modeled as a unique representative producer or as a small set of representative
producers — the effects of exogenous events on the numerous firms have to be averaged over all firms, or
over all firms of each sector. Because such effects are often highly heterogeneous, and because consequences
and responses are highly nonlinear, this averaging process can bias the analysis, and hamper the correct
assessment of the consequences of exogenous shocks, whether natural or man-made.

The case of natural disasters is particularly interesting, because disaster impacts are very heterogeneous
and affect especially strongly a small set of firms [Tierney et al., 1997; Webb et al., 2002]. In such cases, the
total economic impact of the catastrophe can be much higher than the direct impacts of the event, because
indirect effects that are propagated through supply chains can be large. For instance, an earthquake that
destroys a bridge can cause losses that are much larger than the value of the bridge, because subsequent
impacts on the duration and cost of transportation can impair production in many firms.

Such results have been reported using input-output models [Leontief, 1986] at the sector level [Halle-
gatte, 2008; Henriet et al., 2010; Lian et al., 2007; Okuyama, 2004; Rose & Liao, 2005] or specific network
models [Cho et al., 2001]. To account for heterogeneity at the firm level, an appropriate input-output
formalism has been developed in [Hallegatte, 2008; Henriet, 2007; Henriet et al., 2010], and used to an-
alyze disaster consequences. This approach has demonstrated that the shape and the structure of the
network play an important role in disaster vulnerability, justifying the introduction of network effects in
the economic assessment of natural disasters.

The purpose of the present paper is to simplify as much as possible the network formalism, by using
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the flexible framework of Boolean delay equations (BDEs). The resulting models allow one to go beyond
the simple observation that network structure has an influence on the problem, and permit one to analyze
its effect on disaster consequences within an idealized economy. We study systematically and in detail
the models, by emphasizing the differences in the dynamical behavior between forced vs. free models —
i.e., between externally connected vs. stand-alone models — and between asynchronous vs. synchronous
updating for economic, production-chain networks. Possible applications to climatic networks are also
discussed.

The simplification due to using Boolean variables allows one to study the effects of network topology
and of the different delays involved in the production paths on the total losses due to an initial catastrophe.
We investigate, in particular, the role of the network’s connectivity: the effect of the multiplicity of products
needed by each industry on the vulnerability of the whole economy, and the effects of multiple production
paths from one firm to downstream production firms. We are especially interested by the spatio-temporal
patterns of long-term production shortages that arise from the generic asynchrony due to variable time
lengths of concurrent production paths.

In fact, the approach is intriguing from the more general point of view of local damage reverberation
across a network, which is found in numerous and diverse fields of application. In the socio-economic
domain, these fields include logistics [Bak et al., 1993], infrastructures [Haimes & Jiang, 2001], and finance
[Delli Gatti et al., 2005; Battiston et al., 2007], while in the geosciences they include earthquake dynamics
[Zaliapin et al., 2003a,b; Ghil et al., 2008], forest fires [Spyratos et al., 2007] and river networks [Zaliapin
et al., 2010], as well as climatic variability [Tsonis & Swanson, 2008; Donges et al., 2009]. Finally, life-science
applications include food webs [Carpenter et al., 1985] and immunology [Kaufman et al., 1985; Neumann
& Weisbuch, 1992; Perelson & Weisbuch, 1997], among many others. Previous work on such problems
has been restricted, however, to fairly simple network structures — such as ternary trees [Zaliapin et al.,
2003a,b; Ghil et al., 2008], lattices [Bak et al., 1993; Weisbuch & Battiston, 2007; Spyratos et al., 2007],
cartwheels [Delli Gatti et al., 2005; Battiston et al., 2007] or data-based scale-free networks [Henriet et al.,
2010] — and to purely autonomous dynamics; simple random forcing has only been considered in [Zaliapin
et al., 2003a,b] so far.

1.3. This paper

BDEs are semi-discrete dynamical systems, whose discrete variables evolve in continuous time; they have
been introduced about 25 years ago by M. Ghil and colleagues [Dee & Ghil, 1984; Mullhaupt, 1984; Ghil
& Mullhaupt, 1985], and they are related to the kinetic logic of R. Thomas [Thomas, 1979]. Unlike in the
latter, though, the memory of a BDE system can contain more and more information as time goes on; this
fact allows for solutions of increasing complexity, which display deterministically chaotic behavior. This
prediction of BDE theory has been recently demonstrated experimentally in [Zhang et al., 2009].

Apart from their intriguing mathematical properties, BDEs represent a useful tool in modeling complex
systems that are characterized by threshold behavior, multiple feedbacks, and distinct time delays. They
have been successfully applied, for instance, to the study of climate dynamics [Ghil et al., 1987; Wright
et al., 1990; Darby & Mysak, 1993; Saunders & Ghil, 2001], of earthquake physics [Zaliapin et al., 2003a,b],
and of genetics [Öktem et al., 2003; Gagneur & Casari, 2005]; see [Ghil et al., 2008] for a recent review. The
present work is an important step towards the application of BDEs to large classes of systems of interest in
economics and in the geosciences; at the same time, it provides insight into the role played by stochasticity
in Boolean-valued network models.

Even though we are using Boolean variables to describe the production of each individual firm, a
zero value should not be interpreted as the destruction of the production unit: we simply mean that some
shortage has been generated through production interactions. Similarly, a level of one only implies that the
firm has recovered from a previous state of impaired production. Nevertheless, in the more general setting
of local damage reverberation across a network, xi can represent any form of healthy or damaged site.

In Section 2, we outline the Boolean-valued network models of the economy that we use throughout;
they include free models, i.e. autonomous models of a closed economy, as well as forced models, i.e. non-
autonomous models of an open economy. We moreover introduce the main observables we are interested



May 13, 2011 15:57 BC˙MG˙SH˙GW-BDE˙Econ-IJBC˙vfl

4

in: the density ρ(t) of “healthy” firms, and the total number θ(t) of “damaged” ones; this intensive and
extensive quantity, respectively, allow one to characterize the damage propagation. In Section 3, we present
the results for free and forced models of degree one and higher on a periodic network, also referred to as
having a chain topology; see [Fig. 1] below. One distinguishes already in this simple setting between the
case of synchronous updating — i.e., of deterministically chosen, equal delays — and the asynchronous
case, i.e., of randomly chosen delays that are unequal in general. Then, in Section 4, we consider directed
random graphs, thus allowing for randomness in the links, i.e., in the topology, as well as in the delays.
Concluding remarks follow in Section 5, and three appendices provide technical details.

2. The models and their evaluation

2.1. Model formulation

A realistic representation of the economy at the firm level has to assess both the direct and the indirect
losses due to either a natural or a man-made disaster. Doing so requires taking into account, in particular,
the propagation of a disaster’s consequences — both backward and forward in time — by tracking the
avalanches of failures and the ripple effects across the chains of suppliers and producers in the network.
For instance, analyses of the Northridge earthquake’s impacts on the regional economy [Tierney et al.,
1997; Gordon et al., 1998] show that a catastrophe can have very heterogeneous repercussions, and that
indirect losses — due largely to damages to the transport infrastructure system — can be definitely higher
than the direct losses themselves. Similar conclusions were obtained by the study of the consequences of
the Loma Prieta and Northridge earthquakes [Webb et al., 2002]. The latter study also showed that the
repercussions can be less severe for firms that belong to a larger market, and not just to the strictly local
one: this conclusion encourages us to consider economic models that adapt to a catastrophe by interacting
with firms outside the immediately affected region, cf. [Cho et al., 2001].

Important steps towards formulating input-output models [Leontief, 1986] suitable for realistic damage
evaluations have been taken by S. Hallegatte and colleagues [Hallegatte, 2008; Henriet, 2007; Henriet &
Hallegatte, 2008; Henriet et al., 2010]. As stated in Section 1, we study here BDE models that are highly
simplified in the sense that they only use Boolean-valued variables; on the other hand, they contain the
dynamics of damage propagation, while allowing for unequal path lengths between firms in this propagation.
We are neglecting some key ingredients, such as the division of the economy into sectors or the choice that
firms might have between several providers of the same good, even in a strictly local economy. Therefore,
the models highly idealized assumptions do not permit a direct application of their numerical results. These
results, though, can be understood in depth, based on the complementary theories of graphs and of BDEs,
and provide, one hopes, a good starting point for future analysis of more realistic damage propagation
models.

A Boolean variable’s null value, xi(t) = 0, is taken to mean that firm i at time t is impaired and cannot
fully produce, i.e. it is “damaged,” while xi(t) = 1 means that it is not impaired, i.e. it is “healthy.” More
specifically, the impairment can be due either to the firm being itself damaged or to the fact that it lacks
the necessary inputs, since some of its suppliers — or some of their suppliers, and so on — were previously
damaged. In this simple way, our BDE models take into account the role of the chains of suppliers and
producers in a real economy.

We study networks of N firms, assumed to be placed at the vertices of a directed graph, also called a
digraph; the digraph will be defined by its N ×N connectivity matrix A, cf. [Bollobás, 1998; Bang-Jensen
& Gutin, 2009]. Our interpretation is that Aij = 1 if and only if (iff) part of the output of firm j (the
supplier) is needed as input for firm i (the customer); otherwise Aij = 0. As a first step for assessing the
losses due to the propagation of the consequences of a catastrophic event, we analyze the vulnerability of
connected firms to initial damage to a single firm. Considering the case of a single initial impairment is
equivalent to studying the “Green’s function” of damage propagation [Ghil et al., 2008].

We start in Section 3 by considering a connectivity matrix A with circulant structure, which models a
braid chain of in/out-degree k: Aij = 1 iff i− k ≤ j ≤ i− 1, with xi = xi+N (see [Fig. 1]). In Section 4, we
will study a directed random graph (DRG) or random digraph. We will concentrate on the DRG family
D(N, p) [Karp, 1990;  Luczac & Seierstad, 2009], obtained by generalizing the well-known Erdős-Rényi rule
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for an undirected random graph [Erdős & Rényi, 1959, 1960, 1961]; in our DRG, each of the N(N − 1)
directed links is present or absent with the same independent probability p ∈ [0, 1]. Hence, the elements
{Aij} of the matrix A are random variables, assumed to be independently and identically distributed, with
probability P given by

P(Aij) =

{

δAij ,0, i = j;
p δAij ,1 + (1 − p) δAij ,0, i 6= j;

(1)

where δ is the Kronecker delta function. The probability p is related in a straightforward manner to the
mean number of input-output connections z, i.e. to the average in/out-degree 〈k〉 of the resulting digraph,
with z = 〈k〉 = (N − 1)p ≃ Np.

Fig. 1. The braid-chain structure given by a circulant matrix with periodic boundary conditions, in the case of an in/out-
degree k = 2. The size of the network here is N = 14, and the nodes are ordered clockwise. In the synchronous deterministic
model with equal delays, the position of the origin — always chosen to be i = 1 — is arbitrary. In the asynchronous case of
random delays, the distinct concurrent paths that connect two given nodes do not involve, in general, the same propagation
time, although they might have the same spatial length, in terms of number of steps along the chain. Unless confusion is
possible, we refer to “path length” as the time it takes to get from a node to another.

The dynamics on the network defined by the matrix A = {Aij} is governed by the system of N BDEs:

xi(t) =

N
∏

j=1

Aij ∨ Sji(t), i = 1, . . . , N ; (2)

here Sji(t) is the availability of good j at node i. The product
∏

, which runs over all the vertices of the

network, refers to the Boolean ‘AND’ operator ∧, whereas ∨ denotes the Boolean ‘OR’ operator and (·) is
the Boolean negation.

Notice that, in our highly idealized models, the production xi(t) of firm i at time t requires the
availability of all the stocks of goods Sji(t) usually provided by the suppliers {j : Aij 6= 0} to which the
firm i is connected in the network. In other words, a firm’s production capacity can be impaired either by a
disaster having directly damaged it or because its suppliers have been affected by the disaster and cannot
provide the necessary inputs. We will assume that only a single firm is directly damaged at the beginning,
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Table 1. The input-output table of the stock Sji of a given prod-
uct as a Boolean function of the activities (xi, xj) of the cus-
tomer firm i and supplier firm j, in the free models described by
Eq. (3) and in the forced models described by Eq. (4), respectively.

xi xj Sji Free models

0 0 0 j and i inactive, the stock cannot be reconstituted
0 1 1 j active and i inactive, the good is stocked
1 0 0 j inactive and i active, the stock is finished
1 1 1 j active and i active, the stock is updated

xi xj Sji Forced models

0 0 1 j and i inactive, the stock is supplied from outside
0 1 1 j active and i inactive, the good is stocked
1 0 0 j inactive and i active, the stock is finished
1 1 1 j active and i active, the stock is updated

so that its production is reduced during a time interval of length τc, and we will look at the propagation
of this initial event.

We consider first isolated networks, which we call the free models, and then networks that interact with
the outside, the forced models; the forcing represents external intervention to prevent economic collapse.
For a free model, the availability Sji of the good manufactured by firm j to firm i is simply delayed with
respect to the production xj by a constant delay τij according to:

Sji(t) = xj(t− τij), for a free model. (3)

In the presence of socio-economic adaptability — meaning that the local economy of the immediately
affected region is not isolated, and that some external rescue input is available — we assume that the
production stock Sji of the firm i becomes again available to firm j after an impairment time taken, in a
first approximation, to be still equal to τij:

Sji(t) = xi(t− τij) ∨ xj(t− τij), for a forced model. (4)

These two equations, which give the truth table shown in [Tab. 1], complete the definitions of the models
given by Eq. (2).

We compare in the following results obtained for equal delays {τij ≡ τ0} with those for the more
realistic situation of a set T of unequal delays {τij} picked at random. We refer to these two situations as
synchronous and asynchronous updating, respectively. Notice that the latter term is given here a different
meaning from the one usually found in the literature on random Boolean networks [Drossel, 2008]. In our
asynchronous BDE models, the delays are assumed to be integer multiples of the time unit given by τmin,
and to be independently and uniformly distributed in the interval [τmin, τmax], where τmax is also an integer
multiple of τmin.

In the numerical computations, we will take τ0 = τmin = 1 day and τmax = 10 days. Notice that, for a
given set T of randomly selected delays and for a randomly selected set of links — which we will also call
a random network configuration Ω — the smallest nearest-neighbor delay,

τ∗(Ω,T ) = min
i,j

{τij}, (5)

can be larger than τmin, although the probability of this event approaches rapidly zero as the network’s
size N increases. We summarize in [Tab. 2] the various BDE-on-network models studied in this paper, and
provide in [Tab. 3] a list of the main variables and other symbols used herein.

In order to get a unique solution of either a free model, given by Eqs. [(1), (2), (3)] or of a forced model,
given by Eqs. [(1), (2), (4)], one has to prescribe the initial values of the set of variables {xi(t)} in the
interval [0, τinit), where τinit = max{τij} is the largest possible delay, with τinit = τ0 for synchronous and
τinit = τmax for asynchronous updating. We only study here the simple case in which the entire economy
{i : 1 ≤ i ≤ N} starts unimpaired, except for the initial destruction of a single firm, which is taken without
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Table 2. Overview of the main characteristics of the models studied in Sec-
tions 3 and 4; each box in the table indicates the section where the model
defined by the row and column is discussed. In the columns, we label by
Free the free models and by Forced the forced models; the synchronous
case of deterministic delays all equal to τ0 is labeled Sync and the asyn-
chronous, random-delay case is labeled Async. In the rows, Chain refers
to the deterministic braid chain of [Fig. 1], and DRG to the random di-
graph, with P(Aij) given by Eq. (1). In the rows, we also distinguish be-
tween single (k = 1), and multiple (k ≥ 2), in/out-degree in the braid
chain, whereas the models defined on the digraph whose average in/out-degree
z = 〈k〉 is either equal to or larger than one are treated in the same sections.

Free, Sync Free, Async Forced, Sync Forced, Async

Chain, k = 1 3.2 3.3 3.6 3.6

Chain, k ≥ 2 3.4 3.5 3.7 3.8

DRG 4.2 4.3 4.4 4.4

loss of generality to be at the node i = 1. Notice that this firm is not definitively eliminated form the
network: we assume instead that it is forced to stop its activity from time t = 0 until t = τc. Hence we will
usually take xi(t) ≡ 1 for t ∈ [0, tinit), except for x1(t) = 0 for t ∈ [0, τc), with τc ≤ tinit. More generally,
one can associate an external function to the x1-variable, i.e. x1(t) → µ(t)x1(t), where µ(t) is taken to be
one except for t ∈ [0, τc): this allows one to appropriately describe also the case τc > τinit.

The possibility of defining BDE systems that possess random delays with a given probability distri-
bution was already stated in [Dee & Ghil, 1984], but BDE studies so far have been mainly restricted to
fully deterministic systems. Two exceptions are the results in [Wright et al., 1990], where the ensemble
averaging over BDE solutions with randomized initial data was considered, and in [Zaliapin et al., 2003a,b],
where random external forcing was introduced. We study here in considerable detail not only BDEs with
random delays, but also BDEs on a random graph (cf. Section 4 below), as suggested in [Ghil et al., 2008];
the latter could also be viewed as Boolean networks with distinct delays [Öktem et al., 2003; Klemm &
Bornholdt, 2005].

In the present paper, the exploration of stochastic BDEs is limited to the delays T = {τij}, as well as
the elements of the connectivity matrix {Aij}, being quenched random variables: their values are prescribed
once and for all when defining the BDE system. The random configuration {Ω,T } so obtained is assumed
here to be constant on the time scale of the system evolution we are interested in. Random evolution in
time of the set of links Ω, as well as of the set of delays T , is left for subsequent study. We note here simply
that — in statistical physics in general and in spin-glass theory in particular — a system is said to present
quenched disorder when some parameters that determine its behavior are random variables that do not
evolve with time, i.e.,they are quenched or frozen [Mézard et al., 1988].

2.2. Evaluation of model behavior

To facilitate the comparison between the results of these models, and to help us draw general conclusions
about damage propagation in economic networks, we introduce here two global quantities that characterize
model behavior. The first one of these two macroeconomic observables is the density ρ(t) of “healthy” firms,
which is given simply by the average over the number N of nodes:

ρ(t) ≡
1

N

N
∑

i=1

xi(t). (6)

As noted before [Ghil et al., 2008], the evolution of a single impairment represents the “Green’s function”
of damage propagation, and ρ(t) is just a key property of this Green’s function.

For obvious reasons, we will be especially interested in the large-time limit, so that we also find it
useful to define the asymptotic density:

ρ∞ = lim
t→∞

ρ(t). (7)
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Table 3. Overview of the main variables and symbols that appear in the paper.

xi(t) Boolean variable: state of firm i (more generally, node i) at time t

N integer variable: total number of firms, i.e. system size

Sij Boolean variable: stock provided by supplier j to customer i

A =
{

Aij

}

N ×N connectivity matrix A, whose elements are the Boolean variables Aij

Ω =
{

Aij

}

random network configuration, i.e., set of random links

T =
{

τij
}

the N ×N set of delays τij
D(N, p) DRG family of size N ×N , whose links are present with probability p

G(N, p) undirected random graph of size N ×N ; links have probability p

k, kin, kout degree, in-degree, out-degree

z = 〈k〉 mean connectivity in random networks

τc duration of the initial event

τ0 delay and time unit in the synchronous models

τmin smallest delay and time unit in the asynchronous models

τmax largest delay in the asynchronous models

τinit largest possible delay, depending on the model

τ∗(Ω, T ) smallest nearest-neighbor delay

µ(t) external function

̟ period of the asymptotic solution

θ total number of impaired firms

ρ density of fully active firms

ρ∞ asymptotic time limit of the density

ρ̟∞ asymptotic time limit of the density averaged over the period

T0 effective transient: time for ρ to reach ρ∞
T̟ transient: time that system solutions take to reach the asymptotic regime, T0 < T̟
v signal velocity

Cij path joining nodes i and j

Sc connected component of size Sc = scN

Sgc giant connected component of size Sgc = sgcN

r fraction of nodes outside the giant connected component

Ssc giant strongly connected component of size Ssc = sscN

I giant in-component of size I = sIN

O giant out-component of size O = sON

W giant weakly connected component of size W = swN

Θ other giant component defined as Θ = W r (I ∪ O)

zc critical value of the mean connectivity

δ Kronecker delta function

(·) Boolean negation (unary operator)

∨ Boolean AND (binary operator)

∧ Boolean OR (binary operator)

▽ Boolean XOR (binary operator)

〈(·)〉 average over the quenched random configurations

In the presence of asymptotically periodic solutions, one obviously considers the period average:

ρ̟∞ = lim
t→∞

∫ t+̟

t
ρ(t′)dt′. (8)

The quantities ρ∞ or ρ̟∞ represent the fraction of the economy that finally recovers from the initial damage,
i.e. a value of ρ∞ equal to one means that the economy will recover completely, whereas on the contrary
ρ∞ = 0 implies that lasting damage propagates across the entire network. Within our framework, it will
be possible, in particular, to understand the behavior of the asymptotic density in the case of large N and
of N → ∞.

The second macroeconomic observable of interest is the total number θ(t) of impaired firms at time t.
In the thermodynamic language of statistical physics, θ(t) is an extensive variable, while ρ∞(t) is intensive.
The observable θ(t) gives directly the total losses, at a given time, due to the initial destruction of the
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single firm at i = 1; hence θ(t) is also a measure of damage spreading, due to its propagation through the
network. We have

θ(t) ≡
N
∑

i=1

xi(t). (9)

Notice that the average density ρ(t) of “healthy” firms and the total number θ(t) of impaired firms are
related by

ρ(t) = 1 −
1

N
θ(t). (10)

We will also study three highly nonlinear functionals with the physical dimensions of time: the effective
transient T0, defined as the time that the density takes before reaching its asymptotic ρ∞ value; the transient
T̟, defined as the time elapsed before the solutions become periodic; and the period ̟ of the solution
itself, possibly equal to zero if the solution is constant. Notice that, since the delays here are rationally
related, the asymptotic solutions of the BDE system (2) are necessarily constant or periodic, because of
general results on BDEs [Ghil et al., 2008; Dee & Ghil, 1984; Mullhaupt, 1984; Ghil & Mullhaupt, 1985].
Nevertheless, we will find very long transients and periods and, moreover, one can have T̟ ≫ T0.

In the presence of randomness — in the delays, in the elements of the connectivity matrix or in both
— these quantities do also depend upon the particular configuration {Ω,T }, and the system’s behavior is
better captured by their average value. In the case of the density, one has:

〈ρ(t; Ω,T )〉 ≡

∫

dT dΩP(Ω,T )ρ(t; Ω,T ). (11)

This average can be computed numerically by considering a large enough number Ns of random config-
urations {Ω,T }: in fact, these are obtained in agreement with their corresponding P(Ω,T ) = P(Ω)P(T ),
i.e. with uniform probability in the interval [τmin, τmax] for the random-delay case of asynchronous updat-
ing, and with probability given by Eq. (1) for the random links of the DRG. Generally, we will spell out the
dependence of an observable O upon the configuration, by labeling it O(Ω), O(T ) or O(Ω,T ), accordingly,
and we will label its average value, computed analogously to the average density in Eq. (11), by 〈O(Ω)〉
and so on.

3. Braid-chain models

3.1. Network topology

We consider here the network topology of a braid chain, which is obtained from an N × N connectivity
matrix A with circulant structure: Aij = 1 iff i − k ≤ j ≤ i − 1, with xi+N = xi. Here one has the same
in/out-degree k for all the nodes: each firm needs as inputs part of the goods manufactured by the previous
k firms (its suppliers), whereas the outputs it produces are used by the k next firms (its customers); so
each firm is linked to 2k other firms.

The resulting deterministic topology is strongly connected: starting from any node one finds at least
one directed path along which the signal can propagate to any other node, and in fact there are multiple
concurrent paths as soon as k ≥ 2. Most of these paths have the same length in the purely deterministic
case of synchronous updating, whereas their lengths usually differ for asynchronous updating. In other
words, randomly chosen delays allow one to model the distinct times that damage propagation along the
concurrent production paths may take. The example in [Fig. 1] has an in/out-degree of k = 2.

When A is a circulant matrix, the equations for each xi in system (2) simplify to yield:

xi(t) =

k
∏

j=1

xi−j(t− τi,i−j), (12)

for the free model defined by Eq. (3), and

xi(t) =

k
∏

j=1

xi(t− τi,i−j) ∨ xi−j(t− τi,i−j), (13)
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Fig. 2. Time evolution of the state of the 10 nodes of the free model on a braid chain, with k = 1, after an initial perturbation
of node i = 1. Each Boolean variable xi(t) is plotted as a function of t: it is a piecewise constant function alternating between
0 and 1. The plot for each node i is shifted along the y axis, to help visualize the wave that propagates across the network.
(a) All the delays are equal to τ0 = 1 day, the duration of the initial perturbation is τc = τ0/2 = 0.5 day, and the period of
the wave is ̟ = Nτ0 = 10 days. (b) A particular evolution for a given choice T of random delays, with {τi,i−1} uniformly
distributed between τmin= 1 day and τmax=10 days: the resulting period is ̟(T ) = 47 days; here the duration of the initial
perturbation is τc = τmin/2.

for the forced model defined by Eq. (4), respectively. The study of BDEs for this highly simplified topology
has two advantages: (i) it allows one to compare numerical with analytical results; and (ii) it facilitates a
first glimpse at the substantial differences between free and forced models, on the one hand, and between
synchronous and asynchronous forcing, on the other.

3.2. Synchronous free model with k = 1

The free model on a braid chain, with a single input-output connection for each node, k = 1, and with
delays that are all equal to the same time unit τ0, is an example of a conservative system of BDEs [Ghil
et al., 2008; Mullhaupt, 1984; Ghil & Mullhaupt, 1985]. Its dynamics is periodic right away, without any
transient, for all initial states. The model obeys the set of equations:

xi(t) = xi−1(t− τ0), i = 1, . . . , N. (14)

The initial impairment of the single firm at i = 1 is usually represented, for a duration of τc ≤ τ0, by the
appropriate choice of the initial values: one takes xi ≡ 1 for t ∈ [0, τ0), except for x1(t) = 0 in the interval
[0, τc). As stated in Sec. 2.1, to describe both the case τc ≤ τ0 that we treat here most often, and the case
of τc > τ0, one can replace x1(t) by µ(t)x1(t), and let µ1(t) = 0 for t ∈ [0, τc).

The spatio-temporal pattern of the solution displays a wave of nodes taking the value zero for a
duration τc, one after the other; this wave propagates periodically across the chain, as in the example given
in [Fig. 2a]. Moreover, ∀τc < τ0, the evolution shows no transient and the period of the solution is ̟ = Nτ0.
For τc > τ0, the starting perturbation cannot be absorbed into the initial values, and the transient length
is T0 = T̟ ≃ τc − τ0. Finally, we notice that, for τc = τ0, the density is constant, ρ(t) = ρ∞ = 1 − 1/N ,
whereas for τc < τ0 it is a piecewise constant function that alternates between the values 1 and 1 − 1/N ,
with period ̟ = τ0.

In fact, this system is almost exactly the same as the model introduced in [Ghil et al., 2008] as a first
step towards formulating the BDE equivalent of hyperbolic partial differential equations. In that paper,
the simplest wave equation was discretized on a one-dimensional lattice, and the node index i played the
role of the discretized coordinate; see Eq. (32) in [Ghil et al., 2008]. Results were given for the evolution
starting from an initial state in which only the variable associated with a single lattice point — located at
the origin of the spatial coordinate — was equal to one, with τc = τ0, while all other nodes carried zero
values. These results were precisely the complement of those shown in [Fig. 2a], with a “soliton” of unit
values propagating along the lattice (not shown in [Ghil et al., 2008]).
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This dynamics implies that, on the one hand, the damage does not spread to a larger number of
firms but, on the other hand, the activity never recovers completely: each impaired firm gets back to the
unaffected state after the time τc but, at the same time, its production shortage reaches its unique customer,
with a constant delay τ0. This result may look unrealistic, and in fact it is linked to one of our simplifying
assumptions, namely the discretization of firm production capacity, with no possibility for overproduction
or production rescheduling. Nevertheless, notice that ρ∞ = 1 − 1/N , which means that, for a unit initial
damage, the whole economy turns out to be still quite “healthy”, apart from corrections of order 1/N ,
which are negligible in the large-size limit.

3.3. Asynchronous free model with k = 1

In the free model on a braid chain, with k = 1, the effect of random, but integer-valued delays can be
worked out explicitly. One gets

xi(t) = xi



t−
N−1
∑

j=0

τi−j,i−j−1



 (15)

and finds, accordingly, that the solution is periodic right away for any duration of the initial perturbations
τ0 ≤ τ∗(T ); here τ∗(T ) equals the smallest nearest-neighbor propagation length, defined as in Eq. (5), and
it is usually equal to τmin.

Fig. 3. Evolution of the average fraction 〈ρ(t;T )〉 of fully active firms, in the asynchronous free model on a braid chain, with
k = 1; here τc = τmin. We compare the behavior of networks having N = 10, 20, 50 and 100 nodes with the one expected
from the CLT (lines); see Eq. (52) in Appendix A. (a) Detailed behavior at short times; (b) model behavior over the entire
time window calculated. The data are averaged over Ns different random sets of delays T , with Ns taken large enough to give
errors of the order of the point size in the plot.

The spatio-temporal pattern of the solution is still a periodically propagating wave of nodes that take
the value zero for a duration of τc, one after the other, cf. [Fig. 2b]; moreover, ∀τc ≤ τ∗(T ), the evolution
shows no transient, as in the synchronous case for τc ≤ τ0. The difference is that the propagation time of the
perturbation, from a supplier i− 1 to its customer i, is now given by the quenched random variable τi,i−1.
Hence the period ̟(T ) of the solution, — depending upon the given random configuration of delays T —
is equal to the sum of these delays along the whole chain, with an average value of 〈̟(T )〉 = N(τmax+1)/2.

The average density 〈ρ(t;T )〉 can be computed analytically by applying the central limit theorem
(CLT), cf. Appendix A. In [Fig. 3], we compare the expected behavior for τc = τmin, given by Eq. (52) in
the appendix, with the numerical results, for different network sizes N : at short times, one can observe
the predicted jumps at t = τmax. At long times, there are corrections to the expected behavior, since the
same variables appear more than once in the sums of randomly selected delays that are being considered;
nevertheless, the average asymptotic value of the density, 〈ρ∞(T )〉, clearly approaches unity in the limit of
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Fig. 4. Time evolution of the state of the 10 nodes of the synchronous free model on a braid chain, with k = 2, after an initial
perturbation of node 1. Same plotting convention as in [Fig. 2]. (a) The duration of the initial perturbation is τc = τ0 = 1
day; (b) τc = τ0/2 = 0.5 day. See text for details.

large system size, with corrections of order 1/N ; more precisely, 〈ρ∞(T )〉 ≃ 1 − 0.2/N , in good agreement
with Eq. (54) of Appendix A.

We stress therefore that in these free models on a braid chain with k = 1, the choice of updating,
whether synchronous or asynchronous, is relatively unimportant, and a small initial damage has a negligible
effect on the whole economy, when looking at a large number N of firms.

3.4. Synchronous free model with k ≥ 2

As soon as the number k of connections is larger than one, the dynamics of the free model on the braid
chain turns out to be dissipative [Mullhaupt, 1984; Ghil & Mullhaupt, 1985; Ghil et al., 2008]. In simple
terms, one expects OR operators to favor a steady state with xi ≡ 1, while AND operators favor such a
state with xi ≡ 0. In fact, for synchronous models of cellular-automaton type, the propagation of 0 across
networks that are characterized by the exclusive presence of AND operators is well documented [Weisbuch,
1991; Wolfram, 1994].

General results on BDEs [Mullhaupt, 1984; Ghil & Mullhaupt, 1985; Ghil et al., 2008] establish that
the asymptotically stable solution is the state in which the whole economy is attained by the consequences
of the initial damage. Therefore the configuration xi ≡ 0 is reached in finite time for any duration τc ≥ τ0
of the starting perturbation; see [Fig. 4a]. This result can be interpreted in terms of lack of flexibility in the
system’s behavior, since the k different inputs to a given firm are linked by AND operators alone. Besides,
the system is isolated and the topology of the deterministic network is strongly connected.

To analyze the behavior in [Fig. 4a] more closely, let us start the discussion from the case τc = τ0,
where τ0 = 1 day, and assume that in the interval [t, t+ 1) there are θ(t) = n impaired firms in consecutive
positions along the chain, i.e., xi(t) = 0 for i ∈ [ihr(t), imin(t)], with ihr(t) = imin(t) + n − 1 and n ≪ N .
Imagine now a clock that, at time t, has its hour-hand marking the position ihr(t) of the impaired firm
nearest to the origin, while the minute-hand marks the position imin(t) of the one farthest from the origin.
At each time step t′ = t + 1, the firms in the next k positions (with k ≪ N) after imin(t) will be impaired,
since at least one of the stocks that they need is not available; hence imin(t′) = imin(t) + k.

The first firm in the sequence does recover its unaffected state, since all its suppliers are fully active;
hence ihr(t

′) = ihr(t) + 1. In other words, both the hour-hand and the minute-hand move with constant
velocities, given respectively by vh = 1 and vm = k; therefore the width of the set of “damaged” firms
increases itself with constant velocity, and correspondingly one gets θ(t′) = θ(t) + (k− 1). Notice that this
description is correct, in particular, when a single firm is damaged in the first time interval, as assumed
herein.

The same argument can be applied again, at time t = t′, starting from the new sequence of states,
and so on. It follows that the evolution will stop after the transient time T0 = T̟, when the minute-hand
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catches up with the hour-hand, the former having gone around the chain one more time than the latter:
the system has attained the asymptotically stable steady state xi ≡ 0, and the economic activity can no
longer recover at all. The result is unchanged if, in the last time step of the transient, the minute-hand
passes the hour-hand, since xi = 0 also describes a shortage in the production of firm i itself, aside from
the lack of goods to be provided by other firms. Moreover, during the transient, each firm can recover at
most once.

To summarize, θ(t) increases linearly with t until it reaches the system size N ; correspondingly, for
an initial perturbation that destroys the production of one firm for a duration τc = τ0 = 1 day, ρ(t) =
1 − 1/N − (k − 1)t/N for t . T0 and ρ(t) = ρ∞ = 0 for t > T0, where the length of the transient is given
by:

T0 ≃
N − 1

k − 1
τ0. (16)

These results are confirmed by the analysis given in Appendix B, where θ(t) is computed explicitly. More-
over, when considering τc > τ0, for reasonable values of τc ≪ k ≪ N , one has the same kind of behavior
after roughly the first τc/τ0 time steps: for large t, the damage-spreading velocity is constant and equal to
k − 1, and the length of the transient is still of order N/k.

For τc < τ0, a typical solution is shown in [Fig. 4b]. Its spatio-temporal pattern clearly indicates that
the damage spreads, from the initially damaged firm, across the whole network. Taking

x1(t) =

{

0 for t ∈ [0, τc);
1 for t ∈ [τc, τ0 = 1),

(17)

the asymptotic steady state is periodic in space, with a period T̟ = 1, and all the firms are synchronously
impaired only in the first τc part of each period; this periodic state is reached after a transient of length
given again by Eq. (16). Notice that, in this case, the asymptotic density ρ∞ is a piecewise constant function
that alternates between the values zero and one with period τ0 = 1 day.

3.5. Asynchronous free model with k ≥ 2

Notice first that, in this case, the damage cannot spread more slowly than in the particular case in which all
the delays are equal to τmax: it follows that the state xi ≡ 0 is asymptotically stable also for asynchronous
updating, and that it is reached no later than after a transient T0(T ) = T̟(T ). This is certainly the case
as soon as τc ≥ τmax; in fact we find that it is usually so as soon as τc ≥ τmin.

Nevertheless, concurrent paths with the same space length along the chain do not usually have, in this
case, the same time length, since different random variables appear now in the sums of the intervening
delays. Hence the spatio-temporal pattern of the solution is more complex, as shown in [Fig. 5]. In particular,
for τc < τmax, each firm can be impaired and recover more than once.

Since the delays are independently and identically distributed along the whole chain, one can argue
that, in the limit 1 ≪ t ≪ T0(T ), the damage spreads with constant average velocity v: the lower bound
on this quantity can be easily obtained, following the discussion in the previous Section 3.4, by taking all
the delays equal to τmax. The corresponding upper bound is obtained by setting all the delays equal to
τmin; hence (k − 1)/τmax ≤ v ≤ k − 1. As we are going to show, because of the network structure and of
the variables being linked by AND operators, of these two bounds, the upper bound is usually a definitely
better approximation to the average velocity than the lower one, and one can obtain a much better lower
bound, too.

To clarify this point, we use once again the clock-hand analogy, with the hour-hand marking the
position ihr(t) of the impaired firm nearest to the origin and the minute-hand the position imin(t) of the
impaired firm farthest from it: the key ingredients are that the network is a braid chain and that a firm
is “damaged” as soon as a single one of the k stocks it needs is unavailable. Therefore, in the long-time
limit, for 1 ≪ τmax ≪ k ≪ N , the average velocity of the hour-hand is negligible, and most of the region
between the origin and the minute-hand position, imin(t), is occupied by impaired firms. In other words,
and mixing metaphors, the long-term dynamics is dominated by the “hare” that outruns the “tortoise.”
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Fig. 5. Time evolution of the state of the 10 nodes of the asynchronous free model on a braid chain, with k = 2, after an
initial perturbation of node 1. Same plotting convention as in [Fig. 2] and [Fig. 4]. (a) The duration of the initial perturbation
is τc = τmin = 1 day; and (b) τc = τmax. This yields transients of length 35 days and 33 days, respectively.

In this limit, one can evaluate rather accurately how far the hare goes in one time step τmin = 1, i.e.,
the approximate average velocity v∗ of the signal from a given supplier j to its farthest customer i for which
τij = 1. At most, the signal can travel up to i = j+k with probability P(τj+k,j = 1) = 1/τmax. Generally, the
probability that it moves a distance at most l is obtained by taking τh,j > 1 for h = j+k, j+k−1, . . . , j+l+1
and τj+l,j = 1. To get the average distance, one has to sum all possible values l = 0, 1, . . . , k, multiplied by
the corresponding probability. Here i = j + l is the farthest reachable point, and it follows that

v∗ =

k
∑

l=0

l

τmax

(

1 −
1

τmax

)l−k

≃ k − (τmax − 1), (18)

where we used the two identities
∞
∑

l=0

ǫl =
1

1 − ǫ
,

∞
∑

l=0

l ǫl = ǫ
d

dǫ

1

(1 − ǫ)
, (19)

with ǫ = (1 − 1/τmax). The result in Eq. (18) is still an underestimate for the effective average velocity in
the long-time limit, since we have neglected here corrections of order ǫk that augment v further. Moreover,
we have also omitted the fact that signal can go even faster in more than one time step.

Still, we get fairly accurate bounds on the average signal velocity v:

k − (τmax − 1) ≤ v ≤ k − 1; (20)

here the lower bound vmin = v∗ is obtained by using the hare argument, while the upper one, vmax, results
from the particular case in which all the delays equal τmin. Based on the form of both these estimates, we
expect the average density 〈ρ(t,T )〉 to be approximately linear in time, with 1− (1/N)− vmaxt/(N − 1) <
〈ρ(t,T )〉 < 1 − vmint/N . Numerical results are presented in [Fig. 6] and are in good agreement with this
expectation.

A different approach is worked out in Appendix B, where the average number of impaired firms is
explicitly computed as a function of the probability for the signal to have propagated by l positions in t
time steps, cf. Eq. (61). This analysis confirms that the average density is linear over a large time window,
and it allows us to predict the effective slope.

In [Fig. 6], we also consider delays that depend only upon the customers, τij = τ(i), or only upon the
suppliers, τij = τ(j); here {τ(i) : 1 ≤ i ≤ N} and {τ(j) : 1 ≤ j ≤ N} are, as usual, uniformly distributed
in the interval [τmin, τmax]. We get the same, slightly slower, average signal velocity in these last two cases.
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Fig. 6. The average density 〈ρ(t,T )〉 as a function of time, in the asynchronous free model on a braid chain, after an initial
perturbation of node 1 of duration τc = τmin. The network size is N = 10 000, and the in/out-degree is k = 20; the average
is taken over Ns = 100 different configurations T of the delays. The legend distinguishes between delays that (i) depend only
upon the customer, τij = τ (i); (ii) only upon the supplier, τij = τ (j); and (iii) upon both of them, τij = τ (i, j). We compare
the numerical results with the lower and upper bounds on the linear behavior, k− (τmax − 1) ≤ v and v ≤ k − 1, cf. Eq. (20),
and with the approximate prediction of Eq. (61) in Appendix B. See text for details.

This slowing down can be qualitatively explained by the observation that there is a smaller number of
propagation paths of different time lengths and thus less of an opportunity for a “runaway hare.”

We checked that the observed linear decay in the density of healthy sites and the agreement with the
theoretical expectations do not depend upon the particular choice of model parameters. Moreover, as soon
as τc ≥ τmin, the average density only depends upon τc roughly during the first τc time steps. Clearly, these
results imply that 〈ρ∞(T )〉 = 0 in the present model as soon as τc ≥ τmin, and that the average transient
〈T0(T )〉 = 〈T̟(T )〉 is bounded between approximately (N − 1)/(k − 1) and ∼ N/[k − (τmax − 1)].

On the other hand, for τc < τmin, one finds the same kind of asymptotic solution as in the previously
considered synchronous free model with k ≥ 2. Namely, for τc < τ0, one obtains only periodic solutions of
period ̟ = τmin, with all the firms simultaneously impaired in the first part of the period, of length τc.
In fact, this peculiar kind of asymptotic solutions can appear also for τmin ≤ τc < τmax, since there are
configurations T of the delays in which the shortest nearest-neighbor propagation path is τ∗(T ) > τc, and
the argument given in Section 3.4 does apply. Nevertheless, as already noted there, the probability of such
a set T = {τij} rapidly approaches zero for increasing N values.

3.6. Forced braid-chain models with k = 1

We now turn to the study of forced models on a braid chain with in/out-degree k = 1, as defined in
Eq. (13). When the updating is synchronous, the equation for each xi reduces to

xi(t) =







N−1
∑

j=0

xi−j [t− (j + 1)τ0]







∨ xi(t−Nτ0); (21)

the sum here refers to Boolean addition, i.e. to the Boolean OR operator ∨. For asynchronous updating
the resulting equation becomes

xi(t) =





N−1
∑

h=0

xi−h



t−
h
∑

j=0

τi−j,i−j−1







 ∨ xi



t−
N−1
∑

j=0

τi−j,i−j−1



 , (22)
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Fig. 7. Time evolution of the state of the 10 nodes of a forced model on a braid chain, with k = 1, after an initial perturbation
of node 1. Same plotting convention as in [Fig. 2] and other similar figures: (a) synchronous, and (b) asynchronous case. The
duration of the initial perturbation is taken to be τc = 2τ0 = 2 days and τc = 〈τij〉 = 5.5 days, respectively; hence the solutions
are not periodic right away in either case. See text for details.

with the propagation times along the paths given by the corresponding sums of random τij’s.
The models’ dynamical behavior differs according to whether:

• The initial perturbation’s duration, τc, is shorter than or equal to the shortest nearest-neighbor propagation
path, which in turn means that:

– τc ≤ τ0 in the synchronous model; or
– τc ≤ τ∗(T ) in the asynchronous one. Note that the probability of τ∗(T ) > τmin becomes rapidly negligible

in the limit of large N .

In this case, the solutions are immediately periodic, like those of the corresponding free models of Sections
3.2 and 3.3; see again [Fig. 2]. One observes a wave of nodes that take the value zero, for a duration τc,
one after the other; this wave propagate across the spatio-temporal pattern. The period ̟ is given by the
sum of the delays along the whole chain, namely:

– ̟ = Nτ0 for equal delays; and
– ̟(T ) =

∑N
i=1 τi,i−1, with 〈̟(T )〉 = N(τmax + 1)/2, for randomly selected ones.

• The initial-damage duration τc is longer than the shortest nearest-neighbor propagation path, i.e. τc > τ0
or τc > τ∗(T ) in the synchronous and asynchronous model, respectively. As shown in [Fig. 7], the solutions
here become periodic only after a transient T0 > 0: when the firm in position i is reached by the wave of
damage, its activity is affected for a duration that lasts:

– no longer than τ0, for equal delays; and
– no longer than τi,i−1, for randomly selected ones.

Hence the transient is short for equal delays — one finds T0 = T̟ ≃ τc — whereas it can be of the order of
the time that the wave takes to propagate across the whole network, i.e. of the period ̟ of the solution,
for randomly selected ones. The asymptotic periodic solutions are the same:

– as for τc = τ0 in the synchronous model; and
– as for τc = τ∗(Ω) in the asynchronous one.

Note that the asymptotic density ρ∞ equals 1 in the large-N limit in all of these cases, with corrections of
order 1/N , as in the corresponding free models.
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3.7. Synchronous forced model with k ≥ 2

The behavior of the forced model on a braid chain, with in/out-degree k ≥ 2, can be described in detail
when the delays are all equal to τ0; Eq. (13) then becomes:

xi(t) = xi(t− τ0) ∨





k
∏

j=1

xi−j(t− τ0)



 . (23)

In this case, the firm i maintains its production, as usual, if all its suppliers were fully functional at the
previous time step, but also if some of them were impaired and i itself was impaired during the previous
time interval: the production is thus recovered after one time step of length τ0, thanks to the external
input.

Fig. 8. (a) Time evolution of the state of the N = 10 nodes of the synchronous forced model on a braid chain, with k = 2,
after an initial perturbation of node 1; same plotting convention as in [Fig. 2] and other similar figures. (b) Density ρ(t) as a
function of time in the same type of model, for a network size of N = 10 000; the values k = 20, 50, 100, 200 of the in/out-degree
are given in the panel legend. In both panels, we take a duration of the initial damage of τc = τ0 = 1 day.

Let us take for simplicity N equal to a multiple of k, and a duration of the initial perturbation of
τc = τ0. After the first time step, there are k firms in consecutive positions along the chain whose activity
is simultaneously impaired; at the subsequent time step, these firms recover but the damage propagates to
the next k firms.

In other words, in this model, as soon as t > 1, both the hour-hand and the minute-hand move with
the same constant velocity v = k: the damage does not spread, but the activity never recovers completely.
Correspondingly, the asymptotic solution is periodic right away, with period ̟ = N/k, and the density is
constant, ρ(t) = ρ∞ = 1 − k/N , as illustrated in [Fig. 8].

For τc > τ0, the behavior is the same, apart from the fact that the solutions are not periodic right
away: there is a very short transient T0 ≃ τc in this case. For τc < τ0, one still finds a propagating wave
of k impaired firms in consecutive positions along the chain; nevertheless, their activity is simultaneously
impaired only in the first part, having length τc, of the time step. The situation is similar to the one
encountered in the same case in free models, i.e. it is the behavior of the initially impaired firm that
propagates across the network, cf. Eq. (17).

While no complete breakdown of the economy occurs, the comparison of the results in this subsection
with the previous Section 3.6 clearly shows that higher connectivity in a production chain can lead to a
less favorable outcome, with more firms being impaired in the long run. This result can be explained by the
fact that — at least for the present model formulation — a larger number of connections does not lead to
risk sharing, since a single impaired supplier suffices to stop a firm’s production. This assumption amounts
to saying that each supplier provides a different type of goods or services to a given firm, and that one of
its suppliers cannot compensate for the loss of another one. In such a situation, a firm that depends on
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several suppliers has a higher risk of being indirectly affected by a shock, whether natural or man-made.

3.8. Asynchronous forced model with k ≥ 2

In the presence of randomly selected delays, external intervention on a braid chain with k ≥ 2 in/out-degree
renders model behavior considerably more complex. The solution for a typical set of delays T , after an
initial perturbation of duration τc = τmin, is shown in [Fig. 9]: intriguingly, despite the relatively small
network size N = 10 and the small degree k = 2 under consideration, no periodicity is reached over the
fairly long time intervals studied.

Fig. 9. Time evolution of the state of the 10 nodes of the random forced model on a braid chain, with k = 2, after an initial
perturbation of node 1. Same plotting convention as in [Fig. 2] and in other similar figures. As usual, we look at a typical
configuration T of randomly selected delays, uniformly distributed between τmin= 1 day and τmax=10 days. The duration of
the initial perturbation is τc = τmin. Notice that the solution does not display any periodicity in the fairly long time window
displayed.

Since the delays are integer multiples of τmin, the asymptotic solution of system (2), for a given set of
delays T is either constant or periodic, because of mathematically rigorous results on BDEs [Ghil et al.,
2008; Mullhaupt, 1984; Ghil & Mullhaupt, 1985]. Nevertheless, for irrationally related delays, BDEs can
have solutions of increasing complexity, which display a number of jumps per unit time that increases
polynomially with time. Such peculiar behavior occurs, in particular, in the case of conservative systems
with rationally unrelated delays.

This behavior is exemplified, at its simplest, by the scalar BDE [Dee & Ghil, 1984; Ghil & Mullhaupt,
1985]

x(t) = x(t− τ) ▽ x(t− 1), (24)

where τ ∈ (0, 1) is irrational, and ▽ is the ‘XOR’ operator, for which x ▽ y = 1 iff x 6= y. An aperiodic
solution obtained with a set Tirr of delays can be approximated with prescribed accuracy, for increasingly
long times, by the periodic solutions of nearby BDEs systems with the same Boolean operators but with
rationally related sets of delays Tn. The latter approximate better and better the former, as Tn → Tirr [Ghil
et al., 2008; Ghil & Mullhaupt, 1985].

Though a more careful analysis would be necessary in order to extend these results to the present case,
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we notice that Eq. (13), which describes our forced models on a braid chain, is equivalent to:

xi(t) =

k
∑

j=1

xi(tij) ▽ xi−j(tij) ▽ [xi(tij) · xi−j(tij)] (25)

where we defined tij := t−τi,i−j. The equivalence is due to the Boolean relations a ∨ b = a∧b = a▽b▽(a·b),
and it shows that the system under consideration is partially linear in the BDE terminology of [Ghil et al.,
2008; Ghil & Mullhaupt, 1985], i.e. that it contains a conservative subsystem. This suggests that the model
might approximate, with an accuracy depending on the particular T -configuration, similar sets of BDEs
with delays that are incommensurable, and whose solutions thus display chaotic behavior.

In order to better characterize our numerical findings, we numerically study the following three quanti-
ties: the transient T̟(T ); the period ̟(T ) of the asymptotic solution; and the period-averaged asymptotic
density ρ∞(T ) of fully active firms. According to Eq. (8),

ρ∞(T ) =
1

̟

∫ T̟+̟

T̟

ρ(t,T )dt, (26)

where T̟ = T̟(T ) and ̟ = ̟(T ). Notice that — in the models considered so far, and in particular in
the free models with k ≥ 2 studied in Sections 3.4 and 3.5 — T̟(T ) = T0(T ), where T0(T ) is the time
that the density ρ(t,T ) takes to reach the asymptotic value ρ∞(T ).

Fig. 10. Probability distributions for the asynchronous forced model on a braid chain with k = 2. The results pertain to the
solutions of small systems of N = O(10) equations, and are obtained from Ns = 1000 different sets of delays T . (a) Probability
distribution P(T̟(T )) of the transient; (b) probability distribution P(ρ∞(T )) of the period-averaged asymptotic density of
“healthy” firms. Panel (a) uses log-log coordinates, in order to emphasize that the probability P(T̟(T )) is still significant
even at very large values. See text for details.

These quantities can be determined with high accuracy for relatively small system sizes N . 12. We
present in [Fig. 10] our results on the probability distributions P(T̟(T )), and P(ρ∞(T )), as obtained
by considering Ns = 1000 sets T of random delays; the behavior of P(̟(T )) is very similar to the one
displayed by P(T̟(T )).

The most striking feature in the figure is that both the transient T̟(T ) and the period ̟(T ) of the
solutions can increase very rapidly with the network size N . In order to better visualize this, we have
plotted P(T̟(T )) on a log-log scale in [Fig. 10a]) and find that — in systems of N = 12 nodes — it is not
vanishingly small even for values of the transient T̟(T ) as large as 106 (in units of τmin).

Actually, we found that the average length of the transient diverges exponentially with N , 〈T̟(T )〉 ∝
exp(const·N), and that, at least for the N values under consideration, the average period 〈̟(T )〉 displays a
similar behavior. Such an exponential increase is also characteristic of the so-called chaotic regime observed
in random Boolean networks [Drossel, 2008; Kauffman, 1993; Weisbuch, 1991], in which the delays are all
equal, but it is the link configuration Ω that is randomized.



May 13, 2011 15:57 BC˙MG˙SH˙GW-BDE˙Econ-IJBC˙vfl

20

The probability distribution P(ρ∞(T )) of the asymptotic density ρ∞(T ) of fully active firms, averaged
over the T -dependent period ̟(T ), is shown in [Fig. 10b] for several values of N ≤ 12. It turns out to be
roughly bell-shaped, and it becomes more peaked around the mean value as the network size N increases.
This increase in concentration around the mean suggests that the fairly complex dynamics does not imply
a more unpredictable behavior of macroscopic intensive quantities, at least in the limit of large N (not
shown).

In fact, whereas to predict a given solution’s detailed evolution in time for a given set T of random
delays seems to be quite hard, one can use the “two-handed clock” approach, as in Section 3.5, to obtain the
expected behavior of various average quantities. For simplicity, we limit the analysis to the case in which the
duration τc of the initial damage exceeds the length τ∗(T ) of the smallest nearest-neighbor propagation
path, where τ∗(T ) is usually equal to τmin. In this case, we do not expect to encounter short-periodic
asymptotic solutions with all the firms being simultaneously down in the first part of the period.

Since the network is a braid chain and the production of a given firm, apart from the initially damaged
one, is impaired for the first time as soon as one of the k stocks that it needs is unavailable, the hare
argument can still be used for obtaining a close upper bond on the average signal velocity v. Hence we
argue that, in the limit 1 ≪ τmax ≪ n ≪ N , and at large t, the signal that propagates across the chain
with the average velocity v is still well approximated by Eq. (18), i.e. v . v∗ = k − (τmax − 1).

The main difference with respect to the previous asynchronous free model is that here, because of the
external-rescue inputs, only a fraction s of the firms between the origin and the minute-hand position is
impaired on average, during a time step of length τmin. Since the delays are independently and identically
distributed along the whole chain, at large enough times this fraction s is constant, and the damage spreads
linearly with time, up to the point of invading the whole network, according to:

〈θ(t)〉 ≃

{

sNvt . sNv∗t = sN [k − (τmax − 1)]t, for 1 ≪ t.〈T ∗
0 (T )〉,

sN, for t ≥ 〈T ∗
0 (T )〉;

(27)

with

〈T ∗
0 (T )〉 ≃

N

v
&

N

v∗
=

N

k − (τmax − 1)
. (28)

The average density of fully active firms, 〈ρ(t;T )〉 = 1 − 〈θ(t;T )〉/N is thus decreasing again linearly, and
the negative slope is approximated by −v∗, up to the time 〈T0(T )〉 at which it reaches the nearly constant
asymptotic value 〈ρ∞(T )〉 ≃ 1 − s.

Hence, the effective transient 〈T0(T )〉 refers to the dynamics of 〈ρ(t;T )〉; in fact, it is the time at
which the minute-hand reaches the origin again, after a whole tour: it is therefore of the same order as
the time that the density takes to reach the asymptotic zero value in the asynchronous free model. It is
clearly important to distinguish between the transient T̟(T ), defined as the time elapsed before periodicity
settles in — which increases on average exponentially with network size N — and the definitely shorter
effective transient time 〈T0(T )〉. The latter can be more generally defined as the time at which macroscopic
observables approach nearly constant values.

We present in [Fig. 11] a single-sample density, ρ(t;T ), as a function of time — and, as usual, after an
initial perturbation of node 1 of duration τc = τmin — for a large network size N = 10 000 and in/out-degree
k = 20. In agreement with the picture emerging from the previous discussion, we find small fluctuations
around a linear decay, followed by small fluctuations around the asymptotic value, ρ∞(T ) ≃ 0.15. The
latter is reached in a time T ∗

0 (T ) ≃ 650 (in τmin units), which compares favorably with the estimate of the
average effective transient, 〈T0(T )〉 . 900τmin that one gets from Eq. (28).

The numerical results are for a single, typical set of delays T . For large enough N -values, we find that
the fluctuations of ρ(t;T ) around the average value 〈ρ(t;T )〉 are usually very small, i.e. ρ(t;T ) ≃ 〈ρ(t;T )〉:
in fact, they are usually of the same order of magnitude as the fluctuations of the single-sample density
ρ(t;T ) around the constant asymptotic value displayed in the present plot. This finding is in agreement
with the behavior of P(ρ∞(T )) shown in [Fig. 10b] and it can generally be expected for a macroscopic
intensive quantity, such as the density. We checked in particular that both the effective transient T ∗

0 (T )
and the asymptotic average value of the density, ρ∞(T ) ≃ 1 − s, are usually almost indistinguishable for
different choices of the randomly selected set of delays T .
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Fig. 11. Evolution of the density ρ(t, T ) of fully active firms as a function of time for a typical set of delays T , in the
asynchronous forced model on a braid chain, after an initial perturbation of node 1 of duration τc = τmin = 1 day. The
network size is N = 10 000 and the in/out-degree is k = 20. We study delays τij = τ (i) that depend only on the customers;
delays τij = τ (j) that depend only on the suppliers; and delays τij = τ (ij) that depend on both of them. See text for details.

Besides considering delays {τij} that depend upon both the customer i and the supplier j (red curve
in the figure), we present in [Fig. 11] also numerical results on the single-sample density ρ(t;T ) for models
whose delays depend only upon the customers, τij = τ(i) (green curve), or only upon the suppliers,
τij = τ(j) (blue curve). In the latter two cases, the effective transient times T ∗

0 (T ) are roughly equal, and
definitely longer than in the first case. The faster decay in the latter case (red curve) can be explained by
noticing that — as in the asynchronous free model studied in Section 3.5 — when τij depends upon both
its indices, there are more concurrent propagation paths of different durations in the system, hence the
average signal propagation velocity is higher.

The constant asymptotic mean value of the density, ρ∞(T ) ≃ 1−s, is definitely larger when the delays
depend only upon the customers (green curve), whereas it is almost the same for the other two cases (blue
and red curves). In fact, when τij = τ(i), Eq. (13) becomes:

xi(t) = xi[t− τ(i)] ∨







k
∏

j=1

xi−j [t− τ(i)]







. (29)

Hence, there is a definitely smaller number of delay combinations T that can result in affecting the pro-
duction of a given firm, i.e. the average fraction s of simultaneously impaired firms — within the region
reached by the spreading of the initial perturbation — is smaller. In fact, Eq. (29) implies that, after the
transient T ∗

0 (T ), when averaging the dynamics over a large enough time interval, each firm is impaired
roughly for one half of the time; equivalently, for large N ≫ k, there is, on average, one half of the firms
that are impaired at each time step, i.e. s ≃ 0.5. This is in perfect agreement with the result on the
asymptotic value of the density, ρ∞(T ) ≃ 0.5, that one finds in [Fig. 11] for τij = τ(i) (green curve).

To summarize, the external rescue inputs in the forced model on a braid chain do prevent economic
collapse, i.e. one finds a nonzero fraction of fully active firms in the large-time limit. This fraction can be
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as large as one half of the total number of firms, whereas the collapse of the production chain is total in
the absence of such external inputs, cf. [Fig. 6].

4. Directed random graphs (DRGs)

4.1. Network topology

The study of BDEs for the relatively simple topology of braid chains — with their geometric periodicity and
strong connectivity — held considerable interest for two reasons: (i) it allowed us to compare numerical
results with analytical considerations; and (ii) it provided a first glimpse at the substantial differences
between free and forced models, on the one hand, and between synchronous and asynchronous forcing, on
the other.

We now shift our attention to the more realistic topology of DRGs. Here the elements of the connectivity
matrix A are given by Eq. (1) and we start by a quick review of the well known features of such a random
structure [Karp, 1990;  Luczac & Seierstad, 2009].

P. Erdős and A. Rényi initiated the study of random graphs about 50 years ago [Erdős & Rényi,
1959, 1960, 1961]; such graphs have been extensively studied more recently, along with a number of related
models [Bollobás, 1998; Watts, 1999; Albert & Barabási, 2002; Newman, 2003]. One gets an undirected
Erdős-Rényi random graph G(N, p) by taking the edges that connect each possible pair (i, j) of the N
nodes to be independently and identically distributed with probability p. In our notation, the matrix A is
symmetric, since the event Aij = 1 implies the event Aji = 1, and vice-versa.

The total number of pairs of nodes is N(N − 1)/2, and each edge contributes to the degree of the 2
nodes that are its endpoints; the average connectivity z is given, therefore, by z = 〈k〉 = (N − 1)p ≃ Np.
The probability distribution of the degree k is, in fact, binomial:

P(k) =

(

N − 1
k

)

pk(1 − p)N−1−k ≃
zk

k!
e−z, (30)

and it converges to a Poisson distribution with mean z = 〈k〉 in the limit of large N and small p.
One defines a connected component Sc of the graph as an ensemble of nodes such that, from each node

i ∈ Sc, there exists at least one path Cij — across nodes {h1, h2, . . . , hl} belonging to the same Sc — that
reaches each other possible node j in that Sc:

∀(i, j) ∈ Sc ⇒ ∃ Cij : Aih1
Ah1h2

· ... ·Ahlj 6= 0 h1, h2, . . . , hl ∈ Sc. (31)

The average size Sc of a connected component Sc can, therefore, be evaluated by starting from a randomly
chosen node, and computing the number of its first neighbors z1, of its second neighbors z2, and so on. For
the simple case of a Poisson distribution, one has:

z1 =

∞
∑

k=0

k
zk

k!
e−z = z ,

z2 =

∞
∑

k=0

k(k − 1)
zk

k!
e−z = z2 ,

zl =
z2
z1

zl−1 =

(

z2
z1

)l−1

z1 = zl ; (32)

hence one obtains:

Sc =

∞
∑

l=0

zl =
1

1 − z
for z < 1. (33)

In the N → ∞ limit, one thus finds that 〈Sc〉 diverges as z → zc = 1. Above this critical value zc = 1,
a giant connected component Sgc appears, and Sgc contains a finite fraction 0 < sgc ≤ 1 of the nodes,
Sgc = sgcN , as usually observed in real networks. This “phase transition” was already enphasized in the
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pioneering papers of Erdős and Rényi [Erdős & Rényi, 1959, 1960, 1961], and was subsequently studied in
great detail from both the mathematical [Bollobás, 1998] and the physical point of view [Albert & Barabási,
2002].

When z exceeds 1, sgc tends rapidly towards 1. Let us call r the fraction of nodes that do not belong
to the giant connected component Sgc, r = 1−sgc. The value of r is obtained by observing that such nodes
have successive neighbors not belonging to this giant component. Based on the Poisson process equations,
we get

r =

∞
∑

l=0

[zr]l

l!
e−z = ez(r−1). (34)

This result can also be derived in the probabilistic framework of generating functions [Newman et al.,
2001], a framework that is well suited for applications to more general distributions P(k) of the degree k,
as well as to DRGs, and is presented in Appendix C.

In fact, the DRG D(N, p) that we are considering is a simple generalization of the Erdős-Rényi model,
except that we have to distinguish between the number kin of in-links and the number kin of out-links.
Still, each directed link is chosen independently with the same probability p among the N(N − 1) possible
ones. Hence the average in/out-degree z = 〈k〉 = 〈kin〉 = 〈kout〉 is again given by 〈k〉 = (N − 1)p ≃ Np,
and P(kin) = P(kout) are still described by Eq. (30). Notice that — if we were to transform a DRG into
an undirected graph, by interpreting each link as an edge — we would get a random graph with average
degree equal to twice the average in/out-degree of the DRG we started with.

Fig. 12. Typical realizations (a) of a random (undirected) graph G(N, p), and (b) of a directed random graph (DRG)D(N, p).
The two graphs have the same small network size of N = 12 nodes, and the same p ≃ 1/N and 〈k〉 ≃ 1 value for both. The
number of the edges in the random graph is one half the number of the directed links in the DRG.

We illustrate in [Fig. 12] the differences between a typical undirected random graph G(N, p) in the
left panel and a DRG D(N, p) in the right panel. Both graphs have the same number N = 12 of nodes,
and the same values p ≃ 1/N and 〈k〉 ≃ 1. It is clear from this figure how different the random topology
is from that of the brain chain. In the latter, and for the same in/out-degree value k = 1, one would find
a single connected component of size N (see again [Fig. 1]). Instead, in [Fig. 12] here — and looking for
simplicity at the left panel — we observe two isolated nodes, three connected components of size 2, and
one connected component of size 4.

It is likewise clear from the figure that, in the directed case [Barbosa et al., 2003; Newman et al., 2001;
Dorogovtsev et al., 2001; Broder et al., 2000], the existence of a path that connects i to j does not usually
imply the existence of a path connecting j to i. For each given node, one can hence define:

• the out-component, which is the set of all nodes that can be reached from it;
• the in-component, which is the set of all nodes from which it can be reached;
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• the strongly connected component, which is the set of all the nodes that can be reached from it and from
which it can be reached, i.e. the intersection of the in-component and the out-component; and, finally,

• the weakly connected component, which is the set of all the nodes that can be reached from it or from
which it can be reached, i.e. this component is the union of the in-component and the out-component.

The weakly connected component also corresponds to the connected component of the graph obtained by
disregarding the directionality.

Fig. 13. A sketch of the bow-tie structure characteristic of a DRG’s topology [Dorogovtsev et al., 2001]: the two bows
correspond to the giant components I \ Ssc and O \ Ssc, respectively, whereas the tie represents the giant strongly connected
component Ssc = I ∩ O. Here we consider the most general case, in which W = I ∪ O ∪ Θ, where Θ contains in particular
the paths linking the two bows without passing across the tie Ssc, as observed in some real networks such as the web [Broder
et al., 2000].

The analogue of the phase transition in the previously discused case of an undirected random graph
may be characterized in a DRG by the formation of a giant in-component I, containing I = sIN nodes; of a
giant out-component O, containing O = sON nodes; of a giant strongly connected component Ssc = I ∩O,
containing Ssc = sscN nodes; and of a giant weakly connected component W, containing W = swN nodes.
In fact, one usually expects to observe two different transitions, i.e. two different abrupt changes in the
properties of the system in the large-N limit: (i) at the lower average in/out-degree zwc , which corresponds
to the critical average degree in the undirected graph, at which the giant weakly connected component
W appears; and (ii) at the higher average in/out-degree zdc , at which the effective transition in the DRG
occurs, namely at which the two giant components I and O appear simultaneously.

For z ≥ zdc , the resulting bow-tie structure is sketched in [Fig. 13] and has been observed in many
different real networks [Broder et al., 2000; Ding et al., 2009]. Notice that the appearance of the giant
in-component I corresponds to the divergence of the number of nodes that can be reached from a given
one, while that of the out-component O corresponds to the divergence of the number of nodes from which
a given one can be reached; i.e., a node is in the giant in-component if its out-component diverges, and
vice-versa.

Moreover, above the transition, it may be necessary to introduce one more giant component in order
to fully characterize the topology, since it is possible to have (I ∪ O) ⊂ W, while W r (I ∪ O) 6= ∅. The
latter is, in particular, the case when there are directed paths between I and O that do not pass across
Ssc. Such a set Θ = W r (I ∪ O) 6= ∅ has been found in the structure of the web [Broder et al., 2000] —
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which can be seen as a DRG characterized by a power-law distribution in/out-degree — and is shown in
[Fig. 13].

The generating-function formalism for DRGs [Newman et al., 2001; Dorogovtsev et al., 2001] turns out
to be particularly simple when the in/out-degree distribution factorizes, Pkin,kout = PkinPkout , since the in-
and out-components are independent in the large-N limit, so that one simply has ssc = sIsO. For the case
of P(kin) = P(kout), with the Poisson distribution P(k) given by Eq. (30), the transition does still occur
at the critical average in/out-degree zdc = 〈k〉c = 1, and the giant in- and out-components have the same
size:

sI = sO = 1 − r, (35)

where r is once more given by the solution of Eq. (34). Thus ssc = (1 − r)2, whereas the fraction of nodes
in I \ Ssc, and equivalently in O \ Ssc, equals r(1 − r): the three regions in the bow tie have roughly the
same size in the thermodynamic limit. This result has likewise been observed in real networks [Broder
et al., 2000], for r ≃ 1/2, and hence z ≃ log 4. Moreover, one simply has zwc = zdc /2: when r is a solution
of Eq. (34) one has r(2z) = r2, and it follows that, for z > zdc , sw = 1− r2 = sI + sO − ssc, which confirms
that here W = I ∪ O and Θ ≈ ∅.

An important implication from this analysis for the present damage-propagation study is that nodes
lying outside the giant connected component W are “screened,” i.e. protected from any perturbation
starting inside the giant component.

Another key property of the topology of Erdős-Rényi random graphs is that their structure is tree-like
for p-values that are not too large. This property holds rigorously for the finite-size connected components,
both below and above the critical point, since it can be shown that the probability of closed loops occurring
approaches zero in the limit N → ∞; it is at least locally valid within the giant connected components,
where their occurrence can be neglected in a first approximation.

Fig. 14. The local tree-like structure characteristic of Erdős-Rényi random graphs: damage spreading (a) on an undirected
random graph G(N, p), with 〈k〉 = 3; and (b) on a DRG D(N, p), with the same mean degree 〈kout〉 = 〈kin〉 = 3.

We compare in [Fig. 14] these locally tree-like structures for a undirected random graph and a DRG
with the same z = 3 value: notice that, in the first case, one has z2 = z2 from Eq. (32), while in the second
case, one gets the same kind of result, with z2 = 〈kin〉〈kout〉 = z2. In other words, in DRGs, the probability
P({i → j} ∧ {j → i}) to have both the link i → j and the link j → i present equals roughly p2, and it
is therefore negligible when p ≪ 1, which is the case of typical interest here for large N . In undirected
random graphs, though, one has — in order to make a meaningful computation — to also consider the
edges that emerge from a given node, apart from the one along which the signal arrived.

As we shall see below, this difference is evident in the results for damage spreading over just a short
time in BDE models on random graphs. These numerical results can be predicted quite accurately on the
basis of the local tree-like topology. Moreover, when considering asynchronous updating due to randomly
selected delays, two paths with the same space length still have, in general, unequal time lengths; but
the locally tree-like topology implies that the number of distinct concurrent paths that connect two given
nodes does not increase as fast with the average in/out-degree 〈kin〉 = 〈kout〉 as in the deterministic braid
chains of Section 3.
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4.2. Synchronous free model

We start again with the simplest case, the one of the free models — defined by Eq. (3), with all the delays
equal to the same time unit τ0 = 1 day, on the DRG D(N, p) — and we study as usual the consequences
of a natural disaster impairing the activity of a single firm for a duration τc. For simplicity, we limit the
analysis to the case τc = τ0.

For a DRG, the possibility exists of a link being selected with probability p = 0, i.e. of such a link
being absent altogether from the geometric configuration Ω of the network. While the random selection
still occurs only when setting up the BDE, it now involves not just the set of delays T but also Ω. For
the sake of concision, we introduce the notation Ω∗ = (Ω,T ) to refer to the random set-up involving both
network geometry and BDE delays.

In the presence of randomness in the network selection, the BDE system (2) can no longer be reduced,
as in Section 3.1, and one has in principle to solve a set of N equations in N variables; this set of BDEs
can be rewritten in the form:

xi(t) =
∏

j∈I(i)

xj(t− τ0) i = 1, ..., N. (36)

The Boolean product here runs over all the indices j labeling the firms that are suppliers of i. We denote
this set of nodes by I(i) = {j : Aij 6= 0}; the in-degree I(i) of node i is the total number of its suppliers
i.e. I(i) = kin(i). Analogously, the out-component O(i) = {j : Aji 6= 0} of node i corresponds to the firms
that are its customers; their total number is kout(i).

It is clear from Eq. (36) that the properties of this DRG model strongly depend upon the probability
distributions of the in- and out-degree. We assume kin(i) and kout(i) to be independent and given by
Eq. (30), with mean values that satisfy 〈kin(i)〉 = 〈kout(i)〉 = (N − 1)p = z. Hence, for increasing z values,
the statistical properties of the solutions will reflect the appearance of giant connected components in the
model’s graph. In particular, one expects to find fundamentally different kinds of solutions for an average
in/out-degree that is lower or higher than the critical value zdc = 〈k〉c = 1.

The damage spreading in this simple free model can, in fact, be understood with the same argument
used for evaluating the average size of the connected components in the graph: at t = 1, the signal
propagates from node i, occupied by the initially damaged firm, to its closest neighbors, whose average
number is z1 = z; at t = 2, it reaches its next-closest neighbors, whose average number is z2 = z2, and so
on. From Eq. (32) it follows that, at time t, the damage did reach on average zt nodes; hence:

[DRG] 〈θ(t; Ω)〉 ≃ zt, for t ≪ logN/ log z. (37)

This implies that the average number of impaired firms increases with time only if z = 〈k〉 > 〈k〉c = 1, i.e.
only if the graph is above its transition point.

This argument does make use of the DRG’s local tree-like structure, since we are implicitly assuming
that the probability of two nodes reached at a given time step being themselves connected by a different
path, i.e. the probability of closed loops, can be neglected. In fact, the argument breaks down roughly at
the time when the signal has propagated to the whole connected component to which the initial node i
belongs. At that time and later, one can find two distinct situations:

• Either i lies in a connected component containing a small number of nodes, and thus Sc = 0(1). One then
expects that there are no loops, and hence the system can completely recover from the initial damage, i.e.
〈ρ∞(Ω)〉 = 1: a randomly chosen initial node i does belong, in the large-N → ∞ limit, to a connected
component with a finite number of nodes, almost surely for subcritical degree z = 〈k〉 < 1 and with
probability r for supercritical degree z = 〈k〉 > 1.

• The graph is above the critical point, 〈k〉 > 1, and i belongs to a giant connected component. Because of
the presence of closed loops, a finite fraction of the firms will be impaired in the asymptotic solution, and
the production network will never recover completely from the initial damage.

Such results can be explained by noticing that, in our DRG model, there are firms that have no
customers in the network. For these firms that lie at an end of the production chain, being unable to
produce does not have any consequences on the rest of the chain but only on household well-being. Since
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z = 〈k〉 measures the average number of customers in the network, in the limit of a large total number N
of firms, one observes the previously mentioned phase transition: for 〈k〉 < 1, most of the firms are either
themselves in this “end-of-the-chain” situation, or have just a few customer firms that are in this peculiar
situation, and so on; thus the initial damage does not usually propagate. Conversely, as soon as 〈k〉 > 1 a
finite fraction of the firms have customers in the network, which have themselves other customers and so
on.

To make this analysis more quantitative, one can say in the large-N limit that, in a free DRG above
the transition point, in order for damage to reach a finite fraction of the network, the initially attained
firm has to belong to the giant in-component, i ∈ I: this occurs with probability 1 − r. Moreover, in this
asymptotic limit, one expects that all the firms in the giant out-component O will eventually be impaired,
which means a fraction sO = 1 − r of the entire network. Correspondingly, we find:

〈θ(t; Ω)〉 ≃

{

zt for t ≪ 〈T0(Ω)〉,
(1 − r)2N for t ≫ 〈T0(Ω)〉, N ≫ 1,

(38)

where the time that 〈θ(t; Ω)〉 takes before reaching the asymptotic constant average value is also quite
short for large N values, since it is of order 〈T0(Ω)〉 ∼ log((1 − r)N)/ log z.

Interestingly, (1−r)2 is also the fraction of nodes in the network’s giant strongly connected component
Ssc. Nevertheless, the two quantities do have a different meaning: when the initial node belongs to I,
the total number of eventually impaired firms is (1 − r)N = SO, which is definitely larger than Ssc for
small r-values. This point can be better understood by looking at the Erdős-Rényi undirected random
graphs having the same average degree z > 1: here, the initially damaged firm i has to belong to the giant
connected component Sgc, and the firms whose activity is finally impaired are the ones in Sgc as well; hence
we find again that 〈θ(t; Ω)〉 approaches (1 − r)2N at large times, although Ssc = 1 − r.

To summarize, the average asymptotic density of fully active firms is given, in the undirected random
graph as well as the DRG, by

〈ρ∞(z,Ω)〉 = 1 − (1 − r)2 = 2r − r2, (39)

where we recall that r is the solution of Eq. (34).
An important difference between the behavior of the synchronous free models on both directed and

undirected random graphs concerns the short-time dynamics: as shown in [Fig. 14], in the undirected case
the signal propagates also back to the node from which it has arrived. To correctly describe the behavior
of 〈θ(t; Ω)〉, Eq. (37) should therefore be replaced by:

[URG] 〈θ(t; Ω)〉 =

[t/2]
∑

l=0

zt−2l for t ≪ logN/ log z, (40)

where [y] denotes, as usual, the integer part of y, i.e., the largest integer smaller than y.
Numerical results on the average total number of impaired firms 〈θ(t; Ω)〉 in the synchronous free model

on random graphs are presented in [Fig. 15]. In [Fig 15a], we compare the short-time behavior of 〈θ(t,Ω)〉
between the DRG and an undirected random graph with the same average degree z = 〈k〉 = 1.5. In this
case, the transient that precedes the attainment of the asymptotically constant value is relatively long, and
the difference is appreciable between the DRG case — described by Eq. (37), with 〈θ(t,Ω)〉 ≃ zt — and
the undirected one, where the numerical results are in better agreement with 〈θ(t; Ω)〉 ≃ zt + zt−2, which
is an approximation of the sum on the right-hand side of Eq. (40). Notice, moreover, that the asymptotic
values in both of the cases are nearly equal, as expected.

In [Fig. 15b], we plot the same quantity — computed for DRGs with different values of z = 〈k〉 > 1
— and compare the numerically obtained curves with the expected short-time behavior given by zt. It
is clear from this figure that the asymptotic total number of impaired firms is an increasing function of
the average in/out-degree. Moreover, already for z as small as z = 5, this number practically coincides
with the system size N , thus implying that the damage spreads in just a few steps to all the firms, since
〈T0(Ω)〉 ≃ logN/ log z.

Our results on the average asymptotic density 〈ρ∞(z,Ω)〉, as a function of the average in/out-degree
z = 〈k〉, are presented in [Fig. 16]: they turn out to be in very good agreement with the expected curve,
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Fig. 15. Short-time behavior of the average total number of impaired firms 〈θ(t; Ω)〉 for synchronous free BDE models on
random graphs, with a large number of nodes N ≫ 1; the results are averaged over at least Ns = 200 different configurations
Ω of the links. (a) Comparison of 〈θ(t; Ω)〉, between the DRG D(N, p), with average in/out-degree z = 〈k〉 = 1.5, and the
undirected Erdős-Rényi random graph G(N, p), with the same 〈k〉 value; here N = 5 000. (b) Comparison between the
behavior of 〈θ(t; Ω)〉 in the DRG D(N, p), for different values of z = 〈k〉 above the transition point zc = 1; here N = 10 000.
The numerical results are also compared with the corresponding expected behavior, given by Eq. (37) for DRGs, and by an
approximation of Eq. (40) for undirected random graphs, respectively. See text for details.

cf. Eq.(39), obtained by evaluating numerically the solution r of Eq. (34). The numerical results in the
figure are for DRGs, but we checked that in undirected graphs with the same average degree one gets
definitely comparable results (not shown). This agreement also implies that for the number of nodes used
here, N = 10 000, the corrections to the behavior of 〈ρ∞(z,Ω)〉 in the limit N → ∞ are already negligible.

Fig. 16. Average asymptotic density 〈ρ∞(z,Ω)〉 for synchronous free BDE models on DRGs with large network size, N =
10000; the results are averaged over at least Ns = 200 different configurations Ω of the links. The asymptotic average density
is plotted as a function of the average in/out-degree z = 〈k〉, and it is compared with the expected behavior, given by Eq. (39).

To conclude this section, we note that the study of these simple synchronous free models on random
structures — which are more complex than those in Section 3 — might prove useful also for a better
understanding of the topology of the networks themselves. The size of their connected components, in
particular, is difficult to compute analytically in the case of realistic directed networks, in which the
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probability distributions of the in- and out-degree do not factorize [Newman, 2007]. A first step in this
direction would be to consider directed “small-world” networks [Watts, 1999]; such networks interpolate,
in some sense, between the topology of a braid chain and that of an Erdős-Rény random graph.

4.3. Asynchronous free model

We now turn to the study of the free model on a DRG with random delays that are uniformly distributed
in the interval [τmin, τmax]. The model is described by a set of BDEs analogous to Eq. (36):

xi(t) =
∏

j∈I(i)

xj(t− τij), i = 1, ..., N, (41)

where T = {τij} is a set of quenched random variables, independently and uniformly distributed in the
interval [τmin, τmax]. The time is in units of τmin = 1 day, and we take as usual τmax = 10 days, limiting
moreover the analysis to the case in which the duration of the initial perturbation is τc = τmin.

We start by noting that, in the first time step, the signal propagates on average to z/τmax other firms.
In the next time steps, one still expects — for networks above the transition point zdc = 〈k〉c = 1 — to
observe an exponential spreading of the damage. Since the network topology is locally tree-like, the signal
propagates, as in the previous subsection, independently along each given branch of the tree, and on to
further and smaller branches. Since the propagation paths of different time lengths are not concurrent, the
random delays are likely to show up first of all in a global rescaling of the time by a factor 1/τav, where
τav = 〈τij〉.

The average total number of impaired firms 〈θ(t; Ω∗)〉 is thus given by

〈θ(t; Ω∗)〉 =
z

τmax
z
t/τav
eff for t ≪ logN/ log zeff ; (42)

note that now both the geometry Ω and the set of delays T are randomly selected, so we refer henceforth to
the generalized configuration Ω∗ = (Ω,T ). The effective average in/out-degree which appears in Eq. (42)
has to approach z when z → 1+; hence zeff ≥ z−eff = z. To see this, note that Eq. (42) has to reduce to
the synchronous case when all the delays equal τ0 = 1, whereas the presence of longer delays cannot but
increase zeff .

In fact, since the signal from a given node propagates to its customers up to the time t+τmax, one finds
an effective increase of the average in/out-degree, which can be easily bounded from above, as follows:

zeff ≤ z+eff = z

∞
∑

l=0

(

z

τmax

)l

=
z

1 − z/τmax
. (43)

Summarizing, for short times and for z > 1, we get:

f−(t; z) ≡ f(t; z−eff) ≤ 〈θ(t; Ω∗)〉 ≤ f(t; z+eff ) ≡ f+(t; z), (44)

where

f(t; zeff) =
z

τmax
z
t/τav
eff . (45)

The numerical results on 〈θ(t; Ω∗)〉 — obtained for several supercritical values z > 1 of the average
in/out-degree — are compared in [Fig. 17] with the expected upper and lower bounds f−(z, t) and f+(z, t)
on the short-time behavior, given by Eqs. (44) and (45). The computed curves always lie between f−(t; z)
and f+(t; z), within a wide time window; they approach f−(t; z) for z → 1+, and f+(t; z) for large z ≫ 1;
in fact, the numerical results at short times nearly coincide with f+(t; z) already for z as small as z = 3.

In the large-time limit, since there are loops in the giant strongly connected component Sgc, one expects
that the damage will spread to the whole giant out-component O, with the same probability 1− r as in the
synchronous model with equal delays. We verified numerically that one still observes, for large N values, an
asymptotic average density of fully active firms 〈ρ∞(Ω∗)〉 = 2r− r2, in agreement with Eq. (39). Moreover,
for N -values that are not too small, one usually gets the same asymptotic density ρ∞(Ω) for a given network
configuration Ω, whether the delays are all equal or are randomly chosen, i.e. both in the synchronous and
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Fig. 17. The average total number of impaired firms, 〈θ(t,Ω∗)〉, as a function of time, in the free BDE model on a DRG,
for different mean-degree values z = 〈k〉; the network size is N = 10 000. The results are averaged over at least Ns = 200
different configurations of the links Ω and of the random delays T , and Ω∗ = (Ω, T ). The numerical results for each z-value
are compared with the expected short-time lower and upper bounds, f−(t; z) = f(t; z−

eff
) and f+(t; z) = f(t; z+

eff
), respectively,

where f is given by Eq. (45). See text for details.

Fig. 18. The density of fully active firms ρ(t,Ω∗) as a function of time, for the free model on a DRG with three distinct,
supercritical average connectivities, z = 2.0, 1.75 and 1.5 > 1. Here we consider a single typical configuration Ω of the links,
and compare the results for delays taken all equal to τ0 = 1 day with those for a single typical configuration T of randomly
selected delays, chosen to be uniformly distributed between τmin = 1 day and τmax = 10 days. Note that the densities approach
exactly the same asymptotic value in both cases, and for all four z-values considered.

in the asynchronous model. This can be qualitatively understood because, if the initially impaired firm is
in a connected component in which there are no loops, the economy can recover completely in both cases,
whereas if it is in the giant in-component then the damage spreads to the whole out-component of the
network.

Nevertheless, the asymptotic solutions for the free BDE systems on the same DRG configuration Ω
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Fig. 19. The density of fully active firms ρ(t; Ω∗) as a function of time, in a given DRG configuration Ω with z = 〈k〉 = 0.525
and N = 100. We compare results for synchronous updating, with all delays equal to τ0 = 1 day (lower, blue curve), to the ones
for a single typical configuration of random delays T , uniformly distributed between τmin = 1 day and τmax = 10 day (upper,
red curve). Notice that the transient is much longer for the asynchronous updating, but the asymptotic solutions display the
same behavior of the density, which is periodic with a mean value definitely smaller than one, although the network is quite
subcritical, with z < 〈k〉c = 1. See text for details.

do not need to coincide in the synchronous and asynchronous case. This effect occurs for relatively small
N , near or below the critical point, z = 〈k〉 . 1, since it is related to the presence of loops in connected
components that contain a large enough fraction of the nodes, but are not the giant ones.

While a detailed analysis of the finite-N behavior of free BDE models on DRGs is beyond the scope of
the present paper, we show in [Fig. 19] and in [Figs. 20a–i] examples of time-variable asymptotic behavior,
for DRG configurations Ω with N = 100 and with z = 0.525, i.e. well below the critical point. We note
that the observed behavior may also depend upon the position i∗ of the firm that is initially damaged,
which is taken here to be i∗ = 1 in all the computations. Nevertheless, our results are qualitatively the
same for other choice of i∗ (not shown).

We note first that, when the economy does recover completely, then it does so in the asynchronous as
well as in the synchronous model; it is only when there is no complete recovery that one observes differences
between the two. We compare in [Fig. 19] the numerical results on the density ρ(t,Ω∗) of fully active firms
for the synchronous-updating case of all delays equal to τ0 = 1 day with those for a typical configuration
of randomly selected delays, uniformly distributed between τmin = 1 day and τmax = 10 days; the duration
of the initial damage is τc = 1 day in both these cases.

The transient for the asynchronous updating (red curve) is much longer than for the synchronous
one (blue curve), but the asymptotic solutions display the same type of behavior, with small-amplitude,
distinctly periodic oscillations around a mean value of ρ̟∞ ≃ 0.67 < 1, although the network lies well below
the critical point 〈k〉c = 1.

The results in the nine panels of [Fig. 20] confirm that the differences between asynchronous and
synchronous updating, for the same randomly selected network configuaration Ω, can be quite substantial:

• The transients are never shorter, and typically quite a bit longer, for asynchronous updating, cf. panels (c)
and (g) here, as well as [Fig. 18] and [Fig. 19]; often, though, they can be of a length that is comparable
to the case of synchronous updating.

• The asymptotic mean density is always higher for asynchronous updating, and sometimes the difference is
appreciable; see again panels (c) and (g).

• The asymptotic behavior for the synchronous-updating case involves not only constant and periodic den-
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Fig. 20. The density of fully active firms ρ(t; Ω∗) as a function of time, for nine random network configurations Ω∗, all with
z = 0.525 < 1. In all nine cases, we compare results for synchronous (blue curves) with those for asynchronous updating
(red curves) on the same network geometry Ω; the latter results are for single, typical configurations T of randomly selected
unequal delays. Notice that here the densities approach definitely distinct types of asymptotic behavior in the two cases. See
text for details.

sities, but also doubly-periodic solutions, as in panel (e).
• The asymptotic behavior for the asynchronous-updating case appears to be always more complex than in

the synchronous case — doubly periodic vs. constant, as in panel (f), or aperiodic vs. constant or purely
periodic, as in panels (g) and (i).

• The amplitude of the oscillations when the updating is asynchronous is typically larger than when it is
synchronous, cf. panels (a, c, f, g, i), but it can also be comparable, cf. panels (d, h) or even substantially
smaller, cf. panels (b, e).

The probability of such complex behavior is not negligible, since we have observed the same kind of
results in roughly (1/10)th of the configurations Ω∗ = (Ω,T ) we studied.

4.4. Forced DRG models

We conclude this work by presenting some preliminary results on synchronous and asynchronous updating
for forced models — as defined by Eqs. (1), (2) and (4) — on a DRG.

The equation for each xi of system (2) can be written as:

xi(t) = xi(t− τ0) ∨





∏

j∈I(i)

xj(t− τ0)



 (46)
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for synchronous updating, with all delays equal to τ0 = 1 day, and:

xi(t) =
∏

j∈I(i)

[xi(t− τij) ∨ xj(t− τij)] (47)

for asynchronous updating, with randomly selected delays T = {τij}. We study, as usual, the propagation
of the perturbation after initial damage to a single firm, which we take for simplicity of duration τc = 1
day.

We start by noting that, when the economy recovers completely in the free models considered in
Sections 4.2 and 4.3, it recovers completely also in the present forced models; hence the asymptotic solution
is xi ≡ 1. This happens when the initially damaged firm belongs to a component that contains no loops.
For large N , this is the case almost surely below the DRG’s critical point, 〈k〉c = 1, and with probability
r for z = 〈k〉 > 1, where r is the fraction of nodes disconnected from the giant connected component Sgc

and is given by the solution of Eq. (34).

Fig. 21. The density of fully active firms ρ(t; Ω∗) as a function of time, in the forced model on a DRG with a large network
size N = 10 000 and average input/output degree z = 7 ≫ 〈k〉c. Here we compare the results for synchronous (blue curve) vs.
asynchronous updating (red curve), as in [Fig. 19].

When there are no loops, the locally tree-like argument provides a fully adequate explanation of the
dynamics in the free models, but the production does recover completely at the end; likewise, at least partial
recovery occurs when there are only a few loops present in the network. The fact that the asymptotic density
is usually zero for z large enough in the free models is due to the presence of a large number of loops.
Nevertheless, because of the external rescue inputs that we consider in the present subsection, one expects
that, even for high supercriticality z ≫ 1, though the damage spreads almost surely (r ≪ 1) to the whole
giant connected out-component, O — whose size is approximately N in this limit — the average fraction of
healthy firms in the asymptotic solution is larger then zero, i.e. the economy can recover, at least partially.

In fact, for synchronous updating, since each firm recovers either if all of its suppliers did recover or if
its activity has been already impaired for a duration τ0, one expects that the average firm is fully active
one half of the time. More precisely, 〈ρ∞(z,Ω∗)〉 = 1 − (1 − r)2/2 ≃ 1/2, for z ≫ 1. In the presence of
randomly selected delays — since there is a larger number of concurrent paths of different lengths, and the
activity of a given firm can be impaired for a duration that depends upon the good which is lacking — the
asymptotic average density is expected to be smaller.

Our numerical results on the evolution of of ρ(t; Ω∗) — for a single, typical DRG configuration, with
N = 10 000, and average in/out-degree z = 7 ≫ 〈k〉c = 1 — are given in [Fig. 21]. For synchronous
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updating (blue curve), the asymptotic density is periodic with mean value ρ∞ ≃ 0.5 and a peak-to-peak
amplitude of 0.2, whereas for asynchronous updating (red curve), it fluctuates slightly around the lower
value ρ∞(Ω∗) ≃ 0.3. Notice that in the free models on the DRG one has, cf. [Fig. 16] in Section 4.2,
〈ρ∞(Ω∗)〉 ≃ 0 for z = 〈k〉 & 5; hence the external rescue inputs do allow a partial recovery of the activity,
as expected. Moreover, in the asynchronous-updating case, the amplitude of the fluctuations is much smaller
(by a factor of 10 or more) than in the synchronous case, where about 0.2N ≃ 2000 firms are involved in
this oscillating behavior between being fully active and impaired.

A qualitative explanation of the results in [Fig. 21] starts by arguing that the damage is initiated on
the periphery of the DRG’s connected component and spreads rapidly towards the center. Then, because
of the external inputs, most of the economic network recovers, apart from a few firms that are once again
on the periphery, and have been reached later by the wave of damage: these firms will be responsible for
the next negative impulse. Roughly speaking, the nodes with larger in/out-degree are the ones that occupy
the most central positions in the DRG, whereas having a small in-degree means that a node is less likely to
be reached by the damage propagation, and a small out-degree means that it is less likely to transmit the
damage; whether it is their in- or the out-degree that is small, these nodes lie on the network’s periphery.

P(
x=

0)

distance from center0
Fig. 22. A qualitative sketch of the expected fraction of impaired firms as a function of the distance of their position from
the center of the connected component of the graph. See text for details.

The picture resulting from these considerations is sketched in [Fig. 22]; it implies that the degree of
connectedness of a firm does have important implications for its staying free of damage. The results in
[Fig. 21], in turn, speak to the important role of waiting times in a production chain for the up- and
down-time of firms: the fact that these times are not all equal can actually smooth out fluctuations in the
health of a large fraction of the firms in such a chain.

5. Concluding remarks

5.1. Summary

We have studied the propagation through various kinds of networks of initial damage at a single node.
Our motivation was damage propagation through production networks, but the results are fairly general.
The initial damage here was assumed to affect a single firm for a given time τc. Boolean delay equations
(BDEs) were used to model the dynamics on the network, and we distinguished between free models,
which represent closed, isolated networks, and forced models, in which external resources can help mend
the damage. We also considered two kinds of network topologies, namely periodic braid chains (Section 3)
and directed random graphs (DRGs; Section 4), as well as two types of distributions of delays, associated
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with synchronous and asynchronous signal propagation, respectively.
The results of the entire investigation are summarized in [Tab. 3] and we highlight the most important

ones herein. In the free models, the local-firm dynamics is controlled by a logical AND function of the
inputs, and the damage can invade a finite fraction of the nodes or even the whole network when the
following two conditions are fulfilled: (i) the mean input connectivity of the nodes is larger than unity; and
(ii) the duration τc of the initial damage is larger than or equal to the smallest propagation time between
two nodes. Such is the case for a braid-chain topology: ultimately — in the absence of external inputs —
the production of all the firms is impaired.

Damage spreading velocity depends sensitively upon network topology: we have shown that the number
θ(t) of impaired firms increases linearly with time for the braid chain and exponentially for the DRGs. When
the network updating is asynchronous and the delays T = {τij} are randomly selected, τmin ≤ τij ≤ τmax,
we have found that the propagation velocity is dominated by the fastest segments in the braid chain, i.e.
by the shortest delay, while it is the average delay that limits propagation speed on the DRG. Moreover,
in the random networks — and in the absence of external inputs — the saturation level of the fraction
of impaired firms depends only upon the particular network topology, through the size of the connected
component, which becomes necessarily non-empty as soon as the mean in/out-degree is larger than one.

In the forced models, external supplies do limit the damage, and periodic waves of damage move across
the braid chains with equal delays, τij = τ0 = 1. For the DRGs with randomly selected T , the asymptotic
solutions are, of course, not exactly periodic but cyclostationary [Gardner et al., 2006], and the duration of
the transient before this behavior is reached diverges exponentially with network size N ; still, the average
density of fully active firms approaches a nearly constant value after a definitely shorter effective transient.
This effective transient corresponds approximately to the duration of the first cycle of propagation of
the damage across the connected component of the network; the latter “first transit” occurs, like in the
free models, with linear or exponential speed, depending on the topology. Finally, periodic dynamics also
prevails when the duration of the initial damage τc is smaller than the smallest propagation time τmin

between two nearest-neighbor nodes.
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Table 4. Overview of the main results obtained in the present work; each box in the table indicates the results in the
model defined by the column with respect to the behavior of the quantity indicated in the row. As in [Tab. 2] of Sec-
tion 2, we label by Free the free models governed by Eq. (3) and by Forced the forced models obeying Eq. (4); the
synchronous case of all delays equal to τ0 is labeled Sync and the asynchronous random-delay case, is labeled Async;
Chain refers to the braid chain network in [Fig. 1], and DRG to the directed random graph, with the link probabil-
ity P(Aij) given by Eq. (1). We summarize the results — depending upon the network’s (average) in/out-degree k —
with respect to the nature of the decay in time of the density ρ(t) of fully active nodes, the effective transient time
T0, the asymptotic density ρ∞, the transient time T̟ for reaching periodic behavior, and the period ̟ of the asymp-
totic solution; r is the fraction of nodes that do not belong to the giant connected component Sgc. All the results in
this table refer to the case in which the duration of the initial perturbation is equal to the shortest delay in the model.

Chain, k = 1 Free, Sync Forced, Sync Free, Async Forced, Async

ρ-decay const. const. const. const.

T0 0 0 0 0

ρ∞ 1-1/N 1-1/N 1-0.182/N 1-0.182/N

T̟ 0 0 0 0

̟ N N N(τmax + 1)/2 N(τmax + 1)/2

Chain, k ≥ 2 Free, Sync Forced, Sync Free, Async Forced, Async

ρ-decay linear in t linear in t linear in t linear in t

T0 (N − 1)/(k − 1) 0 . N/[k − (τmax − 1)] . N/[k − (τmax − 1)]

ρ∞ 0 1− k/N 0 0 < ρ∞ < 1

T̟ (N − 1)/(k − 1) 0 . N/[k − (τmax − 1)] ∼ econstN

̟ 0 N/k 0 ∼ econstN

DRG, 〈k〉 ≥ 2 Free, Sync Forced, Sync Free, Async Forced, Async

ρ-decay exponential in t exponential in t exponential in 2t/(τmax + 1) exponential in 2t/(τmax + 1)

T0 ∼ log[(1− r)N ]/ log z < logN/ log z < τmax logN/ log z < τmax logN/ log z

ρ∞ (N ≫ 1) 2r − r2 ∼ 0.5 (z ≫ 1) 2r − r2 0 < ρ∞ < 0.5 (z ≫ 1)
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The models that we have used are highly simplified with respect to real production networks, and the
behavior of firms has been represented in a highly idealized way. Still, results from this simple analysis
suggest that:

• Even very localized damage does spread in the absence of sufficient stocks and flexibility; as a result,
production shortages will last and can persist for times that are much longer than the duration of the
initial local damage. This result suggests that an economy can suffer from disaster consequences even after
all physical damages have been repaired.

• The presence of multiple concurrent production and trading paths with different delivery times does not
necessarily imply a slowing down of the speed of the signal, which can propagate as fast as the shortest
path, depending on the network topology. This result suggests that it is the most vulnerable supply chains
that control the macroeconomic losses and that vulnerability analysis should focus on the identification of
key weaknesses in production and trading patterns.

Finally, the very simplicity of the models studied herein — while limiting their direct usefulness in
concrete situations — also suggests many areas of application that differ from our initial, production-chain
motivation. We turn now to a brief overview of some of these areas, emphasizing in particular the ones
that might be associated with climatic applications.

5.2. Applications to the geosciences

We have already mentioned in Section 1.2 some of the other areas in which the present approach to local
damage propagation across a network might be of interest. They include, in the socio-economic domain,
logistics [Bak et al., 1993], infrastructures [Haimes & Jiang, 2001], and finance [Delli Gatti et al., 2005;
Battiston et al., 2007], while in the geosciences they include earthquake dynamics [Zaliapin et al., 2003a,b;
Ghil et al., 2008], forest fires [Spyratos et al., 2007] and river networks [Zaliapin et al., 2010], as well as
climatic variability [Tsonis & Swanson, 2008; Donges et al., 2009]. Finally, life-science applications include
food webs [Carpenter et al., 1985] and immunology [Kaufman et al., 1985; Neumann & Weisbuch, 1992;
Perelson & Weisbuch, 1997], among many others.

We discuss now very succintly the network modeling of climatic variability, following [Tsonis & Swan-
son, 2008; Donges et al., 2009]. The idea that meteorological, oceanographic or coupled climatic variability
might involve “centers of action” that are widely separated in space goes back to H. H. Hildebrandsson and
L. P. Teisserenc de Bort [Hildebrandsson & Teisserenc, 1907] and to G. Walker’s “teleconnections” between
them [Walker & Bliss, 1932]. The statistical and dynamical study of such teleconnections engaged many
important figures in the history of these disciplines over the last century [Bjerknes, 1969; Hoskins & Karoly,
1981; Wallace & Gutzler, 1981]. The closest in spirit to the approach presented here might be found in [Ghil
& Mo, 1991, Fig. 14]; see [Saunders & Ghil, 2001] for a BDE treatment of the El-Niño/Southern-Oscillation
(ENSO) mechanism postulated by J. Bjerknes in [Bjerknes, 1969].

Many of the dynamical studies of the atmosphere’s low-frequency variability that involve teleconnec-
tions have used the highly simplified geometry of a so-called β-channel with periodicity in longitude and
solid walls along parallels to the north and south of the channel, away from both the North Pole and the
Equator [Ghil & Childress, 1987; Pedlosky, 1987; Chen et al., 2003]. We saw in the present paper that
signal propagation on a braid chain can be quite different from that in a more random configuration in the
plane or, possibly, on the sphere [Hoskins & Karoly, 1981]. Thus BDE models in such geometrically differ-
ent settings might provide some guidance to network-based investigations of teleconnections and climate
variability.

Efforts are currently under way to expand further the applications of the approach presented here to
the geosciences. In [Zaliapin et al., 2010], the authors introduced a dynamic-tree framework for the study of
envirodynamics on river networks, and suggested modeling the transport along real and synthetic networks
by using BDEs. The dynamic tree of a river basin does take into account the differing flow times along
the edge of the conventional, static tree. Both the dynamic and the static tree can be well approximated
by self-similar Tokunaga trees (also called Tokunaga SSTs), but the two types of trees have different self-
similarity parameters. BDEs can provide easy-to-explore, preliminary models of the actual flow of water
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through the edges, as well as of the flow of sediment, biomass, and pollutants. The downstream effects
of chemicals being released at a node, for instance, could be modeled along the lines presented here. We
expect such models to shed further light on the complex and important problems of transport on river
networks.

In [Zaliapin et al., 2003a,b], a BDE model of colliding cascades on a ternary tree that represents
a network of successively smaller scales in Earth’s crust was studied. Seismic load cascades down from
the largest scales or “plates” to the smallest, while failures cascade up from the smallest to the largest
plates. It would clearly be of interest to study failure propagation on more complex fault networks of DRG
type. Similar generalizations could be formulated for the heterogeneous models of forest fires introduced
in [Spyratos et al., 2007].
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Appendix A Braid chain with k = 1

In this appendix, we evaluate the average total number of impaired firms 〈θ(t;T )〉 in the free model on a
braid chain with k = 1. This number can be expressed, by using Eqs. (9) and (11), as a function of the
probability P(Tn, n), where Tn is the sum of n random variables τij:

〈θ(t;T )〉 ≡ 〈
N
∑

i=1

xi(t)〉 ≡
N
∑

i=1

∫

∏

dT P(T )xi−n(t− Tn) =

=

[t]τmax
∑

n=[t/τmax]+1

P([t], n)
N
∑

i=1

δi−n,1 =

[t]τmax
∑

n=[t/τmax]+1

P([t], n). (48)

Here [v] means the integer part of v, and we are assuming for simplicity that the duration of the initial
damage is τc = τmin = 1 day, hence we are using the conditions on the initial state of the system,
{xi(t) = δi,1} for t ∈ [0, 1].

One has, for integer delays uniformly distributed in the interval [τmin, τmax]:

〈τij〉 =

∫ τmax

1
dT P(T )τij =

(τmax + 1)

2
(49)

σ2
τij =

(τmax + 1)(2τmax + 1)

6
−

(τmax + 1)2

4
, (50)

for the mean value and the variance of the distribution of the delays, respectively. For n ≥ 2, assuming that
the variables are independent (which is clearly an approximation for n > N), one can apply the central
limit theorem:

P(Tn, n) ≃ PG(Tn, n) =
1

√

2πnσ2
τij

exp

(

−
(Tn − n〈τij〉)

2

2nσ2
τij

)

. (51)



May 13, 2011 15:57 BC˙MG˙SH˙GW-BDE˙Econ-IJBC˙vfl

39

By using this approach, we find:

〈θ(t;T )〉 ≃



















1 t ∈ [0, 1)
P(1, 1) = 1/τmax t ∈ [1, 2)

1/τmax +
∑([t]τmax)

n=2 PG([t], n) t ∈ [[t], [t] + 1), 2 ≤ t ≤ τmax
∑([t]τmax)

n=[t/τmax]+1
PG([t], n) t ∈ [[t], [t] + 1), t > τmax

(52)

where the sums are clearly dominated by the terms corresponding to n∗〈τij〉 ≃ [t], i.e. the same that are
best approximated by the Gaussian distribution. The corresponding average density can be straightaway
obtained from Eq. (10).

In the large t limit, 〈θ(t;T )〉 approaches quite rapidly a nearly constant value, that in the numerically
studied case of τmax = 10 is found to be:

lim
t→∞

〈θ(t;T )〉 ≃ lim
t→∞

[t]τmax
∑

n=[[t]/τmax]+1

PG([t], n) ≃ 0.182, (53)

which gives, again from Eq. (10):

〈ρ∞(T )〉 = lim
t→∞

〈ρ(t;T )〉 = 1 −
0.182

N
. (54)

Appendix B Braid chain with k ≥ 2

In this appendix, we obtain analytical estimates for the evolution in time of the average total number of
impaired firms 〈θ(t;T )〉 in the free model on a braid chain with with connectivity of k = 2 or higher, and
hence for the corresponding decay rates of the density 〈ρ(t)〉 = 1 − 〈θ(t;T )〉/N of healthy firms. By using
De Morgan’s law a ∧ b = a ∨ b, Eq. (12), defining the free model on the circulant matrix, turns out to be
equivalent to:

xi(t) =

k
∑

j=1

xi−j(t− τi,i−j), (55)

which, in the case of equal delays {τij = τ0 ∀i, j}, allows the simplification:

xi(t) =

k
∑

j1=1

k
∑

j2=1

xi−j1−j2(t− 2τ0) =

=

k
∑

j1=1

k
∑

j2=1

· · ·
k
∑

jn=1

xi−j1−j2−...−jn(t− nτ0) =

=

nk
∑

j=n

xi−j(t− nτ0), (56)

since the different terms containing the same argument are redundant. Hence, by choosing n = [t/τ0] = [t],
one gets:

θ(t) =

N
∑

i=1

xi(t) =

[t]k
∑

j=[t]

xi−j(t− [t]) = [t](k − 1) + 1 for t ∈ [[t], [t] + 1), (57)

where we are assuming [t](k − 1) + 1 ≤ N , and we used the conditions on the initial state of the system,
{xi−j(t) = δi−j,1 for t ∈ [0, τc)}, by considering for simplicity a duration of the initial damage τc = τ0. This
analysis confirms that, as soon as k ≥ 2, the system is dissipative, and in particular the total number of
impaired firms (a constant function in each time step) is linearly increasing with time, with slope k − 1.
Correspondingly, for a finite size N , the asymptotically stable solution {xi ≡ 0 ∀i}, and the zero limit
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value of the density, are attained after the time T0 ≃ (N − 1)/(k − 1), in agreement with Eq. (16). One
can moreover analogously show that, for τc 6= τ0, the density is still linearly decreasing with time, and the
asymptotic solution is the same as for τc > τ0, whereas it is periodic of period τ0 for τc < τ0, as described
in Section 3.4.

In order to work out the same approach for randomly distributed delays, we label lh =
∑h

v=1 jv. One
finds:

xi(t) =

k
∑

j1=1

k
∑

j2=1

· · ·
k
∑

jn=1

xi−ln

(

t−
n
∑

h=0

τi−lh,i−lh+1

)

=

=
nk
∑

j=n

∑

{l1,l2,...,ln}:ln=j

xi−j

(

t−
n
∑

h=0

τi−lh,i−lh+1

)

. (58)

Since the {τij} are independent identically distributed random variables which take integer values (in τmin

unities) in the interval [1, τmax], it follows that their sums Tn =
∑n

h=0 τi−lh,i−lh+1
take integer values in the

interval [n, nτmax] with probability P(Tn, n); moreover, terms xi−j with the same argument are redundant.
The average over the disorder can be therefore computed as:

〈xi(t)〉 =

∫

∏

dT P(T )xi(t) =

=

nk
∑

j=n

nτmax
∑

Tn=n

P(Tn, n)xi−j(t− Tn). (59)

Then, one can choose in particular n values in the different terms such that t− Tn is always in the initial
interval; in detail, looking for simplicity only at t values which are integer multiple of τmax, one has:

〈xi(t)〉 =





kt
∑

j=t

Pt(t, t) +

k(t−1)
∑

j=t−1

Pt(t, t− 1) + ...

... +

kt/τmax
∑

j=t/τmax

Pt(t, t/τmax)



xi−j(0) =

=
t
∑

j=t/τmax

kj
∑

n=j

Pt(t, j)δi−j,1, (60)

and therefore, up to the time T0(T ) at which 〈θ(T0(T );T )〉 ≃ N , one has:

〈θ(t;T )〉 =

t
∑

n=t/τmax

[(k − 1)n + 1]Pt(t, k). (61)

Here, Pt(t, n) is the probability for the signal to have propagated n steps along the chain at time t, which
can be approximated by a Gaussian with mean value n〈τij〉 and variance nσ2

i,j (see Eq. (51)), but needs to
be correctly normalized in order to get:

t
∑

n=t/τmax

Pt(t, n) = 1 ∀t. (62)

In detail, we take Pt(t, n) ≃ C(t)PG(t, n), where the normalization constant C(t) approaches rapidly its
large time limit C∞ ≃ 1/0.182, in agreement with Eq. (53).

These results therefore confirm, from a different point of view, the analysis of Section 3.5; in particular,
for the case of n = 20 and τmax = 10, the density 〈ρ(t;T )〉 = 1 − 〈θ(t;T )〉/N obtained with this approach
is in very good agreement with the numerical data, as shown in [Fig. 6].
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Appendix C Random graphs

Here we briefly recall the framework of generating functions from probability theory [Newman et al., 2001;
Dorogovtsev et al., 2001]. Generating functions allow one to evaluate in a fairly straightforward manner
the size of connected components in Erdős-Rényi random graphs. They are, moreover, well suited for
generalization to DRGs and to probability distributions P(k) of the degree of a node other than Poisson.

One defines:

G0(y) =
∞
∑

k=0

P(k)yk, (63)

which implies:

P(k) =
1

k!

dk

dyk
G0(y)

∣

∣

∣

∣

y=0

. (64)

The generating function for the probability distribution P1(k) to have k edges leaving a node, apart the
one from which the signal arrived, is given by:

G1(y) =

∞
∑

k=0

P1(k)yk =

∑∞
k=0(k + 1)P(k + 1)yk
∑∞

k=0 kP(k)
=

G′
0(y)

z
, (65)

and in the Erdős-Renyi random graph one has:

G0(y) = G1(y) = ez(y−1). (66)

A key property of these functions is that, if G is the generating function for the probability of some
property of an object, then the probability of the sum of the same property on l independent objects is
generated by Gl. Hence, if H0(x) is the generating function for the distribution probability of the sizes of
the connected components, i.e. of the nodes which can be reached from a randomly chosen one, and H1(x)
is the one of the clusters that can be reached from the end of one of the edges of a randomly chosen one,
one has

H0(y) =

∞
∑

l=0

P(l) [H1(y)]l = yG0[H1(y)],

H1(y) = y

∞
∑

l=0

P1(l) [H1(y)]l = yG1[H1(y)]. (67)

These equations can, in principle, be solved self-consistently. Most importantly for the problem at hand,
one gets immediately the mean connected component size:

• below the transition

〈s〉 = H′
0(1) = 1 + G′

0(1)H′
1(1) = 1 +

G′
0(1)

1 − G′
1(1)

, (68)

which means, as expected in the Erdős-Rényi random graph, that

〈s〉 =
1

1 − z
; (69)

• above the transition, H0(x) and H1(x) can be defined as the generating functions for the probability
distribution of the finite-size connected components, which have still a tree-like structure; correspondingly
H0(1) = r < 1, and one has

{

sgc = 1 − r = 1 − G0(r)
r = G1(r)

, (70)

which for Erdős-Rényi random graphs gives r = ez(r−1), i.e. Eq. (34).
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Közl. 5, 17–51.
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