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1. Motivation 4. Application to an ENSO model 5. Deterministic case: Shilnikov route to chaos /. Random attractor and predictability
: it - - - An episode In the random attractor’s life for the TJ model
e What is the effect of stochastic (atmospheric?) perturbations thOdeI' _ ° CO_mP'eX deterministic dyngmmklo_pf b'fl_”cat'on and o P
models of ENSO variability? Low-order, coupled tropical-atmosphere—ocean model of Shilnikov horseshoesassociated witimulti-pulse homoclinic
Aim: U £ oo d ol 2DS) th t . .ENSO (Timmermann & JinGRL, 2002; hereaftefJ model). orbits, ase varies.Interdecadal chaotic variabiliiyNote the
o Aim: Use of random dynamical system ( ) theory to ASSESree variables: thermocline depth anomialyand SSTY; presence of windows of stability with one attracting limit cycle. JrHR

the dynamical effects of noise “PDF dynamics”.
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and7s in the western and eastern basin.

Power spectrum w.r.t. . deterministic vs. stochastic anb
2. Random Dynamical Systems (RDSs) /
. . . T, = —a(Ty —T,) — 24T, — Ty),
We have a model of the nois€. F. P. 0) that Is parametrized : L
® $ 9 Rl ) p T2 — —Oz(TQ — Tr) — H_(TQ _ Tsub)a
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by time. The parametrization of realizatianss provided by a
driving system ¢ which is anergodic one-parameter group

freq. (year %)

h  =r(—h—0bLT/2),
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e The dynamics is viewed on“ahase space probability T, =T Tr;Tro[l — tanh(H + hy — 2) /B < <
space,’X x €2, called thebundle, and the cocycle property ro= YT —TE - 1].
enables one to treat trajectoriesfiasvson this bundle. 0 L o
o A path of the stochastic process corresponds to a selection of The quantities are, the wind stress anomalies, equatorial Figure 4: Chaotic variability — interannual-to-interdecadal.
points in each fiber of the resulting bundle. Fibers are “glued upwellingw = —g7/H,,, zonal advectiom = 3L /2, and |
together” by noise. The cocycle, also called RDS, provides a Ssubsurface temperatuig,,. Wind stress bursts are modeled a$. Stochastic dynamics: Numerical results 1.6y 1.6y 1.6y
flber-by-flber viewof tflixdyl{:iTICS. \;Vc?r:t:I ngeef:ilgl;]vwsr:gfgr ?_‘g]d]forp;aesg:ﬁzrthzrz[rrnegtgetrz of the e Below are random attractors for two different noise levels and Figure 6: Time series of the thermoclinadye) and the eastern temperatuback).
g , ' P ' different values of zonal advection. The random attractors are computed at equal intervals, for each red section.
L — Noise effects : . . . . L
RN * - | o | » Goldenareas are most frequently visited (log-scale). The | | ¢ Statistics at time given by, are evolving with time in an
— Traditionnally : noise effects on deterministic dynamics areé - measureg,, arenearly singular. intricate way: they provide crucial information emtremes
studied by forward integration (inluein Fig. 3). The system Random (Shilnikov) horseshoes and themost probable everlts
- beingnonautonomoysforward-in-time” dynamics is . . , . L ,
Il-defined: * | e TJ model: the evolution ofu,,’'s maximum (white ‘plus’)
Figure 1. The bundle and the cocycle: the stochastic dynamics as a flow. l-aefinea, | | o ~ srovides a clear prediction of El No (highTQ and |0Wh) and
static view of the statistics: PDE o0 . . . . S
3 Random attractors and invariant measures RDS approach Pullback dynamics is relevant S _a Nina (low7; and highh) episodes, for a given realization.
. Ran - , S . o . . |
dynamical view of the statistics: i, I eln the_ory, shg_ht changes in |_n_|t|al data result in very different
e We are looking for measurgson (2 x X that are invariant The probability to be in a particular location at timés given ocations at time, due topositive Lyapunov exponents
Wrt the dynamiCS. Central tO our apprOaCh iS the COncept Of by the measurﬁw Supported by the random attractor (E‘d Qandom attraCtor mOVIeS Indlc.ate that fOr thmedel’ the
disintegrationu,, of x. Mathematically, it is given by on Fig. 3). dependence on the initial data Is weak.
uw(B) = [, pue(B,)P(dw), with B, the intersection of a e These statisticg,, are robust w.r.t. perturbations of the
measurable s&8 of X x  with anw-fiber. % dynamics.
Physically? Let’s see. 1. o
1 1 -
e 11, is numerically computable for each fiber. Itis supported by - 4 w 8. Concluding remarks and outlook
a geometric objecthe random attractor LR e Random attractors give a clear geometric view of the dynamics
e The random attractord(w) in Fig. 2, involvespullback - R in the stochastic context.
attraction we look at the phase-space location at tins¢arting | ¢ For high-dimensional ENSO models, approximate random
several experiments far enough in the pastfandne same o L0 attractors can be computed. A low-dimensional, physically
realization Hence we assess the “attracting regime” at ttme Nino = relevant projection can be derived by using &vailable
e The sample measuye, evolves with time ., — (), and 1,(in red) is in log-scale b potential energy £ of the tropical Pacific Ocean, andl, the
corresponds to thigozen statisticat timet: for each piece of Figure 3: Classical forward-in-time integration of the stochastic TJ model (left). work done on that basin by the winds.
A(w), it gives the probability to end up on that piece. The corresponding random attractor (right) with ERbliLa Nina phase-space areas. 2 2 e The random attractor and its measure can help desitm
Schematic view of the random attractor’s life e The random attractor of Fig. 3 corresponds to an Eid\i 5=0.005 5=0.05 assimilation procedure3hey provide the exact location of the
T episode: the maximum qf,, (white ‘plus’ sign) is located at | | - I statistics of the stochastic model w.r.t. to a set of initial data/in
BoCg o), ) @hX  (B(eRX _ W Figure 5: The perturbed deterministic regimesease(.0782, a stable fixed point; the past and for a aiven realizatian
§ low h and hlghTQ' e = 0.083, a homoclinic trajectory; aned= 0.095, a twisted limit cycle. P J '
o e Horseshoes can be noise-exciex@n fore-values for which | | oo —
the deterministic dynamics exhibits an attracting fixed point, e Ghil, M., M.D. Chekroun, and E. Simonnet, 2008: Climate dynamics and fluid mechanics:
provided the amount of noise is sufficiently Iarge. Natural variability and related uncertaintié¥)ysica D 237, 2111-2126.
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Figure 2: The curved arrow depicts the pullback attraction.




