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1. Motivation

•What is the effect of stochastic (atmospheric?) perturbations on
models of ENSO variability?

•Aim: Use of random dynamical system (RDS) theory to assess
the dynamical effects of noise→ “PDF dynamics”.

2. Random Dynamical Systems (RDSs)

•We have a model of the noise(Ω,F , P, θ) that is parametrized
by time. The parametrization of realizationsω is provided by a
driving system θ which is anergodic one-parameter group.

•The dynamics is viewed on a“phase space× probability
space,”X × Ω, called thebundle, and the cocycle property
enables one to treat trajectories asflowson this bundle.

•A path of the stochastic process corresponds to a selection of
points in each fiber of the resulting bundle. Fibers are “glued
together” by noise. The cocycle, also called RDS, provides a
fiber-by-fiber viewof the dynamics.

Figure 1: The bundle and the cocycle: the stochastic dynamics as a flow.

3. Random attractors and invariant measures

•We are looking for measuresµ onΩ×X that are invariant
w.r.t. the dynamics. Central to our approach is the concept of
disintegrationµω of µ. Mathematically, it is given by
µ(B) =

∫
Ω µω(Bω)P(dω), with Bω the intersection of a

measurable setB of X × Ω with anω-fiber.
Physically? Let’s see.

•µω is numerically computable for each fiber. It is supported by
a geometric object:the random attractor.

•The random attractor,A(ω) in Fig. 2, involvespullback
attraction: we look at the phase-space location at timet starting
several experiments far enough in the past andfor the same
realization. Hence we assess the “attracting regime” at timet.

•The sample measureµω evolves with time,µω 7→ µθ(t)ω, and
corresponds to thefrozen statisticsat timet: for each piece of
A(ω), it gives the probability to end up on that piece.

Schematic view of the random attractor’s life
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Figure 2: The curved arrow depicts the pullback attraction.

4. Application to an ENSO model
•Model:

Low-order, coupled tropical-atmosphere–ocean model of
ENSO (Timmermann & Jin,GRL, 2002; hereafterTJ model).
Three variables: thermocline depth anomalyh, and SSTsT1

andT2 in the western and eastern basin.

Ṫ1 = −α(T1 − Tr)− 2εu
L (T2 − T1),

Ṫ2 = −α(T2 − Tr)− w
Hm

(T2 − Tsub),

ḣ = r(−h− bLτ/2),

Tsub = Tr − Tr−Tr0

2 [1− tanh(H + h2 − z0)/h
∗]

τ = a
β(T1 − T2)[ξt − 1].

The quantities areτ , the wind stress anomalies, equatorial
upwellingw = −βτ/Hm, zonal advectionu = βLτ/2, and
subsurface temperatureTsub. Wind stress bursts are modeled as
white noiseξt of varianceσ andε measures the strength of the
zonal advection. We refer toTJ for the other parameters.

•Noise effects:

–Traditionnally : noise effects on deterministic dynamics are
studied by forward integration (inbluein Fig. 3). The system
beingnonautonomous, “forward-in-time” dynamics is
ill-defined;

static view of the statistics: PDF.
–RDS approach: Pullback dynamics is relevant;

dynamical view of the statistics:µω.
The probability to be in a particular location at timet is given
by the measureµω supported by the random attractor (inred
on Fig. 3).
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Figure 3: Classical forward-in-time integration of the stochastic TJ model (left).

The corresponding random attractor (right) with El Niño/La Nĩna phase-space areas.

•The random attractor of Fig. 3 corresponds to an El Niño
episode: the maximum ofµω (white ‘plus’ sign) is located at
low h and highT2.

5. Deterministic case: Shilnikov route to chaos
•Complex deterministic dynamics:Hopf bifurcation and

Shilnikov horseshoesassociated withmulti-pulse homoclinic
orbits, asε varies.Interdecadal chaotic variability. Note the
presence of windows of stability with one attracting limit cycle.

Power spectrum w.r.t. ε: deterministic vs.stochastic
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Figure 4: Chaotic variability — interannual-to-interdecadal.

6. Stochastic dynamics: Numerical results
•Below are random attractors for two different noise levels and

different valuesε of zonal advection.

•Goldenareas are most frequently visited (log-scale). The
measuresµω arenearly singular.

Random (Shilnikov) horseshoes
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Figure 5: The perturbed deterministic regimes areε = 0.0782, a stable fixed point;

ε = 0.083, a homoclinic trajectory; andε = 0.095, a twisted limit cycle.

•Horseshoes can be noise-excitedeven forε-values for which
the deterministic dynamics exhibits an attracting fixed point,
provided the amount of noise is sufficiently large.

7. Random attractor and predictability
An episode in the random attractor’s life for the TJ model
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Figure 6: Time series of the thermocline (blue) and the eastern temperature (black).

The random attractors are computed at equal intervals, for each red section.

•Statistics at timet given byµθ(t)ω are evolving with time in an
intricate way: they provide crucial information onextremes,
and themost probable events!

•TJ model: the evolution ofµω’s maximum (white ‘plus’)
provides a clear prediction of El Niño (highT2 and lowh) and
La Niña (lowT2 and highh) episodes, for a given realization.

• In theory, slight changes in initial data result in very different
locations at timet, due topositive Lyapunov exponents.
Random attractor movies indicate that for theTJ model, the
dependence on the initial data is weak.

•These statisticsµω are robust w.r.t. perturbations of the
dynamics.

8. Concluding remarks and outlook
•Random attractors give a clear geometric view of the dynamics

in the stochastic context.

•For high-dimensional ENSO models, approximate random
attractors can be computed. A low-dimensional, physically
relevant projection can be derived by using theavailable
potential energyE of the tropical Pacific Ocean, andW , the
work done on that basin by the winds.

•The random attractor and its measure can help designdata
assimilation procedures. They provide the exact location of the
statistics of the stochastic model w.r.t. to a set of initial data in
the past and for a given realizationω.
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