E. Simonnet 1 **, M. D. Chekroun** ² **and M. Ghil** 3

¹Institut Non-Linéaire de Nice, UMR 6618, CNRS-UNSA, Valbonne, France 2 Environmental Research and Teaching Institute, École Normale Supérieure, Paris, France ³Atmospheric and Oceanic Sciences Dept. and IGPP, UCLA, Los Angeles, USA.

- What is the effect of stochastic (atmospheric?) perturbations on models of ENSO variability?
- **Aim:** Use of random dynamical system (RDS) theory to assess the dynamical effects of noise \rightarrow "PDF dynamics".

A Nonlinear Stochastic Model of the El Niño–Southern Oscillation: Random Dynamical Systems and Predictability

1. Motivation

- We have a model of the noise $(\Omega, \mathcal{F}, \mathbb{P}, \theta)$ that is parametrized by time. The parametrization of realizations ω is provided by a **driving system** θ which is an **ergodic one-parameter group**.
- The dynamics is viewed on a "phase space \times probability space," $X \times \Omega$, called the **bundle**, and the cocycle property enables one to treat trajectories as *flows* on this bundle.
- A path of the stochastic process corresponds to a selection of points in each fiber of the resulting bundle. Fibers are "glued together" by noise. The cocycle, also called RDS, provides a fiber-by-fiber view of the dynamics.

2. Random Dynamical Systems (RDSs)

Low-order, coupled tropical-atmosphere–ocean model of ENSO (Timmermann & Jin, *GRL*, 2002; hereafter **TJ model**). Three variables: thermocline depth anomaly h , and SSTs T_1 and T_2 in the western and eastern basin.

Figure 1: The bundle and the cocycle: the stochastic dynamics as a flow.

3. Random attractors and invariant measures

- We are looking for measures μ on $\Omega \times X$ that are invariant w.r.t. the dynamics. Central to our approach is the concept of disintegration μ_{ω} of μ . Mathematically, it is given by $\mu(B) = \int_{\Omega} \mu_{\omega}(B_{\omega}) \mathbb{P}(d\omega)$, with B_{ω} the intersection of a measurable set B of $X \times \Omega$ with an ω -fiber. Physically? Let's see.
- μ_{ω} is numerically computable for each fiber. It is supported by a geometric object: the random attractor.
- The random attractor, $A(\omega)$ in Fig. 2, involves pullback attraction: we look at the phase-space location at time t starting several experiments far enough in the past and *for the same realization*. Hence we assess the "attracting regime" at time t.
- The sample measure μ_{ω} evolves with time, $\mu_{\omega} \mapsto \mu_{\theta(t)\omega}$, and corresponds to the frozen statistics at time t: for each piece of $A(\omega)$, it gives the probability to end up on that piece.

The quantities are τ , the wind stress anomalies, equatorial upwelling $w = -\beta \tau / H_m$, zonal advection $u = \beta L \tau / 2$, and subsurface temperature T_{sub} . Wind stress bursts are modeled as white noise ξ_t of variance σ and ϵ measures the strength of the zonal advection. We refer to **TJ** for the other parameters.

– RDS approach: Pullback dynamics is relevant; **dynamical view of the statistics:** μ_{ω} . The probability to be in a particular location at time t is given

by the measure μ_{ω} supported by the random attractor (in red on Fig. 3).

Figure 3: Classical forward-in-time integration of the stochastic TJ model (left). The corresponding random attractor (right) with El Niño/La Niña phase-space areas.

• The random attractor of Fig. 3 corresponds to an El Niño episode: the maximum of μ_{ω} (white 'plus' sign) is located at low h and high T_2 .

Figure 2: The curved arrow depicts the pullback attraction.

4. Application to an ENSO model

• **Model**:

• Below are random attractors for two different noise levels and different values ϵ of zonal advection.

$$
\dot{T}_1 = -\alpha (T_1 - T_r) - \frac{2\epsilon u}{L} (T_2 - T_1), \n\dot{T}_2 = -\alpha (T_2 - T_r) - \frac{w}{H_m} (T_2 - T_{sub}), \n\dot{h} = r(-h - bL\tau/2), \n\sigma = T_r - T_{\text{eff}} (1 - t - 1/(T - t))
$$

 $T_{sub}=T_r-\frac{Tr-T_{r0}}{2}$ $\frac{-T_{r0}}{2}[1-\tanh(H+h_2-z_0)/h^*]$ $\tau = \frac{a}{\beta}$ $\frac{a}{\beta}(T_1 - T_2)[\xi_t - 1].$

> • Horseshoes can be noise-excited even for ϵ -values for which the deterministic dynamics exhibits an attracting fixed point, provided the amount of noise is sufficiently large.

• **Noise effects**:

– Traditionnally: noise effects on deterministic dynamics are studied by forward integration (in blue in Fig. 3). The system being nonautonomous, "forward-in-time" dynamics is ill-defined;

static view of the statistics: PDF.

• Statistics at time t given by $\mu_{\theta(t)\omega}$ are evolving with time in an intricate way: they provide crucial information on extremes, and the most probable events!

• **TJ model**: the evolution of μ_{ω} 's maximum (white 'plus') provides a clear prediction of El Niño (high T_2 and low h) and La Niña (low T_2 and high h) episodes, for a given realization.

μ_{ω} (in red) is in log-scale

• For high-dimensional ENSO models, approximate random attractors can be computed. A low-dimensional, physically relevant projection can be derived by using the **available potential energy** E of the tropical Pacific Ocean, and W, the **work** done on that basin by the winds.

• The random attractor and its measure can help design data assimilation procedures. They provide the exact location of the statistics of the stochastic model w.r.t. to a set of initial data in the past and for a given realization ω .

5. Deterministic case: Shilnikov route to chaos

• Complex deterministic dynamics: **Hopf bifurcation** and **Shilnikov horseshoes** associated with **multi-pulse homoclinic orbits**, as ϵ varies. Interdecadal chaotic variability. Note the presence of windows of stability with one attracting limit cycle.

Power spectrum w.r.t. ϵ : deterministic *vs.* stochastic

Figure 4: Chaotic variability — interannual-to-interdecadal.

• Golden areas are most frequently visited (log-scale). The measures μ_{ω} are **nearly singular**.

6. Stochastic dynamics: Numerical results

Random (Shilnikov) horseshoes

$σ=0.005$ $σ=0.05$

2

2

7. Random attractor and predictability An episode in the random attractor's life for the TJ model

Figure 6: Time series of the thermocline (blue) and the eastern temperature (**black**). The random attractors are computed at equal intervals, for each red section.

• In theory, slight changes in initial data result in very different locations at time t, due to *positive Lyapunov exponents*. Random attractor movies indicate that for the **TJ** model, the dependence on the initial data is weak.

• These statistics μ_{ω} are robust w.r.t. perturbations of the

• Random attractors give a clear geometric view of the dynamics

-
-
-
- dynamics.

8. Concluding remarks and outlook

- in the stochastic context.
-
-

References