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We study prediction-assimilation systems, which have become routine in meteorology and ocean-
ography and are rapidly spreading to other areas of the geosciences and of continuum physics. The
long-term, nonlinear stability of such a system leads to the uniqueness of its sequentially estimated
solutions and is required for the convergence of these solutions to the system’s true, chaotic
evolution. The key ideas of our approach are illustrated for a linearized Lorenz system. Stability of
two nonlinear prediction-assimilation systems from dynamic meteorology is studied next via the
complete spectrum of their Lyapunov exponents; these two systems are governed by a large set of
ordinary and of partial differential equations, respectively. The degree of data-induced stabilization
is crucial for the performance of such a system. This degree, in turn, depends on two key ingredi-
ents: �i� the observational network, either fixed or data-adaptive, and �ii� the assimilation method. ©
2008 American Institute of Physics. �DOI: 10.1063/1.2909862�

Physical systems—in nature, the laboratory, or
industry—can only be measured at a limited number of
points in space and time. Estimating the state of a non-
linear dynamical system from partial and noisy observa-
tions is therefore crucial in applied physics and
engineering.1,2 In numerical weather and ocean predic-
tion, this classical estimation problem goes under the
name of data assimilation;3,4 as data assimilation is
spreading rapidly to other fields of the geosciences and of
continuum physics, it is important to better grasp its fun-
damental theoretical aspects. In practice, a data assimila-
tion algorithm has to provide the best possible estimate of
the evolving state of the system, using the observations
available and the equations governing the system’s time
evolution.5 In this paper, we examine the long-term sta-
bility of the set of modified equations that are referred to
as the prediction-assimilation system, in the case in which
the original physical system is fully nonlinear and
chaotic.

I. INTRODUCTION AND MOTIVATION

A. Background

The complete solution of the filtering and prediction
problem in sequential-estimation theory1,2 is given by the
probability density function �PDF� of the unknown state,
conditioned on the observations. Given the correct initial
PDF and assuming that the system noise and observational
noise are white, normally distributed, mutually uncorrelated,
and known, the PDF’s time evolution can be predicted by the

Fokker–Planck equation.1 In the case of a continuous sto-
chastic dynamical system, with partial observations distrib-
uted at discrete times, an ideal data assimilation scheme
would solve the Fokker–Planck equation for the time interval
between observations and modify the PDF by using all ob-
servations when available.

The fundamental difficulty of this approach lies in the
high dimension of the state space, which makes it impossible
in practice to obtain the initial PDF, let alone compute its
time evolution. In the case of linear dynamics and of obser-
vations that are linearly related to the system’s state vari-
ables, the PDF is fully characterized by its first and second
moments, i.e., by the mean and covariance, respectively. The
optimal solution of the data assimilation problem in this lin-
ear setting is provided by the Kalman filter �KF� equations
that describe the time evolution of both the mean and the
covariance.1–7 The time-dependent error-covariance matrix
depends, in this linear case, only on the observational error
statistics that are part of the problem statement, and not on
the actual observations.1

Thus, in the case of linear dynamics, a linear observation
operator, and observational and system noise that are both
Gaussian, white in time, and mutually uncorrelated, the KF
equations give the optimal linear estimate of the state of the
system by propagating the associated error covariances,
along with the state estimates. In the nonlinear case, the situ-
ation is vastly more difficult and the PDF cannot be de-
scribed by a finite set of parameters. A straightforward way
of extending the linear results to the nonlinear case is given
by the extended Kalman filter �EKF�.4,5,8,9

In the EKF, the tangent linear operator is used for pre-
dicting the approximate error statistics, while the state
evolves according to the full, nonlinear equations. The com-
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putational cost of the EKF, though, is still prohibitive in
many realistic circumstances. To alleviate this problem, a
number of authors have studied reduced-rank approxima-
tions of the full EKF8,10–12 that allow a reduction of its com-
putational cost, while maintaining a satisfactory accuracy of
the sequential estimates. A Monte Carlo approach, referred to
as ensemble Kalman filter, has also proven effective in re-
ducing the computational cost associated with the full
EKF.9,13,14

Early theoretical work on the observability and stability
of distributed-parameter systems �i.e., systems governed by
coupled partial differential equations� was confined, by and
large, to linear dynamics and to predetermined observations.
In the case of linear, lumped-parameter systems �i.e., systems
governed by coupled ordinary differential equations� and ob-
servations that are both linear and discrete in time, a suffi-
cient condition for the KF solution to be stable is given by
the observability of its dynamics.1,7 Cohn and Dee15 have
shown, in the linear, infinite-dimensional case of distributed-
parameter systems, that it is important to consider observ-
ability in the context of the discretized system, and that this
observability implies stability of the data-assimilation prob-
lem.

The concepts of observability and stability for nonlinear
chaotic systems are closely related to other areas of dynami-
cal system theory, namely controlling chaos and synchroni-
zation. In the control of chaos, a significant modification of
the system’s behavior is achieved by small variations in time
of some parameter. Originally devised to stabilize unstable
periodic orbits,16 this approach has been generalized to force
a given dynamical system to achieve other desirable types of
behavior, whether stationary, periodic, or chaotic.17 In the
present context, synchronization of chaotic systems means
essentially using an adaptive coupling to have a “slaved”
system track the motion of a driver or “master” system.17,18

At the core of both chaos control and synchronization
lies the stability problem. In the former, the time-dependent
control has to be chosen so as to stabilize the motion. In the
latter, the stability of the synchronized motion is a necessary
condition for achieving such a motion.

Both chaos control and synchronization have been ap-
plied to geophysical problems. Tziperman et al.19 have suc-
ceeded in stabilizing an unstable periodic orbit in a fairly
realistic El Niño model governed by a set of coupled, non-
linear partial differential equations, while Duane and
Tribbia20 studied meteorological teleconnections between the
Atlantic and Pacific sectors of the Northern Hemisphere as a
form of synchronization. Moreover, Duane et al.21 and Yang
et al.22 investigated the relation between synchronization and
data assimilation.

B. The present approach

In a chaotic system, initial errors grow within the sys-
tem’s unstable subspace. Trevisan and Uboldi23,24 considered
fully nonlinear and possibly chaotic dynamics and proposed
to detect and eliminate the unstable components of the fore-
cast error by the method of Assimilation in the Unstable
Subspace �AUS�. They showed that those observations that
help detect such instabilities maximize error reduction in the

state estimates. Ghil8 and associates �see references therein�
had already shown that, in meteorological and oceanographic
data assimilation, the number of observations necessary to
track an unstable flow is comparable to the number of the
flow’s dominant degrees of freedom. Carrassi et al.,25 in turn,
showed that one can improve on this estimate, since the req-
uisite number of “tracking observations” is closely related to
the number and magnitude of the system’s positive
Lyapunov exponents.

In this paper, we examine the long-term stability of
prediction-assimilation systems. This stability is essential for
the performance of data assimilation methods and the con-
vergence of their sequential estimates to the correct evolution
of the underlying physical system. We develop a theoretical
framework for the study of this long-term stability, and
present a theorem that, under certain simplifying assump-
tions, provides rigorous conditions for the stability of the
prediction-assimilation system. Within this framework, we
describe an approach that optimizes the convergence of the
estimates to the correct solution, and apply it to two meteo-
rological models of increasing complexity.

The paper is organized as follows. In Sec. II, we describe
the formulation of data assimilation for nonlinear, chaotic
dynamics, with particular emphasis on the AUS approach.
Section III presents first the theorem, its proof, and an illus-
trative numerical example; this illustration is followed by
numerical results on the two nonlinear models, one governed
by a large system of ordinary differential equations, the other
by a system of coupled partial differential equations. Con-
cluding remarks appear in Sec. IV.

II. DATA ASSIMILATION FOR CHAOTIC DYNAMICS

We concentrate here on dynamical systems that are per-
fectly deterministic but chaotic; the role of explicit stochastic
forcing, which may represent unresolved scales of motion,
will be considered in future work. Without loss of generality,
we write the system as a mapping from an arbitrary initial
state at time t0 to a later time t,

x�t� = M�x�t0�� , �1�

where x is the n-dimensional state vector and M is the non-
linear evolution operator. Given the initial state x�t0�=x0, Eq.
�1� will predict the state at future times t. However, due to
the chaotic nature of the system, initial errors will amplify in
time, thus setting a limit to the system’s predictability.

The tangent linear equations describing the evolution of
infinitesimal perturbations �x relative to an orbit of Eq. �1�
can be written as

�x�t� = M�x�t0� , �2�

where M=M�x�t0� , t− t0� is the linearized evolution operator
associated with M, along the portion of trajectory between t0

and t. A chaotic system possesses one or more positive
Lyapunov exponents, while their full spectrum characterizes
the system’s stability properties; these properties are crucial
for the filtering, as well as for the prediction problem.1,26
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Suppose we seek an estimate of the state of this chaotic
dynamical system from a set of noisy observations, given at
discrete times tk� t0, k� �1,2 , . . . �,

yk
o = H�xk� + �k

o; �3�

here yk
o denotes the p-dimensional observation vector, xk the

unknown true state, and �k
o is the observational error, all at

time tk, while H is the �possibly nonlinear� observation op-
erator. The observational error is assumed to be Gaussian
with zero mean and known covariance matrix R. We con-
sider the undetermined situation p�n; typically p�n in ap-
plications.

To obtain an estimate of the state of the system, referred
to in meteorological practice as the analysis xa, one com-
bines all available observations at tk with the background
information, which consists of the forecast state at tk. This
update is given by the analysis equation,

xk
a = �I − KkH�xk

f + Kkyk
o, �4�

where xk
f indicates the forecast state, and Kk is the gain ma-

trix at time tk. We use here the unified notation27 for meteo-
rological and oceanographic data assimilation. In most se-
quential algorithms, the analysis equation has the form �4�;
such algorithms include the EKF, as well as so-called opti-
mal interpolation and other practical data assimilation
schemes.3,4,9 Computing the optimally feasible K is at the
heart of the sequential estimation approach to filtering and
prediction.1,2,6

The analysis state at time tk is obtained by applying the
update �4� at this time to the forecast state xk

f given by the
nonlinear model evolution �1� of the analysis at the previous
observation time tk−1,

xk
a = �I − KkH�M�xk−1

a � + Kkyk
o. �5�

The repetition of these analysis and forecast steps is referred
to as the prediction-assimilation cycle.

The effect of the observations can thus be interpreted as
a forcing K�yo−HM�xa��, which acts on the free solution at
the observation times tk; note that observations are typically
not available at every time step of the discretized set of non-
linear partial differential equations.3,4,26 Equation �5� governs
the sequential estimation problem, i.e., the evolving estimate
of the state of the system; yo−H�M�xa�� here is the innova-
tion vector.

We consider now a perturbed trajectory that undergoes
the same forecast and assimilation steps, with the same ob-
servations, as the reference trajectory of Eq. �5�. The equa-
tion describing the linear evolution of perturbations �x f ,a�tk�
of this prediction-assimilation cycle is

�xk
a = �I − KkHk�Mk−1�xk−1

a , �6�

where Hk=H�xk
f� is the Jacobian matrix of H at time tk and

Mk−1 is the linearized evolution operator associated with M
between tk−1 and tk. The term �I−KH� appearing in Eq. �6�
reflects the effect of the forcing induced by the
assimilation.1,26 This term modifies the stability properties of
the perturbative dynamics relative to Eq. �5�, i.e., its
Lyapunov exponents, with respect to those of the free
system �1�.

For the updates to drive the solution of Eq. �5� toward
the correct solution of Eq. �1�, the forecast-assimilation cycle
�5� must be stabler than the pure-forecast system �1�. Hence
the Lyapunov exponents of Eq. �5� must be algebraically
smaller than those of Eq. �1�, which usually leads to its un-
stable subspace being lower-dimensional as well. Complete
stabilization by the updating process, i.e., total absence of
positive Lyapunov exponents, is sufficient for the uniqueness
of the solution of Eq. �5�, as well as necessary for the con-
vergence of this solution to the true state of the system. Such
complete stabilization will drive analysis errors to zero in the
absence of observational and system noise, and to the lowest
possible values when noise or nonlinear effects are present.

There are two means at our disposal in order to achieve
this stabilization of a prediction-assimilation cycle: the de-
sign of the observational network, corresponding to the op-
erator H, and that of the assimilation scheme, resulting in a
certain gain matrix K; it is the product KH in Eq. �6� that
provides the stabilizing effect of the forcing by the data.
Trevisan and associates23–25 proposed an efficient way to
achieve this stabilization and improve the performance of the
data assimilation method by monitoring the unstable modes
that amplify along a trajectory of the prediction-assimilation
system. In their AUS approach, the basis of the subspace to
which the analysis update is confined is given by the un-
stable directions of the system.

The AUS gain matrix K differs from zero only on the
unstable subspace at an update point and it is given by

K = E��HE�T��HE���HE�T + R�−1. �7�

Here E is the unitary matrix whose columns are the m un-
stable directions, while � is a symmetric, positive-definite
matrix representing the forecast-error covariance in the sub-
space spanned by the columns of E; the index k is omitted in
Eq. �7� to simplify the notation. Since typically m�n, this
feature of the method is clearly efficient in reducing the com-
putational cost of the estimation process. A traditional, fixed
network of observations can then be used to detect and re-
duce the forecast error projection along the unstable direc-
tions. An adaptive observational network, designed to mea-
sure primarily the unstable modes, will further enhance the
efficiency of the assimilation.

The unstable directions of a dynamical system of type
�1� can be estimated by the breeding method.28,29 In this
procedure, the full nonlinear system is used to evolve small
perturbations and, at fixed time intervals, their amplitude is
scaled down to the initial value. The extension of the breed-
ing technique to Eq. �5�, referred to as Breeding on the Data
Assimilation System �BDAS�,23 allows one to estimate the
unstable directions of a prediction-assimilation system, sub-
ject to perturbations that obey Eq. �6�. In the AUS assimila-
tion, the unstable directions are used in the definition of the
matrix K, cf. Eq. �7�, and they can also be used to identify
adaptive observations that are most beneficial for error re-
duction.
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III. RESULTS

A. Theoretical results

We first provide a theoretical result that, under simplified
circumstances, gives the mathematically rigorous condition
for the observational forcing to stabilize the prediction-
assimilation cycle �5�. This result helps to clarify the theo-
retical underpinnings of AUS, namely the confinement of the
analysis increment within the unstable subspace of the sys-
tem. Consider a chaotic flow, with a single positive
Lyapunov exponent, and restrict the system’s true evolution
to an unstable fixed point, so that M in Eq. �6� is a constant
matrix. The eigenvalues of this matrix are �i=e�i�, where �i

are the Lyapunov exponents, and the eigenvectors of M are
the Lyapunov vectors of the flow, while �= tk− tk−1 is the
updating interval. Alternatively, the result applies to the map
associated with integer multiples of the period along an un-
stable periodic orbit of such a flow.

Let the state of the system be estimated using a single
noisy observation at each analysis time, assimilated by AUS
along the single unstable direction ek, so that

Kk = ckek, ck = 	2�Hek��	2�Hek�2 + 
o
2�−1; �8�

	2 and 
o
2 are the forecast error variance along ek and the

observation error variance, respectively.
Theorem. Let the constant matrix M have a single ei-

genvalue ��1 that corresponds to a positive Lyapunov ex-
ponent, and e be the associated eigenvector. Let H be a con-
stant row vector, and the Kalman gain be approximated by
Kk=cek, where c is a constant scalar. The sequence
�ek :k=1,2 , . . . � is defined by the recursion

�kek = Mfk−1, �9a�

�kfk = �I − cekH�Mfk−1; �9b�

here the initial f0 is an arbitrarily chosen unit column vector,
while �k and �k are the normalization factors associated
with ek and fk, respectively. Then, a sufficient condition for
the solution of Eq. �5� to be stable is

cHe � 1 − �−1. �10�

Remark. The choice of Kk=cek allows one to confine
the analysis correction within the unstable subspace of the
system. The amplitude c of the correction, and the observed
�scalar� component He of the unstable vector, must thus be
large enough to counteract the unstable growth.

Proof. It can be shown that both ek and fk converge to e.
The range of K is one-dimensional and the eigenvector e of
M, with associated eigenvalue �, is also an eigenvector of
�I−KH�M, with associated eigenvalue �,

�I − ceH�Me = �1 − cHe��e = �e .

The stability condition is then obtained by setting �1, and
this condition also guarantees uniqueness of the solution. �

To illustrate the essence of the theorem, we give here a
simple numerical example in the context of the three-
variable Lorenz model.30 When the “canonical” parameter
values 
=10, r=28, and b=8 /3 are chosen, the system be-
haves chaotically. In the example that follows, the true state

of the system that we want to estimate is the phase-space
origin x=y=z=0, which is an unstable fixed point. Two as-
similation experiments are performed; each one evolves ac-
cording to the observationally forced, discrete dynamical
system �5�. At each analysis time a single noisy observation,
the y variable, is assimilated.

The time step for integration has been set equal to 0.01
time units, while the assimilation is performed every ten time
steps, i.e., �=0.1 time units; see also Miller et al.31 The ma-
trix M represents the tangent linear operator evaluated at the
origin and integrated for the time interval �. This matrix
possesses exactly one eigenvalue larger than 1, �=3.26. The
Kalman gain matrix, used to update the analysis, is Kk=cek,
with ek obtained by the recursive use of Eq. �10�. The se-
quence �ek� converges to the eigenvector e corresponding to
the eigenvalue �, and the asymptotic value of Hek is He
=0.91. The stability condition �10� yields, therefore, c�c0

=0.762.
Figure 1 shows the root-mean-square �RMS� analysis er-

ror as a function of time �in units of updating interval, i.e.,
�=10 time steps� for the two experiments, with c=0.76
c0 and c=0.77�c0, respectively. The observational RMS
error is 10−3. Clearly the RMS grows exponentially in the
former case and decays exponentially in the latter.

B. Numerical results

We now illustrate, by numerical examples, how the long-
term performance of different assimilation schemes is related
to the degree of stabilization induced by the observational
forcing. We will show how an efficient reduction of the state
estimation error is achieved when, through an optimal defi-
nition of the gain matrix and the use of adaptive observa-
tions, the assimilation method and the observational network
are designed to track and control the model’s instabilities.
The full Lyapunov spectrum is used to compare the stability
properties of a given free system �1� with those of the corre-

FIG. 1. RMS analysis error as a function of time for two experiments with
c=0.76 and 0.77, below and above the stability threshold c0=0.762; the time
is given in multiples of the updating interval �=0.1.
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sponding prediction-assimilation system �5�. Observing sys-
tem simulation experiments3,4,8,9 are performed with numeri-
cal models of increasing complexity.

The first chaotic model32 has 40 scalar variables that
represent the values of a meteorological field at equally
spaced sites along a latitude circle. It can be derived from an
“anti-Burgers” equation in the same way that the Fermi–
Pasta–Ulam model was subsequently shown to be derived
from the Korteweg–deVries equation.33 The second is an at-
mospheric model that represents midlatitude, large-scale
flows, and is based on the quasigeostrophic equations9 in a
periodic channel. The discretized model has 15 000 scalar
variables and its details can be found in Ref. 34 while the
experimental setup for assimilating data is described in Ref.
25 The results of the data assimilation experiments with the
two models are summarized in Table I.

Figure 2 shows the spectrum of the 40 Lyapunov expo-
nents of the first model,32 using 200 years of simulation. The
free system possesses N�+ =13 positive exponents, of which
the leading one ��max=0.336 day−1� corresponds to a dou-
bling time of 2.06 days; its Kaplan–Yorke dimension DKY is
approximately 27.05, cf. Table I. In the observationally
forced system, at each assimilation time, the analysis is per-
formed as in Eq. �4�, by using AUS with a single BDAS
mode in the specification of the gain matrix, Eq. �7�. In this
single-observation situation, the matrices E and � reduce to
a column vector, eBDAS, and to a scalar 	2, respectively; the
latter is estimated statistically using the innovations—which
are scalars, in the present case—following the approach of
Ref. 25. The analysis is then obtained as

xa = x f +
	2�HeBDAS��yo − Hxf�

	2�HeBDAS�2 + 
2 eBDAS, �11�

where 
2 is the observation error variance and the time index
k has again been omitted.

A single observation, adaptively located where the cur-
rent BDAS mode attains its maximum value, is sufficient to
stabilize the system, so that �max=−0.283 day−1, and to re-
duce the RMS analysis error to 1.4% of the system’s natural

variability, even when the updating interval �= tk+1− tk is as
long as 3 h. Smaller updating intervals of 2 and 1 h lead to
further stabilize the system ��max=−0.437 day−1 and
−0.809 day−1, respectively�, and thus to reduce the analysis
error even more: the RMS error, normalized by the natural
variability, becomes 0.011 and 0.009, respectively; see again
Table I.

Figure 3 shows the first 100 Lyapunov exponents of the
quasigeostrophic model,34 using one year of simulated time.
The free system has N�+ =24 positive exponents, of which
the leading one ��max=0.310 day−1� corresponds to a dou-
bling time of 2.2 days, and DKY�65.2. The three assimila-
tion experiments all use a fixed network of noisy observa-
tions that cover just under one-third of the domain �20 out of
64 meridional lines of grid points�; in two of the experi-

TABLE I. Summary of the numerical results for the Lorenz 40-variable
�Ref. 32� and the quasigeostrophic �Ref. 34� model. Leading Lyapunov ex-
ponent �max �day−1�, number of positive Lyapunov exponents N�+, Kolmog-
orov entropy �K-entropy, day−1�, and the Kaplan–Yorke dimension DKY.
Root-mean-square �RMS� errors are averaged both in space and time and are
normalized by the system’s natural variability.

Lorenz 40-variable
model �max N�+ K-entropy DKY RMS error

Free 0.336 13 2.033 27.05 1
AUS-BDAS - �=3 h −0.283 0 0 0 0.014
AUS-BDAS - �=2 h −0.437 0 0 0 0.011
AUS-BDAS - �=1 h −0.809 0 0 0 0.009

QG model �max N�+ K-entropy DKY RMS error

Free 0.31 24 2.946 65.2 1
3DVar 0.088 3 0.141 6.9 0.321
3DVar-BDAS 0.002 1 0.002 1.1 0.163
AUS-BDAS −0.053 0 0 0 0.058

FIG. 2. Effect of the observing system setup on stability of the prediction-
assimilation cycle for the Lorenz 40-variable model �Ref. 32�. Spectrum of
the Lyapunov exponents �i for the free system �1� ��� and for the AUS-
BDAS forced system �5�, given different updating intervals �= tk+1− tk: 3 h
���, 2 h ���, and 1 h ���. The Lyapunov exponent index i is given on the
abscissa.

FIG. 3. Effect of the assimilation method on stability for the quasigeo-
strophic model �Ref. 34�. Spectrum of the first 100 �the first ten in the inset�
Lyapunov exponents �i for the free system �1� ��� and for the observation-
ally forced systems �5�: 3DVar ���, 3DVar-BDAS ���, and AUS-BDAS
���. The Lyapunov exponent index i is given on the abscissa.
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ments, an additional observation is adaptively located at a
single grid point in the otherwise unobserved portion of the
domain. Its location coincides with the maximum of a single
BDAS mode, as in the first model.32 The model time step is
�t=30 min, while the assimilation interval � is 6 h.

In all three experiments, the fixed observations are as-
similated by a least-squares fit, according to the three-
dimensional variational �3DVar� algorithm5,9 in wide opera-
tional use, while the adaptive observations are assimilated
either by 3DVar �3DVar-BDAS� or in the unstable subspace
�AUS-BDAS� according to Eq. �11�. When fixed observa-
tions only are assimilated �3DVar�, the number of positive
exponents is reduced to three, with the leading exponent
��max=0.088 day−1� corresponding to a doubling time of 7.9
days, while the Kaplan–Yorke dimension is reduced to 6.9
and the normalized RMS error to 0.321. Adding a single
adaptive observation assimilated by 3DVar �3DVar-BDAS�
stabilizes the prediction-assimilation cycle further, the only
positive exponent being slightly greater than zero ��max

=0.002 day−1, Kaplan–Yorke dimension 1.1�, and reduces
the normalized RMS analysis error to around 0.16. Finally,
when the adaptive observation is assimilated in the unstable
subspace, the system is completely stabilized and the RMS
analysis error drops to only 0.058; see once more Table I.

Other measures of chaotic behavior confirm the stabili-
zation of either model’s solutions as data assimilation meth-
ods of increasing sophistication are applied, and the observa-
tional network is improved. Thus, for instance, the
Kolmogorov entropy �see, e.g., Ref. 35� of the free system is
2.033 day−1 for the 40-variable model, while it is zero when
using the AUS-BDAS method with an update interval as
large as 3 h. For the discretized quasigeotrophic model with
its 15 000 scalar variables, the free system’s Kolmogorov
entropy is 2.946 day−1, and is reduced successively to 0.141,
0.002 day−1, and zero as we use 3DVar, 3DVar-BDAS, and
AUS-BDAS, respectively.

IV. CONCLUDING REMARKS

To estimate the efficiency of prediction-assimilation sys-
tems and observational networks, one often estimates the er-
ror of a short-range forecast at points where fairly accurate
observations are available; the obvious drawback of this ap-
proach is that errors tend to be smaller in systematically ob-
served regions.3,4,26 The nonlinear stability analysis intro-
duced here allows one to address these issues in a more
rigorous way. The stability of the prediction-assimilation sys-
tem guarantees the uniqueness of its solution and is required
for the convergence of this solution to the true flow evolu-
tion; in turn, the degree of stabilization introduced by the
data assimilation may be measured precisely by estimating
the full Lyapunov spectrum of the forced system.

Numerical experiments were performed here to assimi-
late data into a 40-variable32 and a 15 000-variable model34

simulating the midlatitude atmospheric circulation. In both
models, complete stabilization of the sequential-estimation
process was obtained by the AUS and BDAS methods,
which were shown therewith to reliably track the system’s
instabilities. The tools of dynamical systems theory can thus

help design optimized assimilation algorithms �the specifica-
tion of K� and observational networks �specifying H� for
high-dimensional and highly nonlinear systems.

When, as usual in practical applications, only a limited
number of measurements can be made, asymptotic error re-
duction may still be achieved through adaptive deployment
of observations and a sophisticated assimilation scheme, de-
signed to control the flow’s instabilities. Promising results
with this approach have been obtained with models of in-
creasing complexity and realism, including a primitive-
equation ocean model with over 3�105 degrees of
freedom.24

Data assimilation applications are possible in all situa-
tions where a dynamical constraint is important and only a
limited amount of noisy measurements can be made. Such
situations include robotics, flow in porous media, plasma
physics, as well as solids subject to thermal and mechanical
stresses or shocks.36,37 The insights into the nonlinear dy-
namics of the prediction-assimilation cycle provided here
should help design data assimilation methods for a large
class of laboratory experiments,38 as well as for natural or
industrial systems.

ACKNOWLEDGMENTS

We thank Mickaël D. Chekroun for his insightful com-
ments and suggestions. This work was supported by the Bel-
gian Federal Science Policy Program under Contract No.
MO/34/017 �A.C.�, by Cooperazione Italia-USA 2006-2008
su Scienza e Tecnologia dei Cambiamenti Climatici �A.T.�,
and by NASA’s Modeling, Analysis and Prediction �MAP�
Program project 1281080 �M.G.�.

1A. H. Jazwinski, Stochastic Processes and Filtering Theory �Academic,
New York, 1970�.

2Applied Optimal Estimation, edited by A. Gelb �MIT Press, Cambridge,
MA, 1974�.

3Dynamic Meteorology: Data Assimilation Methods, edited by L. Bengts-
son, M. Ghil, and E. Källén �Springer-Verlag, New York, 1981�.

4M. Ghil and P. Malanotte-Rizzoli, Adv. Geophys. 33, 141 �1991�.
5O. Talagrand, J. Meteorol. Soc. Jpn. 75, 191 �1997�.
6R. Kalman, J. Basic Eng. 82, 35 �1960�.
7R. Kalman, J. Basic Eng. 83, 95 �1961�.
8M. Ghil, J. Meteorol. Soc. Jpn. 75, 289 �1997�.
9E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability
�Cambridge University Press, Cambridge, UK, 2003�.

10R. Todling and S. E. Cohn, Mon. Weather Rev. 122, 2530 �1994�.
11M. K. Tippet, S. E. Cohn, R. Todling, and D. Marchesin, SIAM J. Matrix

Anal. Appl. 22, 56 �2000�.
12I. Fukumori, Mon. Weather Rev. 130, 1370 �2002�.
13G. Evensen, J. Geophys. Res. 99, 143 �1994�.
14C. L. Keppenne and M. M. Rienecker, Mon. Weather Rev. 130, 2951

�2002�.
15S. E. Cohn and D. P. Dee, SIAM �Soc. Ind. Appl. Math.� J. Numer. Anal.

25, 586 �1988�.
16E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64, 1196 �1990�.
17S. Boccaletti, C. Grebogi, Y.-C. Lai, H. Mancini, and D. Maza, Phys. Rep.

329, 103 �2000�.
18M. Chen and J. Kurths, Phys. Rev. E 76, 027203 �2007�.
19E. Tziperman, H. Scher, S. E. Zebiak, and M. A. Cane, Phys. Rev. Lett.

79, 1034 �1997�.
20G. S. Duane and J. J. Tribbia, Phys. Rev. Lett. 86, 4298 �2002�.
21G. S. Duane, J. J. Tribbia, and J. B. Weiss, Nonlinear Processes Geophys.

13, 601 �2006�.
22S.-C. Yang, D. Baker, H. Li, K. Cordes, M. Huff, G. Nagpal, E. Okereke,

J. Villafane, E. Kalnay, and G. S. Duane, J. Atmos. Sci. 63, 2340 �2006�.
23A. Trevisan and F. Uboldi, J. Atmos. Sci. 61, 103 �2004�.

023112-6 Carrassi et al. Chaos 18, 023112 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

http://dx.doi.org/10.1175/1520-0493(1994)122<2530:SSFADA>2.0.CO;2
http://dx.doi.org/10.1137/S0895479899354822
http://dx.doi.org/10.1137/S0895479899354822
http://dx.doi.org/10.1175/1520-0493(2002)130<1370:APKFAS>2.0.CO;2
http://dx.doi.org/10.1029/93JA02082
http://dx.doi.org/10.1175/1520-0493(2002)130<2951:ITOAMP>2.0.CO;2
http://dx.doi.org/10.1137/0725037
http://dx.doi.org/10.1103/PhysRevLett.64.1196
http://dx.doi.org/10.1016/S0370-1573(99)00096-4
http://dx.doi.org/10.1103/PhysRevE.76.027203
http://dx.doi.org/10.1103/PhysRevLett.79.1034
http://dx.doi.org/10.1103/PhysRevLett.86.4298
http://dx.doi.org/10.1175/JAS3739.1
http://dx.doi.org/10.1175/1520-0469(2004)061<0103:AOSATO>2.0.CO;2


24F. Uboldi and A. Trevisan, Nonlinear Processes Geophys. 13, 67 �2006�.
25A. Carrassi, A. Trevisan, and F. Uboldi, Tellus, Ser. A 59A, 101 �2007�.
26M. Ghil, S. Cohn, J. Tavantzis, K. Bube, and E. Isaacson, “Applications of

estimation theory to numerical weather prediction,” �Ref. 3�, pp. 139–224.
27K. Ide, P. Courtier, M. Ghil, and A. Lorenc, J. Meteorol. Soc. Jpn. 75, 181

�1997�.
28Z. Toth and E. Kalnay, Bull. Am. Meteorol. Soc. 74, 2317 �1993�.
29D. J. Patil, B. R. Hunt, E. Kalnay, J. A. Yorke, and E. Ott, Phys. Rev. Lett.

86, 5878 �2001�.
30E. N. Lorenz, J. Atmos. Sci. 20, 130 �1963�.
31R. N. Miller, M. Ghil, and F. Gauthiez, J. Atmos. Sci. 51, 1037 �1994�.
32E. N. Lorenz and K. A. Emanuel, J. Atmos. Sci. 55, 399 �1998�.

33“The ’Fermi-Pasta-Ulam’ Problem—The First 50 Years,” edited by D. K.
Campbell, P. Rosenau, and G. Zaslavsky, Chaos 15�1� �Special Issue�
�2005�.

34R. Rotunno and J. W. Bao, Mon. Weather Rev. 124, 1051 �1996�.
35D. Ruelle, Chaotic Evolution and Strange Attractors �Cambridge Univer-

sity Press, New York, 1989�.
36J. Kao, D. Flicker, R. Henninger, S. Frey, M. Ghil, and K. Ide, J. Comput.

Phys. 196, 705 �2004�.
37J. Kao, D. Flicker, K. Ide, and M. Ghil, J. Comput. Phys. 214, 725 �2006�.
38M. J. Galmiche Sommeria, E. Thivolle-Cazat, and J. Verron, C. R. Acad.

Sci., Ser. IIb: Mec., Phys., Chim., Astron. 331, 843 �2003�.

023112-7 Data assimilation for chaotic dynamics Chaos 18, 023112 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

http://dx.doi.org/10.1111/j.1600-0870.2006.00210.x
http://dx.doi.org/10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2
http://dx.doi.org/10.1103/PhysRevLett.86.5878
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1994)051<1037:ADAISN>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1996)124<1051:ACSOCU>2.0.CO;2
http://dx.doi.org/10.1016/j.jcp.2003.11.028
http://dx.doi.org/10.1016/j.jcp.2003.11.028
http://dx.doi.org/10.1016/j.jcp.2005.10.022

