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In a simple, one-layer atmospheric model, we study the links between low-frequency variability and
the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of
multiple “weather regimes.” To investigate the transitions from one regime to another, we focus on
the identification of stable manifolds associated with fixed points. We show that these manifolds act
as separatrices between regimes. We track each manifold by making use of two local predictability
measures arising from the meteorological applications of nonlinear dynamics, namely, “bred vec-
tors” and singular vectors. These results are then verified in the framework of ensemble forecasts
issued from “clouds” �ensembles� of initial states. The divergence of the trajectories allows us to
establish the connections between zones of low predictability, the geometry of the stable manifolds,
and transitions between regimes. © 2009 American Institute of Physics. �doi:10.1063/1.3230497�

Multiple fixed points, or multiple “equilibria,” are a
ubiquitous manifestation of nonlinearity and chaos.
These multiple equilibria are often associated, in turn,
with multiple regimes of behavior: the system trajectory
dwells for extended time intervals in the vicinity of two or
more unstable equilibria, and each such vicinity exhibits
spatiotemporal features that characterize the correspond-
ing regime.8,41 This paper highlights the role played by
the stable manifold of a centrally located fixed point in
separating multiple regimes in a simple atmospheric
model.8 Local predictability is calculated by several
methods used in dynamic meteorology and numerical
weather prediction and related to the numerically simu-
lated divergence of model trajectories. The results are
discussed in terms of observed behavior of atmospheric
flows, on the one hand, and explained in terms of even
simpler models, including the Lorenz44 model, on the
other. We believe that these results can be extended to
more detailed and realistic climate models, as well as to
other application areas of nonlinear dynamics.24

I. INTRODUCTION

A. Background

The pioneering work of Lorenz44,46 has led to the real-
ization that the atmosphere is a chaotic system, and thus has
a finite predictability time. The predictability limit depends
on which specific phenomenon we are considering, as well
as on the application envisaged for the prediction. While a
thunderstorm can be predicted only a few hours before its
occurrence, other phenomena have longer time scales, e.g.,
the Madden–Julian oscillation52,53 that has a time scale
around 40 days or the El Niño/Southern Oscillation �ENSO�,
with its seasonal-to-interannual time scale.65

During the past three decades, considerable research has
been performed on atmospheric variability with a time scale
from a week up to a few months and on its predictability.
Phenomena that occur on such a time scale are grouped un-
der the label of low-frequency variability �LFV�. Their dy-
namics can be described by the existence of preferred flow
patterns �or “regimes”�, whose frequency of appearance
and/or persistence corresponds to that time scale.

Several authors �e.g., Refs. 24 and 41� have hypoth-
esized that the flow regimes constitute more predictable
phases of the large-scale atmospheric flow evolution and
could be used to extend the predictability, conditioned on
passage through such a persistent regime. A key aspect of
studies proceeding from this hypothesis is the identification
of the regimes. This identification is often associated with the
search for subsets of the phase space in which the system
spends longer time intervals. Increasingly objective and so-
phisticated statistical methods for identifying and describing
these regimes have been used in the literature.3,30,37,57,58,74

Another way to look at the regimes relies on more dy-
namical criteria and attempts to establish a correspondence
between them and stable or unstable fixed points of the flow
in its phase space. Indeed the presence of stable and unstable
fixed points can influence greatly the trajectories by repelling
or attracting them.

The study of such “multiple equilibria” has largely, but
not exclusively, concentrated on low-dimensional models;
see Refs. 8, 10, 12–15, 35, 41, 45, and 68 all of which con-
sidered models of dimension no higher than 25. While a few
atmospheric papers �e.g., Refs. 32 and 39� and several
oceanographic ones �e.g., Refs. 19, 34, 66, 67, 72, and 73�
addressed multiple equilibria and their stability in so-called
intermediate models with hundreds to many thousands of
discrete variables, this approach can still not be easily gen-
eralized to full-blown general circulation models �GCMs�,
with millions of discrete variables.

The presence of multiple regimes in atmospheric LFV is
still a matter of debate.24,48,54,59,75 Thus, Sardeshmukh et al.70
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and Sura et al.,76 for instance, argued that the observed non-
Gaussian probability distribution function �PDF� of past
“weather maps” in a suitably defined phase space does not
necessarily imply the existence of persistent flow patterns
that arise from nonlinear dynamics. They showed that such
PDFs can be reproduced by simple systems governed by
linear dynamics but subject to multiplicative noise. Deloncle
et al.16 and Kondrashov et al.,38 however, demonstrated that
the transition paths between the regimes are consistent with
nonlinear, deterministic dynamics rather than linear stochas-
tic dynamics.

B. Our study

In this study, we use a by now classical model of atmo-
spheric flow over simplified topography, due to Charney and
Devore.8 This barotropic, low-order model has been exten-
sively used in the past and it produces multiple equilibria, as
well as periodic and chaotic solutions that simulate large-
scale atmospheric dynamics. A set of parameters is found for
which one can identify flow regimes visually. The regimes
are associated with different space and time scales of varia-
tion. In this sense, they represent the multiplicity of scales
present in Earth’s atmosphere. When interested in phenom-
ena on the time scales of days to months, the atmosphere is
characterized by high-frequency baroclinic transients, inter-
acting with the slower and larger scales that characterize its
LFV.

We will illustrate the link between the regimes and their
predictability using several tools of nonlinear dynamics. To
do so, we will analyze the local properties of the flow in
phase space in order to be able to predict a possible regime
change. Pursuing the idea that the system’s dynamics is
linked to the position and stability of its fixed points, we will
devote particular attention to one specific hyperbolic point of
the Charney and Devore �CDV� system and study the invari-
ant manifolds of that point. In fact, convergence and diver-
gence of the system’s trajectories occur along these mani-
folds, which can play the role of separatrices between
different regions in phase space.

In both statistical and dynamical studies of atmospheric
LFV, it is common to consider subspaces of lower dimen-
sion. We use this device here only for visualization purposes,
relying on the customary basis vectors provided by principal
component analysis of the model output. These vectors are
called empirical orthogonal functions �EOFs� �Ref. 43� in the
atmospheric dynamics community, and the reduction used
here is by projection onto the leading EOFs, as usual.

Operational forecasting centers are fully aware of the
dependence of the predictability of weather on the specific
initial state. To explore the phase space of the numerical
weather prediction model in the neighborhood of the initial
state for a given day, each center performs an ensemble of
forecasts, starting from a set of perturbed initial data; see
Toth and Kalnay,78 Molteni et al.,60 and Houtekamer et al.33�.
The spread of the ensemble over the days into the forecast is
an indication of its reliability, i.e., of the predictability of the
weather on that particular day.

The purpose of the present paper is to provide insight
into the way that this conditional predictability may depend
on the position and stability of the system’s invariant mani-
folds. To examine this issue, we will be using here some of
the local predictability measures that have been recently used
by weather forecasting centers, namely “bred vectors”
�BVs�, introduced by Toth and Kalnay,78,79 and singular vec-
tors �SVs�, as described by Buizza and Palmer.5

These two kinds of dynamical tools differ in their
properties42 and have both already been used in order to
predict regime transitions. Corti and Palmer11 showed how
irregular a trajectory that leaves one regime to reach another
one may be: the addition of a small perturbation to the initial
state can cancel, under certain conditions, the transition.
Evans et al.21 used the growth rate of the BVs to predict a
regime change in the Lorenz44 model.

The outline of this paper is as follow: Section II is a brief
description of the CDV model. We recall the formulation of
the model and specify the range of parameters for which it
will be used; details are provided in Appendix A. In the same
section we also introduce BVs and SVs. Section III is a short
analysis and description of the CDV model’s phase-space
behavior. The fixed points and their stability are computed
and represented in the subspace of the leading EOFs. We also
show how certain fixed points can be associated with a re-
gime. In Sec. IV we use BVs and SVs to approximate the
stable and unstable manifolds of a centrally located fixed
point and to define regions of low predictability, i.e., regions
where a change of regime is probable. Section V verifies the
localization of the low-predictability areas computed above
by directly performing ensemble integrations of the model. A
summary and discussion follow in Sec. VI.

In Appendixes B and C, we use two even simpler models
to illustrate and clarify further the results obtained with the
CDV model. Their behavior exhibits some noteworthy simi-
larities with the CDV model in the parameter range of inter-
est. The first one is Hamiltonian and resembles the elastic
pendulum; see Lynch.51 This model represents an “artist’s
view” of the atmosphere and it is well suited for studying the
multiple-regime paradigm. In it, we are able to reproduce
analytically the results obtained numerically for the CDV
model. In Appendix C, we show that the present results hold
for the Lorenz44 model as well.

II. MODEL AND METHODS

In this section, we describe the main model under study
and the two local predictability measures on which we con-
centrate. The CDV �Ref. 8� model simulates a barotropic
atmosphere in which an externally forced jet interacts non-
linearly with the topography. For completeness and consis-
tency, we summarize here the derivation of the model equa-
tions. The full description of the model can be found in
Appendix A. We also introduce the BVs and SVs. The reader
who is familiar with either the CDV model or the tools of
analysis can proceed directly to Sec. III.
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A. Model description

The model is governed by the quasigeostrophic equation
of potential vorticity for a fluid evolving in a rectangular
channel of dimension 2�L��L. This channel is located on a
�-plane23 and has a free surface of height H+� �see Appen-
dix A for further details�:

�t��2� −
�

�2� + J��,�2� −
�

�2 + f0
h

H
+ �y�

= −
f0DE

2H
�2�� − ��� . �1�

Here � is the streamfunction of the velocity field, f0 and �
are parameters associated with the Coriolis force, h is the
topography at the bottom of the �-channel, � is the Rossby
radius of deformation, H is the mean height of the fluid, and
DE is the Ekman layer depth.

We first nondimensionalize this equation and expand it
in the eigenfunctions Fi of the Laplacian operator by setting

��,h,��� = �
i=1

N

��i,hi,�i
��Fi. �2�

We truncate this expansion in order to retain only N=6
modes. The topographic profile chosen by CDV—based on
the midlatitude topography of the northern hemisphere first
used by Charney and Eliassen9—only projects on the second
mode, so that h=h0F2. Furthermore, we will study the model
considering only a zonal, west-east forcing, ��=�1

�F1 �see
Appendix A�. We thus obtain the system of ordinary differ-
ential equations:

�̇1 = − k01��1 − �1
�� + h01�3,

�̇2 = − kn1�2 − ��n1�1 − �n1��3 − �n1�4�6,

�̇3 = − kn1�3 + ��n1�1 − �n1��2 − hn1�1 + �n1�4�5,

�3�
�̇4 = − k02�4 + 	n��2�6 − �3�5� + h02�6,

�̇5 = − kn2�5 − ��n2�1 − �n2��6 − �n2�4�3,

�̇6 = − kn2�6 + ��n2�1 − �n2��5 − hn2�4 + �n2�4�1.

Following Charney and Devore and Ref. 23 we consider
�1

� as this model’s main bifurcation parameter and keep here
the other parameters as fixed. The dimensional height of the
topography is set to 4000 m and the beta effect is adjusted so
as to linearize the Coriolis force about a midchannel axis
placed at 45° N.

B. Local predictability measures

Let us write the six equations in Eq. �3� in a more com-
pact form,41

�̇ = F���t�� , �4�

with �= ��1 ,�2 , . . . ,�6� and F a nonlinear, time-
independent operator of dimension 6. Local predictability is

quantified by the separation of two trajectories that are ini-
tially close at time t0. For two vectors ��t� and ���t�, both
solutions of Eq. �4�, we call ���t�=���t�−��t� a perturba-
tion to ��t� at time t. Local predictability can be measured
using the expansion rate of the two solutions between t0 and
t1: ����t1�� / ����t0��, � · � being a quadratic norm associated
with the inner product �· , ·�; typically one uses the L2 norm,
also called the root-mean-square distance between two state
vectors �1 and �2.

Among several different ways to estimate this expansion
rate, we rely on two widely used ones. Essentially, a linear
way to study the divergence of trajectories is given by SVs,
while a more nonlinear one is given by BVs.

1. Bred vectors
BVs have been formulated and implemented in opera-

tional practice by Toth and Kalnay78,79 at the U.S. National
Centers for Environmental Prediction. The original idea was
to construct an ensemble of optimal perturbation in order to
carry out an ensemble forecast by selecting the most impor-
tant growing error.

This essentially nonlinear and computationally very
simple method consists in the following steps:

• add to the initial state ��t0� a small random perturbation
���t0� and obtain a perturbed initial state ���t0�;

• integrate the model from both the unperturbed and the per-
turbed initial state for a given time T= �t1− t0�;

• measure the difference ����t1�� between the two trajecto-
ries and rescale this difference to have the same size as the
initial perturbation ����t0��;

• add this new perturbation to the “control run” ��t1�;
• restart from the second step.

After several rescalings, the perturbation evolves toward
the fastest-growing error direction. The method thus
“breeds” the nonlinear perturbation that grows fastest.

The key quantity resulting from this procedure is the
growth rate,

GBV���t0�,T� 	
1

T
log� ����t1��

����t0��
� . �5�

The leading BV obtained will help us identify the sensitive
trajectories for which the error growth is high, as well as the
relatively stable trajectories for which this rate is small.

2. Singular vectors
The SVs describe the evolution of small perturbations

that are governed by the linearized version of Eq. �4�. The
time evolution of an infinitesimal perturbation ���t� to the
flow ��t� is governed by the linearization of Eq. �4� about
the trajectory ��t�,

��̇�t� = J���t�� · ���t� . �6�

Here J���t�� is the Jacobian matrix defined as

Jij���t�� = 
 �Fi�X�
�X j



X=��t�

. �7�
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We call ℒ�t , t0� the solution of the tangent linear equa-
tion,

ℒ̇�t,t0� = J���t�� · ℒ�t0,t0� . �8�

Taking as initial condition in Eq. �8� ℒ�t0 , t0�= Id, one then
obtains

���t1� = ℒ�t1,t0� · ���t0� , �9�

where ℒ is called the linear propagator from t0 to t1. Hence,
one can write the following equalities:

����t1��
����t0��

=
�ℒ�t1,t0����t0��

����t0��

=
����t0�ℒ��t1,t0�,ℒ�t1,t0����t0��1/2

����t0��
, �10�

with ℒ� denoting the adjoint operator of our propagator ℒ.
The eigenvectors of the normal operator ℒ��t1 , t0� ·ℒ�t1 , t0�
optimize the growth of the perturbation for the norm chosen
herein and for the time interval T= �t1− t0�.

The maximal possible growth rate is given by the first
singular value S1 of ℒ�t1 , t0�, i.e., by the first eigenvalue of
the associated normal operator. In the limit of T→
, the
Oseledec62 theorem guarantees the convergence of

GSV 	 �1/T�log�S1� �11�

toward the first Lyapunov exponent.
Unlike the BV growth rate of Eq. �5�, the singular-value

decomposition of the normal operator thus yields a theoreti-
cal expansion rate �11� that corresponds for large T to the
maximum expansion rate possible. The drawback of the SV
approach for the small T we are interested in when studying
local predictability is the need to carry out, at least in part,
the much more costly singular-value decomposition of the
normal operator. In the following, we will compute both GBV

and GSV with the same canonical scalar product �· , ·� and
compare the results.

III. FIXED POINTS, STABILITY, AND BIFURCATIONS

Within the physically acceptable range of parameters
proposed by Charney and Devore, one wants to find a value
of the forcing for which the model oscillates between two or
more well-identified regimes. The two stable fixed points
found by Charney and Devore for the three-dimensional
�3D� model correspond roughly to blocked and zonal flows
in the midlatitudes of the northern hemisphere; see Chap. 6
of Ghil and Childress23 or Ghil and Robertson24 for a review
of this issue.

In the six-dimensional �6D� model, Charney and Devore
found that one of these two fixed points lost its stability and
oscillatory solutions were possible; see also Ref. 84. Legras
and Ghil41 showed that it was the blocked flow in their 25-
component model on the sphere that underwent a Hopf bi-
furcation, as confirmed also in a rotating-annulus
experiment.77,82

Following the conjecture of Charney and Devore and
Ref. 41 that the regimes are associated with the presence of

fixed points, we examine here the model’s fixed points and
their stability as a function of the forcing parameter �1

�.

A. Bifurcation diagram and stability analysis

The fixed points of the system of equations �3� have
been studied extensively in Refs. 13, 17, 18, 23, and 84
among others. In the following, we refer to the full system of
equations �3� as the “6D model,” while the system truncated
to the first three modes—F1, F2, and F3—will be called the
“3D model.” The systematic comparison between the bifur-
cation diagrams of these two models that we provide below
is, to the best of our knowledge, new and so is the connec-
tion we establish in the present section between these two
bifurcation diagrams and the model dynamics, projected onto
its leading EOFs.

As seen in Eq. �A6�, the first three modes have maxima
at midchannel and, following Lorenz,45 are called of mode 1,
while the next three modes have a neutral line at midchannel
and are called of mode 2. The presence of the latter allows
one to describe flow patterns with tilting ridges and troughs.

We compute first the fixed points of the 6D model for
different values of �1

� using the AUTO software of Doedel et
al.20 The results are shown in Fig. 1.

Figure 1 provides two different views of the bifurcation
diagram “fixed point versus parameter:” �1 of the fixed point
as a function of the forcing parameter �1

� �upper panel� and
�4 as a function of �1

� �lower panel�. We follow the usual
convention of indicating stable branches by solid lines and
unstable ones by dashed lines. The letters associated with the
subscripts X� ,X1 ,X2 , . . . ,X6 denote the coordinates of the
point X on the corresponding axes �1

� ,�1 ,�2 , . . . ,�6.
Steady solutions on the branch OABCD correspond to

the fixed points of the reduced, 3D model; cf. Fig. 6.5 of
Ghil and Childress;23 on this branch �4	�5	�6	0. These
are the equilibria already studied in depth by Charney and

Devore for �1
�=0.2, although our choice of taking �̄2�0

produces slightly different results. This branch remains the
same for the 3D and the 6D model, but its stability differs:
the branch AB that was initially stable in the 3D model be-
comes unstable in the presence of perturbations in the three
other mode-2 variables. This instability results in a super-
critical Hopf bifurcation at point A, in agreement with Char-
ney and Devore and Refs. 41 and 84. The limit cycle that
arises from this Hopf bifurcation is very well described by
the first two EOFs computed in Sec. III D below.

The branches OA and CD remain stable in the presence
of mode-2 perturbations, and A��C�. We conclude that, for
all values of �1

�, there exists at least one stable equilibrium:
the branch OA for small values of the forcing �1

� and the
branch CD for �1

��0.2. The latter branch extends well out-
side the boundaries of Fig. 1 and asymptotes to the curve
�1=�1

�, which corresponds to a zonal circulation; see again
Sec. 6.3 in Ref. 23.

The branch EFGH in the upper panel contains two dis-
tinct fixed points, F and F�, as seen in the lower panel. The
two solutions are symmetric with respect to the axis �4=0,
as well as with respect to the hyperplane �5=�6=0 �not
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shown�. The two points F and F� correspond both to sub-
critical Hopf bifurcations: the branch FG is stable for F�

��1
��G�, while the branch GH is unstable.
When studying the dependence of the solutions on topo-

graphic height h0 �not shown�, we find that, in agreement
with Charney and Devore, the shape of the bifurcation
curves—shown in Fig. 1 for h0=0.1 and channel width L
=r0 /4—varies only slowly with h0. As h0 tends to zero, the

range of coexistence of six unstable solutions diminishes and
eventually only a single, stable solution remains. On the con-
trary, if we keep increasing h0, the range of coexistence of
multiple equilibria, albeit unstable ones, becomes larger.

As already mentioned by DeSwart,17 the solutions of the
6D model are highly dependent on the channel width L. Still,
our results do remain valid for a range of values of L around
the chosen value of L=r0 /4.
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FIG. 1. Bifurcation diagram of the CDV model projected onto two coordinate systems: the upper panel shows the plot in the plane ��1
� ,�1� and the lower panel

in the plane ��1
� ,�4�; stable branch �solid� and unstable branch �dashed�. Open squares denote branching points and filled squares denote Hopf bifurcations,

while the letters mark points of interest on the curves, and numbers mark solutions for the parameter value �1
�=0.45. The dotted lines mark the maxima and

minima of the periodic orbit arising from the Hopf bifurcation at points A, F, and F�. This diagram expands and unifies the diagrams in Ref. 84.
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The results of our stability analysis are summarized in
Table I, which lists the eigenvalues of the Jacobian matrix
corresponding to Eq. �3� for all the fixed points obtained at
�1

�=0.45 �see the vertical line in Fig. 1�. Only the eigenval-
ues that correspond to the most stable and most unstable
mode are given.

B. Fixed points in physical space

Figure 2 illustrates the flow patterns of the fixed points
in physical space for �1

�=0.45; their numbering refers to that
shown in Fig. 1, and all values are nondimensional.

As already stated, the first three fixed points have no
mode-2 components, and thus all their ridges and troughs are
purely meridional. As discussed by Charney and Devore �see
their Fig. 4�, the flow pattern in panel �1� is highly blocked,
with its ridges very pronounced and way upstream of the
topography, while the flow in panel �3� is almost purely
zonal and its very small ridges are in phase with the topog-
raphy; see also Refs. 23 and 24. The flow in panel �1� is
fairly unrealistic, being a highly idealized version of a West
Coast ridge, upstream of the Rockies.

Points 4 and 6, on the one side of the hyperplane �4

=�5=�6=0, and 5 and 7 on its other side have their mode-2
components pairwise symmetric with respect to this hyper-
plane �see lower panel of Fig. 1�, while the zonal component
�1 differs from one member of each pair to the other �see the
figure’s upper panel�. This partial symmetry is apparent in
panels �4�–�7� of Fig. 2: the tilts of the ridges and troughs of
panels �4� and �6� are opposite to those of panels �5� and �7�,
respectively, while the zonal flow is stronger in panels �6�
and �7� than in �4� and �5�.

C. Model dynamics: Time-dependent solutions

Knowing the position and the stability of the fixed points
for a wide range of values of the forcing �1

�, we proceed to
numerical integrations of the model for different values of �1

�

and inquire whether there is an interaction between the fixed
points and the model’s dynamic behavior. The model is inte-
grated using a predictor-corrector scheme with a time step of
0.01 nondimensional time units �about 2 min in dimensional
time� in order to obtain a time series that is 1000 days long.

For �1
��A� and �1

��G�, the trajectories converge to-
ward the unique stable fixed point on the branch OA or CD,
respectively. For other values of �1

�, it is difficult to
estimate—in the 6D model’s phase space—the precise basin

of attraction of the fixed points on the two stable, coexisting
branches FG and CD. Over a small range of �1

�, though,
included between the two Hopf bifurcations at A� and F�, we
observed that, for many initial states, the trajectories do not
converge to the only stable fixed point, which corresponds to
zonal flow �branch CD�. For values of �1

� around 0.5 and for
“good” initial states, the model behaves chaotically: the tra-
jectories converge to an apparently strange attractor and we
show below that, on this attractor, multiple regimes coexist.

From this preliminary numerical exploration, it follows
that the 6D model exhibits at least two different types of
behavior, with a unique, stable equilibrium or with more
complex variability. We will study the model’s behavior in
greater detail for 0.4��1

��0.5 while using the set of param-
eter values given in Sec. II A.

D. EOF analysis

We are looking for a subspace in which the model’s
multiple regimes, as well as its time-dependent behavior, ap-
pear as clearly as possible. For different values of �1

�, we
proceeded to an EOF analysis of the model output. The
EOFs for �1

�=0.42 were calculated from a 10 000-day-long
time series, taking a sample pattern every 3 h; they are
shown in Fig. 3. The EOFs for other �1

�-values in the interval
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FIG. 2. The seven fixed points of the 6D model of CDV plotted in physical
space for �1

�=0.45; of the seven, panels �1�–�3� represent the fixed points of
their 3D model. Black contours positive and dashed contours negative; the
topographic ridges are shown as dotted contours �negative in gray�.

TABLE I. Algebraically largest and smallest real part of the eigenvalues of
the Jacobian of Eq. �3� computed for all the fixed points at �1

�=0.45. The
imaginary part is indicated �in parentheses� for the complex-conjugate ei-
genvalues.

Point Max. eigenvalue Min. eigenvalue

1 0.048 0.066
2 0.097 0.095
3 0.005 0.009 ��0.623i�

4 and 5 0.006 ��0.034i� 0.031
6 and 7 0.076 0.075
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of interest are either individually similar to those shown in
the figure or given �at least approximately� by some linear
combinations of the latter; we present therefore all the results
in the basis displayed in Fig. 3.

To compare the flow patterns of the fixed points with
that of the EOFs, we subtract the overall mean of the long

simulation, i.e., its climatology, from each of the fixed points
�not shown�. In climate dynamics, the difference between the
actual pattern and the climatology is called the “anomaly.”
The fixed points 4 and 5 correspond to the positive and nega-
tive versions of EOF-1, respectively, while EOF-2 does not
correspond to any fixed point. The flow pattern of EOF-3 is
blocked and very similar to the anomaly of the first fixed
point, while the zonal-flow dominated pattern of EOF-4 re-
sembles the third fixed point. The second, unstable fixed
point’s anomaly has some similarity with EOF-5.

EOF-1 captures almost half the variance of the model
behavior and is clearly associated with its alternating be-
tween the flow patterns of points 4 and 5, as we shall see also
in Sec. III E. Inspection of panels �4� and �5� of Fig. 2 sug-
gests that this dominant variability is associated with so-
called tilted-trough vacillation,31,64 a process that has been
widely associated with the atmospheric index cycle.45,61,69

More recently, an intraseasonal oscillation involving north-
ern hemisphere topography has been shown to exhibit such a
tilted-trough vacillation in both GCMs �Refs. 55 and 56� and
atmospheric observations.49,50

E. Dynamics in the subspace of the first two EOFs

A short section of the 6D model’s trajectory, along with
the position of the fixed points in the subspace spanned by
the first two EOFs, is plotted in Fig. 4 for �1

�=0.45. Several
of the fixed points clearly affect the shape of the trajectory in
the figure.

The large-scale flow pattern in the �EOF-1,EOF-2� plane
is clockwise. The most stable and unstable directions of point
1 are associated with a negative and a positive real eigen-
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FIG. 3. EOFs of the 6D model for �1
�=0.42. The associated variances are

49%, 17%, 14%, 11%, 6%, and 2%, respectively.

FIG. 4. Projection of the seven fixed points and projection of the stable and unstable manifolds of point 1, Ws and Wu, on the plane of the first two EOFs. The
segment of trajectory plotted is 9000 days long �about 300 oscillations�; Ws and Wu were obtained here by backward and forward integrations, respectively,
of model trajectories.

043109-7 Weather regimes and predictability Chaos 19, 043109 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



value �cf. Table I�, respectively, and the phase-space flow
near point 1 has a saddle-type behavior, with the trajectory
running along the most unstable direction and away from the
fixed point. On the contrary, the most unstable modes of
points 4 and 5 are associated with a pair of complex-
conjugate eigenvalues and induce a clockwise rotation
around them.

The global evolution of the trajectory thus represents a
superposition of the large-scale oscillation around these three
points and of smaller-scale oscillations around point 4 or 5.
We notice, therewith, a certain similarity with the role of the
conductive saddle and the convective foci in the Lorenz44

model or the saddle and foci in the nonlinear pendulum;
please see Appendixes B and C. The other fixed points seem
to have less of an influence on the trajectory.

The three possible regimes in our 6D CDV model are
thus the “tight” oscillation around point 4, the tight oscilla-
tion around point 5, and the “wide” oscillation around all
three points. The typical duration of a tight oscillation is
about 20 days, a value that matches well the period associ-
ated with the imaginary part of the eigenvalue in Table I,
which is 21 days.

We can now justify the choice of the range of values
taken for �1

�: for �1
��0.4, the model only produces the wide

oscillation, while for �1
��0.5, the tight oscillations occur

almost exclusively. The forcing level �1
�=0.45 is thus a good

intermediate value to study regime transitions.

IV. PREDICTABILITY AND THE STABLE MANIFOLD

In this section, we study the predictability properties of
the 6D model in the multiple-regime range of 0.4��1

�

�0.5. We will rely on the concepts of stable and unstable
manifold in order to characterize the predictability in differ-
ent regions of the phase space and will compare the results
so obtained with those obtained from an application of the
measures of local predictability described in Sec. II B.

A. The stable and unstable manifolds

Stable and unstable manifolds are useful tools in study-
ing the asymptotic behavior of geophysical dynamical sys-
tems �e.g., Refs. 23, 36, 47, and 81�, as well as of turbulent
two-dimensional �2D� flows �e.g., Ref. 29�. In this work we
extend their use to the present system, whose Kaplan–Yorke
dimension27 equals 3.25.

In the following, the results will be projected on the
plane spanned by the first two EOFs, as in Fig. 4. In this
subspace we can establish an analogy with a 2D flow con-
taining a saddle point and two homoclinic orbits.

A stable and an unstable manifold, Ws and Wu, respec-
tively, can be associated with the saddle point near the mod-
el’s climatological mean �point 1 in Fig. 4�. The phase-space
flow converges toward this saddle point, forward and back-
ward in time, along Ws and Wu, respectively. Indeed a par-
ticle lying near Ws will approach the saddle along that mani-
fold and move away from it along Wu.

Furthermore, pairs of particles, initially straddling Ws,
separate along either branch of Wu. In other words, initial
states in the neighborhood of Ws can follow either one of the

branches of Wu or the other and then visit different regions
of the phase space. When these regions correspond to distinct
regimes of the model’s behavior, the saddle will steer the
flow to one or the other of these regimes. It is thus conve-
nient to use the stable and unstable manifolds to define quali-
tatively distinct flow domains and to characterize exchanges
between such domains. Figure 5 is based on the analysis of
the Hamiltonian model studied in Appendix B and displays a
schematic diagram of this situation.

In our case, this intuitive idea of separation agrees quan-
titatively with the fact that the dimension ns of Ws equals 5
and the dimension nu of Wu is unity. As pointed out in Sec.
6.4 of Ghil and Childress23 �see, in particular, Fig. 6.12
there�, it is typically the case that 0�nu�ns, while the set on
which nu+ns�n, where n is the total dimension of the prob-
lem’s phase space, is the bifurcation set; this set has measure
zero in the problem’s phase-parameter space �see Fig. 1
here�. In full GCMs, ns is large because of the presence of
dissipation operators associated with or related to the
Laplacian—an operator whose eigenvalues are negative and
tend to −
—while nu is still relatively small �e.g., Ref. 6�
and associated with well-defined physical instabilities, baro-
tropic, baroclinic, or convective.

Haller29 presented a particularly interesting method for
computing the stable manifold, based on the finite-map tech-
nique introduced by Bowman.4 The method is based on a
formula that approximates the stable manifold Ws in a 2D
flow by the local maxima of the function

ST�x0� = maxy�Gx0

�x�T,y� − x�T,x0��
�y − x0�

, �12�

where x�t ,x0� denotes a solution over the time interval t
� �t0 , t0+T� with initial condition x0, and Gx0

denotes the set
of nearest neighbors of the point x0. A good choice of T is
needed to find the manifold.

This equation was introduced in the context of 2D flows,
and its validity has not been rigorously proven in higher-
dimensional systems. Still, we will use here the growth rate
of the BVs and SVs, introduced in Sec. II, as two practical
approximations of the right-hand side of Eq. �12�. In fact,
GBV, GSV, and ST are all three estimators of the maximum
growth rate over a given time interval T at phase-space lo-
cation x. If the local maxima of ST do indeed approximate
Ws, as shown in Ref. 29 in the 2D case, then one can expect
the local maxima of GBV and GSV to approximate Ws as well.

Ws Wu

FIG. 5. Illustration of two homoclinic orbits joined at a saddle point. The
stable and unstable manifolds of this point are denoted by Ws and Wu. The
dashed lines represent the evolution of two initial states that lie on either
side of Ws and subsequently separate along the two branches of Wu. This
figure is based on the more intuitive Hamiltonian system introduced in Ap-
pendix B.
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Since GBV and GSV are easier to compute than ST, such a
result would be quite helpful. The stable manifolds found by
computing GBV and GSV, respectively, will be compared with
the stable manifold of point 1 in the CDV model; cf. Figs. 4
and 5.

It is well known from the rich literature on BVs and SVs
that the time interval T over which these vectors are calcu-
lated has a very noticeable effect on the results; see again
Refs. 78 and 79 and Ref. 5, respectively, as well as many
subsequent references. The choice of T in operational
weather forecasting is mostly based on a trade-off between
dynamical considerations and computer time constraints.

Full-blown, high-resolution numerical weather predic-
tion models contain atmospheric waves with several charac-
teristic times: the fastest are the gravity modes, next are
baroclinic eddies �the storm systems of the midlatitudes�, and
slowest are the barotropic modes explicitly resolved by the
CDV model. The choice for the breeding time of BVs, as
well as of optimization of SVs, is nowadays of T�2 days,
which corresponds roughly to the time needed for the most
rapid gravity modes to saturate and allows one to concentrate
on the error growth due to the baroclinic eddies.

We are looking instead for an optimal time T over which
the most rapid growth of the BVs and SVs is located near the
stable manifold of fixed point 1. This value of T is associ-
ated, as we shall see, with the system’s predictability time.

B. Results

First of all, we compute the stable and unstable mani-
folds of the saddle point of the CDV model. These are rep-
resented in Fig. 4. The unstable manifold is obtained by in-
tegrating the model from an ensemble of initial points
located near point 1. The stable manifold is obtained from a
similar initial ensemble but by integrating the model back-
ward in time.

In Fig. 6, the local growth rates �GSV and GBV� are
shown as computed at different locations of the phase space.
Fastest growth is indicated by warm colors and slowest by
cool ones.

For small T, the zones where GSV takes its maximal
values �red in panels �b� and �d�� are quite distinct from the
zones where GBV is maximal �red in panels �a� and �c��. The
SV approach clearly exhibits two zones of very low predict-
ability in the top-right and lower-left corners, while the BV
growth rates are largest closer to where the projection onto
EOF-1 is zero. None of these zones corresponds to the stable
manifold of Fig. 4.

For higher values of T, between 5 and 12 days, the
growth rates GBV and GSV take their respective maximal val-
ues over a fairly similar area; see panels �e�–�h� of Fig. 6.
Comparing with Fig. 4, there is good agreement between this
area and the stable manifold, especially close to the fixed
point; the agreement extends further out at T=11.2 days.

The BV and SV growth rates computed in the red zones
of panels �a�–�d� are high because they correspond to trajec-
tory segments that diverge from one another while remaining
within the “wide-oscillation” region. Conversely, the vectors
that exhibit high growth rates in panels �e�–�h� correspond to
zones where the trajectories can either stay on the wide os-

cillation around point 1 or begin a “tight oscillation” around
point 4 or point 5. These are the zones where the trajectories
separate in order to choose between one oscillatory regime
and the other one. The rapid-divergence zones of panels �a�–
�d� do not lead to immediate regime transitions. Their high
growth rate is due to a higher local phase speed.

This difference in growth rate behavior for long and
short optimization times will be verified in Sec. V. The issues
of error growth via regime transition versus the better-
understood uniform divergence of trajectories will be further
discussed in Sec. VI.

Further increasing the renormalization time T yields a
uniform distribution of GSV over the attractor �not shown�.
This is in agreement with Goldhirsch et al.,26 who proved
that the first singular value of the normal operator in Sec.
II B 2 converges to the leading Lyapunov exponent �0 of the
system for high T. We verified that the value of GSV in this
limit equals 9.97�10−7 s−1, which is indeed the value of the
model’s first Lyapunov exponent. The same convergence to-
ward �0, as T→
, was found for GBV, although no theoret-
ical result is available so far in this case.

Similar numerical experiments were carried out using
finite-size Lyapunov exponents �cf. Aurell et al.1 and Joseph
and Legras36� and very similar results were obtained �not
shown�. Our results of Fig. 6 are also robust with respect to
reasonable changes in the forcing �1

�.
The optimal choice of renormalization time T� needed to

find the stable manifold �cf. Eq. �12�� and to detect the zones
of low predictability for regime transition �cf. Fig. 6� is of
the same order of magnitude in our 6D model as the inverse
of the leading Lyapunov exponent, �0

−1. The same approxi-
mate equality seems to hold for other low-order dynamical
systems �see Appendixes B and C�.

We propose this value of T� as a lower bound on pre-
dictability time: in fact if two initial points are located near
Ws, T� is the time needed to observe a clear separation of the
two trajectories. If the initials points are situated elsewhere,
the time needed to observe the separation of the trajectories
will be the same or higher.

V. ENSEMBLE FORECASTS AND REGIME
PREDICTABILITY

A. Methodology

Legras and Ghil41 first found a difference between the
usual predictability limit—associated with uniform diver-
gence of trajectories and characterized by the leading
Lyapunov exponent, �0

−1—on the one hand and regime
predictability—which they associated with residence time in
a regime and transitions between regimes—on the other; see
also Sec. 6.4 of Ghil and Childress.23 In this section, we
verify that high values of GBV and GSV at different renormal-
ization times T do correspond to different types of diver-
gence of the system’s trajectories, and hence to different pre-
dictability properties. The verification is done by observing
the time evolution of an ensemble of trajectories in the 6D
model’s phase space, initialized in areas of high GSV and
GBV values.

043109-9 Weather regimes and predictability Chaos 19, 043109 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



FIG. 6. �Color� Snapshot of 105 points on the same trajectory taken every renormalization time T. The color measures the growth rates GBV �left column� and
GSV �right column� for different values of T �indicated above each panel�. Zones of low predictability are associated with high values of GBV �or GSV�; these
zones change with T.
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We consider 2000 points belonging to one trajectory.
They are decorrelated in the sense that they are more than T�

apart on the trajectory. The nondimensional coordinates of
each point in the �EOF-1,EOF-2� plane are written as
�x1 ,x2�. Considering the results of Sec. IV, we focus on three
distinct zones of the phase space:

• Zone 1: high values of GBV for short T, Z2= ��x1 ,x2� :0
�x1�0.02 and 0.05�x2�0.015.

• Zone 2: high values of GSV for short renormalization times
T, Z1= ��x1 ,x2� :x1�0.03 and x2�0.005.

• Zone 3: high values of GBV and GSV for longer, near-
optimal T, Z3= �−0.01�x1�0 and 0.005�x2�0.015.

These are roughly the characteristic zones of the attrac-
tor for which either the SV or the BV approach or both
approaches give us a very low predictability.

In Figs. 7 and 8 the evolution of trajectories that origi-
nate from zones 1 and 3, respectively, at time t=0 is shown
at times t�=1, 5, 9, and 13 days. The results for zone 2 are
qualitatively the same as for zone 1 �not shown�.

The left columns of either figure show the probability
distribution function of the points observed at time t� on
trajectories that started at initial time t=0 from points in zone
1 or 3, as defined above. The PDFs in the left column are
represented by the light solid contours, while the phase por-
trait of the attractor is repeated in gray in the background.

The two figures display two very different types of be-
haviors. The evolution of zone 1 has a much smaller spread,
except at t=1 day �panel �a��. In the following days, the
spread is consistently higher for zone 3; bimodality for zone
3 appears already at day 5 �panel �c�� and the smaller PDF
separates completely from the larger one by day 9 �panel
�d��, while for zone 1 moderate multimodality arises only by
day 13 �panel �g��. The evolution of zone 1 �Fig. 7� remains
at all times, except at the very end, within the wide-
oscillation regime. Conversely, the bimodality of the evolu-
tion of zone 3 corresponds to one PDF maximum in the
wide-oscillation regime and another one in the tight-
oscillation regime, turning around point 4.

In the right column of Figs. 7 and 8, the evolution of the
system is illustrated making use of a predictability-and-
persistence measure introduced by Lorenz,46 and further de-
veloped by Trevisan.80 The idea underlying this measure
harks back, actually, to a weather forecasting approach that
predates the beginnings of numerical prediction, namely, the
use of so-called analogs: given today’s weather map, on day
t1, one searches in a catalog of past maps for a similar one. In
the 1960s, the “data mining” for the same map was carried
out simply in the memory of an experienced meteorologist
from the operational center, and the map at time t0, say, was
found on a shelf in a traditional archive. The forecast from t1

to t1+ t� was then issued based on the recorded evolution of
the weather at the previous time, from t0 to t0+ t�.

Lorenz46 modified this operational procedure to study
how two very close states, i.e., a pair of analogs, evolve
away from each other. For this purpose, he used the 5 years
of northern hemisphere, twice-daily weather maps available
at that time to compute the likelihood of finding truly close
analogs in the data. This question is closely related to

Poincaré recurrence2 and to the dimensionality of large-scale,
midlatitude atmospheric flows. Other methods for determin-
ing this dimensionality are discussed in Sec. 6.5 of Ghil and
Childress,23 and all yield an order-of-magnitude estimate of
roughly 100–200.

The exact formulation of Lorenz’s analog-based predict-
ability measure is the following: let xi

0 denote a state vector
at time t= t0 and xi

t its transformation via the system after a
time t�= t− t0. The evolution over time can be observed, as
originally used by Lorenz,46 or simulated, as we shall use it
here.

Let d�xi
t ,xj

t�� be the distance between two states xi
t and

xj
t�. To evaluate the local predictability at a given time t0 of
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FIG. 7. Left column: Evolution of trajectories emanating from zone 1 at
different target times t�; zone 1 corresponds to high values of GBV for short
renormalization times T, and it is bounded by a rectangle in light solid.
Right column: Bivariate PDF of dpers vs dpred at different instants t� of the
evolution of the analogs; the PDF represents the number of analogs with
values of dpred on the abscissa and values of dpers on the ordinate. See text for
details.
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evolution over time t− t0, we define the distance between the
end points of the trajectories emanating from a pair of ana-
logs xi

0 and xj
0 as dpred�t�=d�xi

t ,xj
t�. This distance tells us how

far apart a pair of points that are initially close will separate
and possibly be trapped in two different dynamic regimes
after the time interval t− t0.

To evaluate the persistence of the flow, we compute the
evolution of the distance along a trajectory emanating from a
given initial state xi

0 using its analogs xj
0 at the same time t0:

dpers�t�=d�xi
t ,xj

0�. We are thus estimating how far a trajectory
departs from the neighborhood of its initial state.

All the distances between the points are Euclidean and
computed in the reduced phase plane of �EOF-1,EOF-2�,
even though the BVs and SVs were computed in the 6D
phase space. To select analogs, a distance threshold was cho-
sen so as to have approximately the same number of analogs,
namely, 30 000, in the three zones; the chosen threshold cor-

responds to a distance slightly smaller than the linear dimen-
sion of each zone. In the right column of Figs. 7 and 8, the
predictability-persistence plots are shown at different evolu-
tion times t�= t− t0. Note that high predictability or persis-
tence� corresponds to a small value of dpred�t� or dpers�t�,
respectively.

We find the same difference of behavior between points
in zone 1 �Fig. 7� and in zone 3 �Fig. 8� as in the left column
of the figures. For small values of t� �t=1 day, panel �e� of
the two figures, or 2 days, not shown�, the analogs do not
have time to separate, either from each other or from their
initial position, and the PDF is restricted to high persistence
and high predictability. For large values of t� �more than 20
days, not shown�, the PDF extends over the entire attractor.

At intermediate times, we observe marked differences in
behavior between the two zones. At day 5 for zone 1, a shift
along the persistence axis has occurred. This shift illustrates
the high local phase-space speed, which displaces all analog
pairs along the wide-oscillation region, and little change in
the PDF occurs until day 9 �Fig. 7�f��.

The evolution from zone 3 has already a larger spread at
day 5 and becomes multimodal by day 9 �see panels �f� and
�h� of Fig. 8�. Dominant bimodality arises from the fact that
some of the analog pairs are separated into two distinct
regimes—wide oscillation and tight oscillation �see panels
�e� and �f�� or tight oscillations around points 4 and 5, re-
spectively, panels �g� and �h�—while other pairs stay in the
same region of the attractor. Similar results are obtained us-
ing different thresholds of maximal initial distance for the
analogs.

VI. CONCLUDING REMARKS

The purpose of the present paper was to study key as-
pects of atmospheric LFV, in particular, the effect of multiple
regimes on the flow’s conditional predictability. More pre-
cisely, we wanted to investigate how local predictability may
depend on the position and stability of the system’s fixed
points and their invariant manifolds. In addition, we wished
to evaluate the contribution of methods currently in use in
operational weather prediction to answering the paper’s key
questions.

A. Summary

To provide some insight into these matters, we used the
classical, 6D CDV model of Charney and Devore8 in a pa-
rameter range in which it exhibits multiple regimes. These
regimes are not simply bistable equilibria, as in the better-
known 3D version of the CDV model, but exhibit different
types of time-dependent behavior, as in Ref. 41. The two
model versions share three mode-1 components—�1, �2, and
�3 �cf. Eqs. �A6� and �3��—and differ by the presence of
three mode-2 components, �4, �5, and �6, in the 6D version.

We explored the 6D model’s full bifurcation diagram,
varying the intensity �1

� of the forcing jet �Fig. 1�, and fo-
cused on the parameter range 0.4��1

��0.5; within this
range, the model’s time-dependent behavior can be used as a
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FIG. 8. Same as Fig. 7 but for zone 3; zone 3 corresponds to high values of
GBV and GSV for near-optimal renormalization times T.
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“metaphor” for the multiple time and space scales of extrat-
ropical atmospheric dynamics on the time scale of days to
months.

The 6D model has seven fixed points �see again Fig. 1�
both stable and unstable �see Table I�, whose spatial patterns
are shown in Fig. 2. The model’s multiple regimes are
largely determined by the interplay of three of these fixed
points and of their stable and unstable manifolds �see Fig. 4�.
Two unstable foci, which we labeled points 4 and 5, are
situated symmetrically with respect to the hyperplane �4

=�5=�6=0, and each can intermittently trap the orbit into
relatively “tight” oscillations around that point. These two
oscillations, or “swirls,” are reminiscent of those associated
with the two convective points in the Lorenz44 model and
represent two of our 6D model’s three regimes.

The model’s overall chaotic phase-space flow switches
irregularly between these two tight-oscillation regimes and a
“wide-oscillation” regime that encompasses the two unstable
foci, points 4 and 5, and the mode-1 saddle near the model’s
overall mean or “climatology,” which we labeled point 1 �see
again Fig. 4�. The stable and unstable manifolds issuing from
this saddle point, Ws and Wu, were computed by backward
and forward integrations, respectively, of the model equa-
tions �3� from suitable initial data �see Fig. 4�. These mani-
folds appear to influence decisively the model’s global dy-
namics: Wu separates the upper �positive projection on
EOF-2, upper half-plane in Fig. 4� from the lower �opposite
half-plane in the figure� half of the wide oscillation, while
Ws separates the two tight swirls around points 4 and 5 from
each other.

A key point of the present paper was to evaluate how
local measures of predictability—currently in use in opera-
tional centers of weather prediction—can help approximate
the stable manifold Ws of our model’s central saddle point,
since Ws clearly plays a guiding role in separating the re-
gimes and affects the predictability of transitions between
them. The two leading measures of this type are BVs �Toth
and Kalnay78,79� and SVs �Buizza and Palmer5�.

Using a formula due to Haller,29 namely, Eq. �12�, we
were able to compute quite accurately the stable manifold
Ws. In fact, the growth rates GBV and GSV—associated with
the BV and SV approaches, respectively—provide relatively
simple approximations to the right-hand side of Haller’s for-
mula.

For short renormalization times T, we found high values
of GBV and GSV to be associated with zones on the attractor
that are distinct from each other and both lying far from the
stable manifold �see Fig. 6�. For suitably chosen T, though,
both the BV and the SV approach can help identify the cor-
rect stable manifold Ws of our model’s near-climatological
point 1. The appropriate value, at least for the 6D CDV
model, is T between 6 and 12 days �see again Fig. 6�. We
return to the interpretation of these results in Sec. VI B.

B. Discussion

Legras and Ghil41—using a 25-component model on the
sphere rather than in a �-channel, as used by Charney and
Devore8 or Lorenz45—showed that, in the presence of mul-
tiple regimes, one has to distinguish between the more-or-

less uniform “pointwise predictability” of typical, Lyapunov-
exponent based studies and what they termed “regime
predictability.” First of all, we confirmed that both GBV and
GSV tend to the leading Lyapunov exponent �0 as T→
.

In Sec. V, we found that high values of the growth rates
GBV and GSV do indeed correspond to two different types of
divergence of the system’s trajectories, and hence to different
predictability properties. The difference between Figs. 7 and
8 is quite telling: at small renormalization times T, high GBV

is associated with phase separation along trajectories that
stay within the wide-oscillation regime, while for near-
optimal T, both high GBV and high GSV indicate trajectories
that separate to join either one or the other of the swirls; the
results for short T and high GSV are quite similar to those for
short T and high GBV.

Research studies centered around either the BV or the
SV approach have emphasized the importance of optimizing
the renormalization times T for the growth of the BVs or
SVs, respectively. Thus, Peña and Kalnay63 studied a model
coupling two Lorenz44 systems, one slow and the other fast.
They showed using BVs that a good choice of the renormal-
ization time is of paramount importance in separating the
slow from the fast dynamics, and thus obtaining the proper
leading BV for the slow dynamics. Cai et al.7 implemented
similar ideas in a BV-based predictability study for an “in-
termediate” model of the ENSO the Zebiak and Cane85

model.
Buizza and Plamer5 likewise emphasized the need for

properly choosing the time over which the SVs are opti-
mized; cf. Eq. �11�; for the sake of brevity, we call this time
also “renormalization time,” although the technical details
are somewhat different in the two approaches. Here too, Xue
et al.83 obtained a certain degree of robustness of the SVs in
applying them to Zebiak and Cane’s ENSO model.

These and similar studies were mainly motivated by op-
erational needs to compute a good initial cloud of points for
ensemble forecasts or directions of optimal updates in data
assimilation. The choice of the renormalization time T in
operational weather forecasting is mostly based on trade-offs
between dynamical and practical considerations. These con-
siderations include, but are not limited to, numerical con-
straints �either algorithmic or involving the availability and
distribution of computer power�, the length of the assimila-
tion cycle �in the case of BVs�, or the need of satisfying the
linear approximation to a satisfactory degree �in the case of
SVs�. A posteriori, an optimal renormalization time of a
couple of days is often justified by baroclinic instability’s
being the main source of forecast error growth at the range of
a few days of lead time.

In the present paper, we have added an interesting con-
sideration to the ones already in use in meteorology. We have
shown by using ensemble forecasts, as well as the BV and
SV approaches, that short renormalization times tend to se-
lect directions of high divergence within the same regime,
while longer renormalization times capture trajectory diver-
gence due to regime transitions �see again Figs. 7 and 8�.

These results show the importance of a good, and possi-
bly longer, choice of renormalization time when using BVs
or SVs in a regime-based predictability problem. Multiple
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regimes are pervasive in many nonlinear problems Lorenz,48

not only in meteorology, oceanography, and coupled ocean-
atmosphere climate dynamics but also in the geosciences in
general, as well as in ecology and the life sciences. To the
extent that prediction at both short and longer lead times is
an issue, the results reported here might present some interest
in these broader contexts. In many nonlinear problems—
independently of their origin—short-range prediction corre-
sponds to “beating” rapid error growth within the same re-
gime, while longer-range prediction requires identifying and
foretelling regime transitions.

Due to the simplicity of the CDV model, the present
study is highly idealized and applying its results to the real,
infinite-dimensional atmosphere or ocean can only proceed
via the by now well-trodden path of pursuing these results
through a full hierarchy of models, as outlined by Schneider
and Dickinson,71 Ghil and Robertson,25 and Ghil.22 In this
approach, ideas developed in highly simplified, so-called toy
models with but a few or just a few tens of degrees of free-
dom have to be further tested in intermediate models, with
hundreds or thousands of degrees of freedom and greater
physical realism, such as the Zebiak and Cane85 model, and
finally in full-blown GCMs, with millions of discrete vari-
ables.

ACKNOWLEDGMENTS

It is a pleasure to thank S. Corti, E. Kalnay, B. Legras, C.
Rousset, and A. Trevisan for discussions and suggestions.
Two anonymous reviewers carefully read the paper and pro-
vided insightful and constructive comments. This work was
supported by DOE Grant No. DE-FG02-07ER64439 from
the Climate Change Prediction Program.

APPENDIX A: FULL MODEL DESCRIPTION

The model is governed by the quasigeostrophic equation
of potential vorticity for a fluid evolving in a rectangular
channel of dimension 2�L��L. This channel is located on a
�-plane �e.g., Ref. 23� and has a free surface of height H+�:

�t��2� −
�

�2� + J��,�2� −
�

�2 + f0
h

H
+ �y�

= −
f0DE

2H
�2�� − ��� , �A1�

where the Jacobian J is defined as J�A ,B�= ��xA�yB
−�xB�yA� and �2 is the Laplacian operator. All the variables,
parameters, and constants are defined in Table II.

As usual, we nondimensionalize t by f0
−1, x and y by L, �

and �� by L2f0, and h by H. The equation in the new nondi-
mensional variables is

�t��2� − �̄2 . �� + J��,�2� + h� + �̄�x� = − k�2�� − ��� ,

�A2�

with �̄2= �f0
2L2� / �gH�, �̄= �L /r0�cot��0�, and k=DE / �2H�.

Equation �A2� is expanded in the eigenfunctions Fi of
the Laplacian operator, �2Fi=−ai

2Fi. These functions are
chosen so as to be orthonormal—i.e., for all �i , j�,

�Fi,Fj� 	 1/�2�2��
x=0

2� �
y=0

�

FiFjdxdy = �ij ,

where �ij is the Kronecker symbol—and to satisfy �xFi=0 at
the channel walls y=0,�.

The functions Fi so defined have the following proper-
ties:

�xFi = �
j=1




bijFj with bij = �Fj,�xFi� �A3�

and

�Fj,Fk� = �
i=1




cijkFi with cijk = �Fi,J�Fj,Fk�� . �A4�

The constants cijk verify cijk=−cikj and cijk=cjki=ckij. Hence,
developing �, ��, and h with respect to these basis functions,
�� ,�� ,h�=�i=1


 ��i ,�i
� ,hi�Fi, Eq. �A2� becomes

�ai
2 + �̄2��̇i = �

k�j




cijk��aj
2 − ak

2�� j�k − hj�k + hk� j�

+ �̄�
j=1




bji� j − kai
2��i − �i

�� . �A5�

TABLE II. Variables, parameters, and constants used in the CDV model.

Parameter Meaning Value

r0 Radius of the earth 6400 km
L =r0 /4 length scale 1600 km
�0 Central latitude 45°
� Angular speed of the earth 7.2�10−5 rad s−1

f0 =2� sin �0 Coriolis parameter 1.028�10−4 s−1

� =�2� /r0�sin �0 �-effect parameter 1.6�10−11 m−1 s−1

H Mean height of the fluid 104 m
g Gravity constant 3.6 m s−1

� =�gH / f0 deformation radius 1.5�106 m2

DE Ekman layer depth 200 m
h Topographic height
� Free-surface anomaly
� =g� / f0

�� External forcing
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Following the original idea of Lorenz,45 we retain only
six modes in order to capture key properties of the flow
governed by Eq. �A1� in a low-dimensional model. These six
leading modes and the associated eigenvalues are

F1 = �2 cos y, a1
2 = 1,

F2 = 2 cos nx sin y, a2
2 = n2 + 1,

F3 = 2 sin nx sin y, a3
2 = n2 + 1,

�A6�

F4 = �2 cos 2y, a4
2 = 4,

F5 = 2 cos nx sin 2y, a5
2 = n2 + 4,

F6 = 2 sin nx sin 2y, a6
2 = n2 + 4.

The topographic profile chosen by CDV was based on the
midlatitude topography of the northern hemisphere first in-
troduced by Charney and Eliassen9 into the study of the in-
teraction of large-scale atmospheric flow with mountain
ranges. The topography in this earlier, pioneering paper was
dominated by zonal wavenumber 2, and so Charney and De-
vore restricted their study to second-mode topography only,
i.e., h=h0F2. Furthermore, we study our 6D model consider-
ing only a zonal, west-east forcing, so that ��=�1

�F1.
The nonzero coefficients bij are b23=−b32=b56=−b65

=−n, while the nonzero coefficients of the quadratic terms
cijk are

c321

5
=

c651

4
=

c462

8
=

c543

8
=

8n�2

15�
�A7�

and all the corresponding permutations of the triplet �i , j ,k�.
The final low-order model is given by

�̇1 = − k01��1 − �1
�� + h01�3,

�̇2 = − kn1�2 − ��n1�1 − �n1��3 − �n1�4�6,

�̇3 = − kn1�3 + ��n1�1 − �n1��2 − hn1�1 + �n1�4�5,

�A8�

�̇4 = − k02�4 + 	n��2�6 − �3�5� + h02�6,

�̇5 = − kn2�5 − ��n2�1 − �n2��6 − �n2�4�3,

�̇6 = − kn2�6 + ��n2�1 − �n2��5 − hn2�4 + �n2�4�1,

with the following symbols:

�n1 =
n2

n2 + 1 + �̄2
c321,

�n2 =
�n2 + 3�

n2 + 4 + �̄2
c651,

�nm =
�n2 − m2 + 1�

n2 + m2 + �̄2
c462,

	n =
3

4 + �̄2
c462,

�A9�

knm =
n2 + m2

n2 + m2 + �̄2
k ,

hn1 =
c321

n2 + 1 + �̄2
h0,

hn2 =
c462

n2 + 4 + �̄2
h0,.

�nm =
n

n2 + m2 + �̄2
�̄ .

We study this model in the main text for the following

fixed parameter values—n=2, k=10−2, �̄=0.25, and
h0=0.1—while �1

� is the bifurcation parameter. Unlike by
Charney and Devore and as in Ref. 41, we keep a free upper

surface by letting �̄2�0.

APPENDIX B: REGIME PREDICTABILITY
FOR A HAMILTONIAN SYSTEM

In this appendix, we introduce a very simple Hamil-
tonian model. Its simplicity makes it more physically intui-
tive than the 6D model used in the main text; its multiple
regimes can easily be visualized in a phase portrait, and it is
possible to write the analytical expression of the stable mani-
fold. We use it as a theoretical paradigm for the behavior of
the CDV model. Note that Fig. 5 in the main text applies
exactly to this model; see below.

The system has some similarity with the nonlinear elas-
tic pendulum of Lynch.51 While the elastic pendulum is just
another formulation of the toy model of Lorenz,47 our model
here is better suited for multiple-regime studies; see also
Lorenz.48

Our Hamiltonian toy model has two point masses con-
nected by an elastic spring of rigidity k. The difference with
respect to the classical nonlinear pendulum is that the two
masses are constrained to evolve each along a prescribed
curve �cf. Fig. 9�. The first mass, m1, evolves along a double-
well curve given by equation y= f1�x�; this curve has three
equilibrium points, two stable and one unstable, and m1 can
oscillate around each of the stable points.

The second mass, m2, evolves along a straight line y
= f2�x�, and it adds a perturbation to the motion of m1. This
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perturbation is small if either m2 /m1 or k are small; the
smallness of the latter is determined by k�m1g /L, with L
being a characteristic dimension of the problem that will be
set to 1. In this case, the behavior of m1 is very similar to the
Duffing oscillator,40 while m2 behaves more like a simple,
harmonic oscillator.

We choose the two curves as

f1�x� = x4 − 2x2, f2�x� = 1. �B1�

The parameters of our problem are the spring constant k and
the values m1 and m2 of the two masses. The oscillation
frequency of m1 is linked to the shape of the curve y= f1�x�
and to the gravitational constant g, while the frequency of m2

depends on the value of k. The three parameters can be ad-
justed in order to choose the frequency of each mass. For
weak coupling, i.e., small k, m1 will oscillate with high fre-
quency, while m2 will have a much slower motion.

1. Equation of motion of m1 with no coupling „k=0…

Let �x1 ,y1� be the position of the particle m1 in the �x ,y�
plane, with x horizontal and y vertical, while �ẋ1 , ẏ1� is its
velocity. We are looking for the equation of motion of m1 in
the gravity field �0,−g�. Using the Lagrange multiplier �,
one has to minimize the constrained action integral

S =� �1

2
m1�ẋ1

2 + ẏ1
2� − m1gy1�dt + �� �y1 − f1�x1��dt .

�B2�

The resulting equations of motion are

m1ẍ1 = − �f1��x1� ,

�B3�
m1ÿ1 = − m1g + � ,

subject to the constraint y1= f1�x1�. Substituting the con-
straint into Eq. �B3� yields

ẍ1 = −
ẋ1

2f1��x1�f1��x1� + gf1��x1�
1 + f1��x1�2 . �B4�

From this equation, we can construct a simple 2D dy-
namical system by introducing a new variable u1 to yield
ẋ1=u1 and u̇1 equal to the right-hand side of Eq. �B4�. We
note that the equilibria �x1

e ,u1
e� of the single particle m1 are at

f1��x1
e�=0, where the acceleration is zero, i.e., at x1

e = �1
�stable� and x1

e =0 �unstable�.

2. The regimes of the single-mass oscillator

In such a simple system, a clear identification of the
regimes is easy: one just has to apply the conservation of the
energy,

E = K + P ,

K = 1
2m1�u1

2 + ẏ1
2� , �B5�

P = − m1gy1,

to obtain

u1
2 +

2g�f�x1� − f�x1
0��

1 + f��x1�2 = 0. �B6�

Here x1�t=0�	x1
0 is the initial condition for x1 and we took

u1
0=0. This equation gives the contour of the trajectory

F�x1 ,u1 ;x1
0�=0 for a given energy level E=E0 or, equiva-

lently, a given initial state �x1
0 ,0�.

We know that the closed orbits so described in a 2D,
integrable system like that of �B4� represent purely periodic
motions. The only exceptions are the homoclinic orbits
shown in Fig. 5, in which the stable and unstable manifolds
Ws and Wu are obtained by taking x1

0=0 in Eq. �B6�.
We plot the phase portrait �x1 ,u1� for different values of

x1
0 �cf. Fig. 5� and see that we can define three regimes de-

pending on the value of the initial condition: ��i� and �ii�� the
mass m1 can either oscillate periodically on one side only of
the curve y1= f1�x1�, i.e., in the half-plane ��x1 ,u1� :x1�0 or
��x1 ,u1� :x1�0, or it can �iii� oscillate across the symmetry
line x1=0, thus following a wide oscillation, as in the CDV
model, if the initial value x1

0 is large enough. The addition of
the mass m2 and the spring connecting the two will perturb
the purely periodic motions of the particle m1 described so
far and will allow it to switch from one regime to another, as
is the case in the 6D model of the main text.

3. The coupled-particle system

We now consider the case k�0; the neutral length of the
spring in the absence of any forces will be denoted by l0. If
we call �x2 ,y2� the position of the second mass and l
=��x2−x1�2+ �y2−y1�2 the distance between the two masses,
the equations of motion for m1 and m2 are

ẍ1 = −
ẋ1

2f1��x1�f1��x1� + gf1��x1�
1 + f1��x1�2

+
k�l − l0���x2 − x1� + f1��x1��y2 − y1��

lm1�1 + f1��x1�2�
,

�B7�

ẍ2 =
k

lm2
�l − l0��x1 − x2� .

−1 1

1

2

f2

f1

m2

m1

FIG. 9. Two point masses connected by an elastic spring: m1 evolves along
the double-well curve given by the equation f1�x�=x4−2x2, while m2

evolves on the straight line f2�x�=1.
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The positions of the equilibria �x1
e ,x2

e� depend now on
the value of l0. For simplicity, we choose a configuration for
which the equilibria are the same with and without the
spring: they still have to satisfy f1��x1

e�=0 in both cases,
yielding x1

e = �1 and x1
e =0, as before. Moreover, when we

add the spring, its length l has to verify l= l0, and we take
l0=2 for our basic case. It follows from the geometry of the
two constraints in Fig. 9 that x2

e =x1
e = �1, and there is no

equilibrium of the two-particle system with x1
e =0.

For small values of k �k�mg /L�, the motion of m1 is not
substantially modified by the presence of m2. Computing the
leading Lyapunov exponent �0 as a function of k, for given
m2, we find that �0 increases linearly with k �not shown�.

In the following subsection, we choose m1=m2 and
k /m1=0.2g /L. This choice corresponds to chaotic behavior
of the coupled system but still includes one of the smallest
values of k that permits regime transitions. Hence we assume
that the three regimes defined in the preceding subsection do
not change.

4. Regime predictability in the coupled system

We investigate now whether regime predictability is in-
fluenced by the central fixed point and, if so, whether this
predictability is lowest near this point’s stable manifold.
Once again, we have several tools for our predictability
study. We only show here the results obtained with the SV
approach, but the results using BVs or local Lyapunov vec-
tors are quite similar.

In Fig. 10, one can see that for small renormalization
time T �topmost panel�, GSV takes its highest values in those
regions of the phase space where the particle m1 has highest
velocity. In fact for short-term prediction, the divergence of
the trajectories near the stable manifold is much less than in
these high-velocity zones. Moreover, the zones of high GBV

values �not shown� are located in other parts of the attractor.
This property was already observed by Gyarmati et al.28 for
the elastic pendulum.

If we keep increasing T, the leading singular value of the
normal operator defined in Sec. II B 2 converges to the first
Lyapunov exponent, as verified already for the 6D model in
the main text: the sensitive region of high GSV values
stretches and aligns along the analytically computed stable
manifold �lowermost panel�.

APPENDIX C: APPLICATION TO THE LORENZ
„REF. 44… MODEL

It would have been frustrating to complete this study
without checking whether our results apply to the Lorenz44

model as well. Evans et al.21 already tried to predict the
transitions between the model’s two regimes by using the BV
approach. In the present study, we do not purport to carry out
actual predictions: we merely highlight the zones on the at-
tractor where the predictability is very low due to a possible
regime change.

The equations of the Lorenz44 model are given by

FIG. 10. �Color� Same as Fig. 6 for the coupled-particle system but using
the SV approach only and with the renormalization times T adapted to our
coupled Hamiltonian oscillator. The plots are a projection onto the �x1 ,u1�
plane; panels are identified by the renormalization time T used.
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Ẋ = Pr�Y − X� ,

Ẏ = − XZ + rX − Y , �C1�

Ż = XY − bZ ,

and we use the canonical parameter values Pr=10, b=8 /3,
and r=28. Recall that, for these parameter values, the model
has three unstable fixed points: the conductive one at the
origin, �X ,Y ,Z�= �0,0 ,0�, and the two symmetrically placed
convective ones, �X ,Y ,Z�= ��X0 , �Y0 ,Z0�, with X0=Y0

= �b�r−1��1/2 and Z0=r−1.
We examine now the behavior of the first local

Lyapunov exponent, computed using the Gram–Schmidt
renormalization method. The results of our computations are
plotted in Fig. 11 for different renormalization times T.

The first panel of Fig. 11 agrees quite well with Fig. 3 of
Evans et al.,21 except that their figure is a 3D perspective
plot, while ours is a projection on the �X ,Y� plane. For small
T, the leading Lyapunov vector and BV �not shown� coin-
cide. Like in Appendix B, the zones with the most rapid error
growth at low T correspond to high-velocity zones on the
attractor Once again, when we increase T, the zone of low
predictability stretches and finally, when T exceeds the dura-

tion of a small oscillation around either convective center—
i.e., about 0.75 nondimensional time unit—this zone coin-
cides with the neighborhood of the stable manifold of the
conductive point.

The main conclusion from both appendixes is that any of
the three methods of local predictability study—whether
BVs, SVs, or local Lyapunov exponents—will show that the
regions of lowest predictability for regime transitions align
with the stable manifold of a centrally located point pro-
vided, that is, the renormalization time T is long enough; in
each case, T should exceed the typical time scale of the dy-
namics within a regime. For large-scale, midlatitude LFV,
this result, along with the CDV result in the main text, points
to a T that is longer than the one currently used in opera-
tional weather prediction and that equals or exceeds the typi-
cal life cycle of a baroclinic eddy of 5–7 days.
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FIG. 11. �Color� Local Lyapunov exponent of the Lorenz �Ref. 44� model computed using the Gram–Schmidt method for different renormalization times T
and for 105 points. The separatrix appears very clearly in this projection on the �X ,Y� plane; panels are identified by the renormalization time T.
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