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Abstract. Data assimilation combines a physical model with sparse ob-3

servations, and has become an increasingly important tool for scientists and4

engineers in the design, operation and use of satellites and other high-technology5

systems in near-Earth’s space environment. Of particular importance is pre-6

dicting fluxes of high-energy particles in the Van Allen radiation belts, since7

these fluxes can damage space-borne platforms and instruments during strong8

geomagnetic storms. In transiting from a research setting to operational pre-9

diction of these fluxes, improved data assimilation is of the essence. The present10

study is motivated by the fact that phase-space densities (PSDs) of high-energy11

electrons in the outer radiation belt — both simulated and observed — are12

subject to spatio-temporal variations that span several orders of magnitude.13

Standard data assimilation methods that are based on least-squares mini-14

mization of normally distributed errors may not be adequate for handling15

the range of these variations. We propose herein a modification of Kalman16

filtering that uses a log-transformed, one-dimensional radial diffusion model17

for the PSDs and includes parameterized losses. The proposed methodology18

is first verified on model-simulated, synthetic data and then applied to ac-19

tual satellite measurements. When the model errors are sufficiently smaller20

then observational errors, our methodology can significantly improve anal-21

ysis and prediction skill for the PSDs compared to those of the standard Kalman22

filter formulation. This improvement is documented by monitoring the vari-23

ance of the innovation sequence.24
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1. Introduction and Motivation

1.1. Data assimilation and operational prediction

In the process of moving from research to operations in the study of the Van Allen25

radiation belts, it is of the essence to properly understand and further improve data as-26

similation methodology — as applied to the filtering, smoothing and prediction of electron27

fluxes and phase space density (PSD) fields. The modern uses of data assimilation in the28

geosciences go back to the introduction of meteorological satellites and their application29

to numerical weather prediction (NWP) in the late 1960s and the 1970s (Charney et al.30

[1969]). It was Bjerknes [1904], following the earlier ideas of H. Helmholtz and others,31

who formulated the NWP problem as an initial-value problem for the partial differential32

equations that govern large-scale atmospheric flow.33

As soon as the research group around J. von Neumann at the Institute for Advanced34

Studies in Princeton started working on experimental NWP (Charney et al. [1950]), it35

became apparent that the initial state of the atmosphere at any given time was known36

only very partially and inaccurately. The World Weather Watch introduced by the World37

Meteorological Organization after World War II was designed to provide as good a state38

of the atmosphere as possible twice a day, at noon and midnight Greenwich Mean Time,39

the so-called synoptic times. These synoptic (i.e., simultaneous) observations, however,40

were too costly or impractical to provide adequate coverage of the weather over the entire41

globe. The advent of asynchronous observations, via satellites and other unconventional42

observing platforms and instruments, sharpened the need for the time-continuous, rather43

than intermittent, blending of observations and models (Ghil et al. [1979]; Bengtsson et44

al. [1981]) .45
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To better understand this new point of view, consider a sequence of observations at46

discrete times {tk : t0 ≤ tk ≤ tK} of a scalar or vector variable x(tk) or x(tk). The vector47

variable x(tk) will represent the spatially discretized values of a geophysical field, such48

as temperatures in NWP or PSD values in the radiation belts. Wiener [1949] defined49

filtering, smoothing and prediction of this variable x(tk) as its estimate at: (i) the final50

observing time tK ; (ii) at all tk over the observation interval t0 ≤ tk ≤ tK ; and (iii) at any51

time after the final observation, tK < tk.52

In the real-time prediction problem, it is pretty easy to convince oneself that — under53

fairly general hypotheses on the process to be predicted and given observations up to time54

tK — the best use one can make of the observations is to estimate as well as one can, with55

the knowledge one has, the state at the initial prediction time, i.e., at tK . This is precisely56

how the so-called forecast-assimilation cycle proceeds in NWP; such an operational NWP57

cycle is illustrated in Figs 1(a,b).58

Panel (a) of the figure shows the traditional blending of data and model, at the synoptic59

times, used from the beginnings of data assimilation in the 1960s until the late 1970s and60

early 1980s; such data windows are still used in so-called variational methods of data61

assimilation (e.g., Courtier and Talagrand [1987]). Panel (b) outlines the more recent62

approach, in which data are assimilated at any model time step at which they become63

available; this sequential approach includes a great variety of methods that generally fall64

these days in the broad class of Kalman-type filters (e.g., Jazwinski [1970] or Gelb [1974]).65

In space physics, given the total absence — at any given time of day or night — of66

synoptic data that cover the entire domain of interest, it is natural to start relying on the67

time-continuous approach of data assimilation. This approach can address two types of68
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applications that are of primary interest for the satellite design and operations community:69

nowcasting and short-term forecasting, as well as long-term reanalysis. For both types of70

applications, be it in a research or operational mode, data should be assimilated from the71

operating space platforms and instruments, when and where they become available.72

The nowcasting applications help address issues linked to the state of the space envi-73

ronment’s radiation properties at a given time and location, and thus provide post facto74

insight into the possible causes of particular anomalies. Moreover, a satellite operator75

could take preventive action, based on a reliable short-term forecast of the space environ-76

ment, if a satellite is threatened; given the current lack of such reliable forecasts, such77

action is not a widespread practice at this time.78

In a research mode, one can also consider the smoothing problem, which produces79

“movies” of the plasma properties, particle distribution functions, the magnetic and elec-80

tric fields or the wave environment over the entire lifetime of a satellite or of a group of81

spacecraft, which may last over several solar cycles. Such a movie can help determine the82

average state and extreme conditions in a certain part of the space environment, and can83

be turned into satellite specifications. Our proposed improvement of assimilation method-84

ology should thus help both operational and research aspects of space physics by providing85

better estimates of the radiation environment whenever observations are available.86

1.2. The need for a log-density formulation

A striking feature of the radiation belts is that values of observed electron fluxes and87

modeled PSD vary by several orders of magnitude, and that the corresponding error88

distributions are, therefore, not Gaussian. Still, standard data assimilation methods —89
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such as the Kalman filter and its various adaptations to large-dimensional and nonlinear90

problems — are essentially based on least-squares minimization of Gaussian errors.91

Even though this mismatch between the nature of the data and that of the method leads92

to substantial problems when applying standard assimilation methods to the radiation93

belts, there have been very few investigations to address these issues; we cite here the two94

that we are aware of: first, Naehr and Toffoletto [2005] relied on a log-based transformation95

of the PSD and on an extended Kalman filter to study sequential filter performance on96

synthetic data. Next, O’Brien and Guild [2010] proposed a variational data assimilation97

method based on a Maximum Likelihood Ensemble Filter (MLEF, Zupanski [2005]) that98

also uses a log-based transformation for both the measurements and the model state99

vector.100

In the spirit of these two studies, we explore alternative ways to make Kalman-filter–type101

methods more efficient for use in PSD assimilation for the radiation belts by relying on102

an one-dimensional (1-D) version of the UCLA Versatile Electron Radiation Belt (VERB)103

diffusion model (Shprits et al. [2005], Subbotin and Shprits [2008]; see also Sec. 2 herein)104

and on observations from multiple satellites (Sec. 3). We introduce a log-normal PSD105

transformation in the UCLA VERB 1-D code to derive an analytical model equation for106

the transformed variable (Sec. 5) and use it in our extended Kalman filter formulation of107

Sec. 4.108

First, we analyze the performance of the log-normal Kalman filter so derived on syn-109

thetic data in the “fraternal-twin” experiments of Sec. 6.1, and then apply it to spacecraft110

PSD measurements in Sec. 6.2. We conclude in Sec. 7 by analyzing under which condi-111

tions this log-normal formulation improves the accuracy of the reanalysis and prediction112
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of the PSD field, as inferred from the variance of the Kalman filter’s innovation sequence.113

The main factor influencing the performance of the log-normal filter is the ratio of the114

model error to the observational error. When this ratio is sufficiently small but not neg-115

ligible, the log-normal formulation produces a more efficient modification of the model116

forecast in observation-void regions and better prediction, too.117

118

2. The UCLA VERB Code

The version of the UCLA VERB code that we use here provide a 1-D description of119

the time evolution of the PSD f = f(L∗, t; µ, J) in the Van Allen radiation belts, at120

fixed values of the adiabatic invariants µ and J . The radial variable L∗ is the distance121

— in the equatorial plane, measured in Earth radii RE — from the center of the Earth122

to the magnetic field line around which the electron moves at time t, assuming that123

the instantaneous magnetic field is adjusted adiabatically to a pure-dipole configuration.124

In this study, the Tsyganenko [1989] T89 magnetic field model has been used to derive125

electron fluxes at a particular L∗-value. For simplicity from now on in the text and figures126

we drop the superscript and refer to this variable simply as L: both the radiation belt127

model and all satellite data are computed in L∗.128

The PSD evolution in time is then governed by the following parabolic partial differential

equation [Shultz and Lanzerotti, 1974; Walt, 1994] :

∂f

∂t
= L2 ∂

∂L
(L−2DLL

∂f

∂L
)− f

τL

. (1)
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The radial diffusion term in Eq. (1) represents the violation of the third adiabatic invari-129

ant, while the net effect of sources and losses due to violations of the µ and J invariants130

is modeled in this equation by the linear decay with a characteristic lifetime τL.131

The parameters DLL and τL in Eq. (1) vary rapidly in space and time, and depend on

the background plasma density, as well as on the spectral intensity and spatial distribution

of various plasma waves; all of these conditions are extremely difficult to specify accurately

from limited point measurements. In this study, we adopt a commonly used empirical

relationship due to Brautigam and Albert [2000] which is based on the magnetic field

measurements at L = 4 Lanzerotti and Morgan [1973] and L = 6.6 Lanzerotti et al.

[1978], between the radial diffusion coefficient DLL and the geomagnetic activity index

Kp:

DLL(Kp, L) = 10(0.506Kp−9.325)L10; (2)

this equation applies throughout the outer radiation belt.132

For the lifetime parameter τL, we consider different parameterizations inside and out-133

side the plasmasphere. The latter is a region of the inner magnetosphere that contains134

relatively cool and dense plasma at low energies; it is populated by the outflow of iono-135

spheric plasma along the magnetic field lines, and consists of closed equipotential surfaces.136

The plasmapause that separates it from the regions of open equipotential surfaces lies,137

under quiet conditions, within the outer belt, at LPP = 5− 6RE, where RE is the Earth’s138

radius. Under quiet conditions, the outer belt lies at about 3.5−6RE and the inner belt at139

about 1− 2.5RE, starting just above the ionosphere. Magnetospheric storms deplete the140

plasmasphere and LPP can sink to 3 or, for particularly strong storms, even 2RE, [Baker141

et al., 2004].142
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As described in Kondrashov et al. [2007], distinct loss processes operate inside and

outside of the plasmasphere, and so we account for them separately in the physical model.

Inside we assume that τLI = 10 days is constant in time, while outside we take

τLO = ζ/Kp(t). (3)

To discretize numerically Eq. (1), we use standard second-order centered difference ap-143

proximations for spatial derivatives. We also utilize a fully implicit numerical method to144

advance the solution in time, which allows one to use much larger time steps than explicit145

schemes do.146

3. Spacecraft Observations

This study covers a time interval of 120 consecutive days that starts on July 30, 1990,147

and includes measurements from four space missions: the Combined Release and Radi-148

ation Effects Satellite (CRRES), GEO-1989 (hereafter referred to as GEO), GPS NS18149

(hereafter GPS), and Akebono. To perform data assimilation of the PSD distribution de-150

rived from the electron flux observations measured by the various spacecraft instruments,151

we need first to calculate the PSD in the appropriate phase-space coordinates (µ, K, L);152

here µ is the first adiabatic invariant, while K is a combination of the first two adiabatic153

invariants that is independent of the particle mass and charge.154

The Kp data set is taken from the World Data Center for Geomagnetism in Kyoto,155

Japan, http://swdcdb.kugi.kyoto-u.ac.jp/aedir/. The T89 model is specified by the Kp-156

value and is valid only for relatively modest activity levels. Recently, Ni et al. [2009]157

have compared and mutually calibrated PSD data from the CRRES Medium Electron158

A (MEA) observations and those from the polar-orbiting Akebono Radiation Monitor159
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(RDM) by using the T89 model; they found in general good agreement between the PSD160

values inferred from the two sets of observations.161

Recent, improved models of the magnetic field include parameterizations that use also162

Dst and solar-wind measurements. Though the latter are not generally available for the163

CRRES time period, Kondrashov et al. [2010] showed that Singular Spectrum Analysis164

can be used to fill in large gaps in past solar-wind and IMF data.165

4. The Extended Kalman Filter (EKF)

In this section, we review the Kalman filter as applied to data assimilation in the166

radiation belts, following Kondrashov et al. [2007], Shprits et al. [2007], Ni et al. [2009],167

Koller et al. [2007] and Daae et al. [2011]. The summary here uses the filter’s presentation168

for partial differential equations in the geosciences, as introduced by Ghil et al. [1981]169

and reviewed by Ghil and Malanotte-Rizzoli [1991]; in this presentation, both time and170

space have been discretized by finite differences.171

The time evolution of the state vector xf,t
k = xf,t(k, ∆t) is assumed to be governed by

the numerically discretized system of equations whose right-hand side (RHS) is denoted

by F = F(x); here superscript “t” refers to true, “f” refers to model forecast, and k is

a discretized time index. If the system is nonlinear, F = F(x) has to be linearized to

yield the model matrix M that will be used in advancing the forecast error covariances.

Furthermore, the true state differs from the model forecast by a random error εm:

xf
k = Fk(x

f
k−1), (4)

xt
k = Fk(x

t
k−1) + εm

k , (5)

M =
∂F

∂x
. (6)
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For the radiation belt model of Eq. (1), the components of the state vector xk are the172

PSD values at the discretized grid points in the independent variable L; since the partial173

differential operator in (1) is linear, no linearization, as in Eq. (5), seems to be required.174

In the next section, though, we will encounter a nonlinear version of this equation, thus175

justifying the use of the full set of Eqs. (4)–(6).176

The model noise εm accounts for the net errors due to inaccurate model physics,177

such as errors in forcing, boundary conditions, numerical discretization, and subgrid-178

scale processes. Commonly, the column vector εm is assumed to be a Gaussian white-179

noise sequence, with mean zero and model-error covariance matrix Q, E[εm
k ] = 0 and180

E[εm
k εmT

l ] = Qkδkl, where E is the expectation operator, superscript “T” denotes the181

transpose, and δkl is the Kronecker delta.182

The observations yo
k of the true system, where superscript “o” refers to “observed,” are

also perturbed by Gaussian white noise εo
k with mean zero and given covariance matrix

R, E[εo
kε

oT
l ] = Rkδkl:

yo
k = Hkx

t
k + εo

k. (7)

The observation matrix Hk accounts for the fact that usually the dimension of yo
k is less183

than the dimension of xt
k, i.e., at any given time observations are not available for all grid184

points. It is often also the case that the values of the PSD or other state variable are not185

directly observable, and it is only some linear or nonlinear combination of such variables,186

such as weighted integrals over phase space, that can be measured.187

The Kalman filter and its variants are sequential data assimilation methods. For given

model and observation error covariances, Q and R, the filter combines the model forecast

with the observations so as to obtain the analysis that is closest in a least-square sense
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to the truth. The gain matrix Kk in Eq. (8) represents the optimal weights given to the

observations in updating the model forecast, based on this least-square minimization:

xa
k = xf

k + K(yo
k −Hxf

k), (8)

K = PfHT(HPfHT + R)
−1

, (9)

Pf
k = MkP

f
k−1M

T
k + Q, (10)

Pa
k = (I−KH)Pf

k. (11)

The error-covariance matrices Pf,a are the time-dependent error estimates for the fore-188

cast and the analysis, respectively. One expects, from Eqs. (10) and (11), that the analysis189

error be smaller than the forecast error, cf. Ghil et al. [1981] and Carrassi et al. [2008].190

The sequential estimator for nonlinear systems that uses the linear dynamics operator191

Mk in the quadratic equation (10) for advancing the model covariances Pf
k in time, while192

preserving the nonlinear evolution (4) of the state itself, is called the extended Kalman193

filter (EKF: Jazwinski [1970], Gelb [1974], Miller et al. [1994]). To estimate poorly known194

parameters of the system, Kalman filter can be applied to state vector augmented with195

the parameters values (Kondrashov et al. [2007,2008]).196

It is logical to assume that the PSD is log-normally distributed since it is always posi-197

tive, and generally its variations — as measured, for instance, by the standard deviation198

— increase as its mean value increases. Normally distributed variables, on the other hand,199

can be negative and have a standard deviation that does not change as the mean changes.200

Log-normal errors arise when variation sources accumulate multiplicatively, whereas nor-201

mal errors arise when these sources are additive [Crow and Shimizu, 1988].202
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By assuming a log-normal distribution of errors at each location and errors that are203

uncorrelated between different locations, both Q and R can be specified as diagonal ma-204

trices, and their diagonal terms can be taken simply as αo,mf 2
o,m, where f 2

o,m is the observed205

or modeled PSD value, and αo,m is a specified factor that corresponds to observational or206

model error. Note that the exact values of αo,m are not important: it is their respective207

ratio that determines the weights given to the observations vs. the model solution in the208

analysis, or update, step of the data assimilation. In this study, we follow approach of Ni209

et al. [2009] with the value of αo depending on the intercalibration of satellite data; we210

use αo = 200 for Akebono and αo = 400 for GEO, while αm = 25.211

Due to their reliance on least-squares minimization, the EKF and other Kalman-type212

filters may not be efficient in modifying the model forecast at locations where the obser-213

vations and forecast differ by several orders of magnitude. In the next section (Sec. 5), we214

use a log-normal transformation of variables to derive the model equation for log(f) and215

the corresponding EKF. We then study in Sec. 6.1 the performance of the log-normal EKF216

for synthetic data in “fraternal-twin” assimilation experiments — when the true evolution217

of the system is known — and next, in Sec. 6.2, for actual space-borne observational data.218

219

5. Log-Normal Model and Filter

By introducing the new variable S = log(f) in Eq. (1) and using the chain rule for

partial derivatives in time and space, one can easily obtain the following evolution equation

for the log-transformed PSD:

∂S

∂t
= L2 ∂

∂L

(
1

L2
DLL

∂S

∂L

)
− 1

τL

+ DLL

(
∂S

∂L

)2

. (12)
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The first two terms on the RHS of the log-transformed Eq. (12) correspond to radial220

diffusion and losses respectively, as in Eq. (1). Even though the original Eq. (1) is linear,221

the last term on the RHS of Eq. (12), (∂S/∂L)2, is due to the nonlinear transformation of222

variables and requires special attention in the numerical solution. This term becomes im-223

portant in locations where strong PSD gradients occur; it can be understood as nonlinear224

advection of S with a velocity that depends on its gradient.225

Note that our methodology is distinctly different from that of Naehr and Toffoletto226

[2005], where a log-normal transformation is applied to the numerically discretized equa-227

tion for f . We derive instead the analytical equation (12) for the evolution of S = log(f);228

this equation does not depend on the details of a particular numerical scheme for solving229

the f -equation (1).230

Note that the log-transformed Eq. (12) and the original equation (1) should both yield231

the same solution f(t, L) — to within the accuracy of the spatial discretization and time232

integration scheme — when solved numerically. The numerical solution of the original233

Eq. (1) is typically a smooth monotone function in space, but “naive” approximation in234

space of the quadratic term in Eq. (12) — for example by using centered differences — will235

result in spurious local extrema when integrated numerically. This Gibbs phenomenon236

ultimately leads to unstable solutions and — in order to avoid such numerical instabilities237

and preserve the monotonicity of the solutions of the log-transformed Eq. (12) — we use238

an upwind approximation of (∂S/∂L)2 that is second-order in space and total-variation239

diminishing (TVD: Harten [1983]). The TVD scheme, when combined with the implicit240

time integration, guarantees stable numerical solutions of Eq. (12). To solve numerically241
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either Eq. (1) or Eq. (12), we use a uniform grid of 100 points in L; the number of grid242

points also determines the dimension of the state vector in the Kalman filter formulation.243

Steep gradients are key features of the radiation belts, and there is therefore an addi-244

tional improvement in numerical performance obtained by recasting the diffusion problem245

of Eq. (1) in terms of the transformed variable S = log(PSD): doing so helps avoid non-246

physical negative values, which may arise in numerical schemes that solve Eq. (1) in the247

original variable f = PSD. There is of course a trade-off in difficulty, since the log-normal248

model requires one to solve the nonlinear Eq. (12); this will also present a special chal-249

lenge when applying the proposed methodology to the 3-D VERB code (Subbotin and250

Shprits, 2008) that describes diffusion in energy, pitch angle and L.251

Since Eq. (12) is nonlinear in S, we also need to linearize the model in order to imple-252

ment the EKF of Eqs. (4)–(11). Moreover, for the EKF implementation, observational253

and model errors for f are modified in a manner appropriate for log-transformed vari-254

ables by setting the diagonal elements Q and R equal to log(1 + αm) and to log(1 + αo),255

respectively [Crow and Shimizu, 1988].256

6. Numerical Results

6.1. “Fraternal-twin” experiments

To compare the log-normal EKF scheme of Sec. 5 with the standard EKF implemen-257

tation of Sec. 4, we conduct so-called “fraternal-twin” experiments in which both the258

“true” solution, from which the observations are drawn, and the forecast are produced by259

the same model, but with different values of the lifetime parameters in Eqs. (1) and (12).260

This type of experiment is a harder test for a given assimilation method than a so-called261
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“identical-twin” experiment, in which the model used for the assimilation of partial data262

is identical to the one used to generate the data, and only the initial state may differ.263

We obtain our true PSD distribution from a model run with τLI = 10 days and ζ = 5264

days, cf. Eq. (3) and Fig. 2a; this run is also used to generate synthetic observations265

along the tracks of the GPS and GEO satellites with a 10-min resolution, as plotted in266

Fig. 2c. Our goal is to recover the true solution by assimilating these observations into a267

model simulation with an “incorrect” set of parameters, equal to τLI = 10 days and ζ = 1268

day; these values correspond to higher losses, as shown in Fig. 2b.269

The results of assimilating the synthetic data from Fig. 2c by applying the standard270

EKF formulation are plotted in Fig. 3a. The plot shows that even though assimilating271

this data set drives the model forecast with the wrong parameter values towards the true272

model’s solution, significant differences remain, cf. Fig. 3c. These differences are largest273

for 4 ≤ L ≤ 6, i.e. in the heart of the outer radiation belt, where the PSD gradients are274

strongest in Fig. 2b.275

When using the log-normal EKF of Sec. 5, on the other hand, our data assimilation276

reduces the model forecast error much more efficiently in the region of strong PSD gra-277

dients. This can be clearly seen by comparing Figs. 3b and 3d with the preceding Figs.278

3a and 3c; it is also confirmed by the time-averaged analysis error in PSD values, for the279

standard EKF formulation and the log-normal one, as shown in Fig. 4b.280

Since both the original model equation (1) and the log-transformed equation (12) yield281

identical solutions for the PSD field in the absence of data assimilation, the difference in282

the results can only be due to the change in the data assimilation scheme, as outlined and283

explained in Sec. 5.284
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In addition to comparing the analysis errors, as discussed above, another useful and

readily available means for assessing an assimilation scheme is studying the innovation

sequence:

zk ≡ yo
k −Hxf

k, (13)

which appears in the updating equation (8). The importance of considering the inno-285

vations zk in sequential estimation — i.e., the time series of the differences between the286

observations and the model forecast — was noted already by Kailath [1968] and was287

emphasized recently by Fukumori [2006] in the geophysical context.288

The innovation vector represents the filter’s correction to the model dynamics. For a289

linear system with known coefficients and known noise covariances, the innovation property290

of the Kalman filter states that the innovation sequence has zero mean and is white in291

time, i.e., E[zT
k zl] = 0 for k 6= l; this means simply that the filter extracts, at each time292

step, any and all useful information from the observations. Dee et al. [1985], for instance,293

have used systematically deviations from this property to infer unknown error covariances294

Q and R in the shallow-water model of Ghil et al. [1981]. In the space-plasma context,295

Koller et al. [2007] and Shprits et al. [2007] showed how the nonzero time mean of the296

innovation sequence can point to missing physics in the model’s competing processes of297

losses and local acceleration.298

Here we show how inspection of the innovation sequence can be used to diagnose the299

performance of a data assimilation scheme, even in the case of a nonlinear problem,300

like Eq. (12). As the forecast xf
k does not yet utilize the upcoming observations yo

k,301

the variance of the sequence zk provides an objective measure of prediction skill with302

respect to independent observations: a perfect model would predict exactly the incoming303
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observation vector, so that yo
k = Hxf

k, while a particularly poor model might differ from304

the observations more than their long-term mean, i.e., than the climatology of the system.305

The prediction skill is thus defined here as the variance E[zT
k zk] and it is plotted in306

Fig. 4a for both the standard EKF formulation(red curve) and the log-normal one (blue307

curve); for the latter Eq. (13) has been converted into PSD space to make the two308

estimates comparable. In addition, the straight model simulation of Fig. 2b (dashed309

black curve), without data assimilation, has been plotted as well. The prediction skill310

of these three types of forecast is compared in turn to the total variance of the PSD311

observations obtained from the control run of Fig. 2a; the latter should be reduced by312

the forecast model’s interpolating the sparse data, even though this model is not perfect.313

In practice, we see that for our fraternal-twin experiments, the model simulation with314

the wrong parameter value of ζ = 1 day does not yield any useful prediction skill, as the315

variance of its innovation sequence is even higher than the variance of the “observations,”316

i.e. of the control run. On the other hand, both EKF formulations reduce the variance317

of the innovation sequence, while the log-normal formulation has a substantially better318

prediction skill than the standard EKF at all L-shells, cf. Fig. 4a. In addition, the319

analysis obtained by the log-normal formulation has a substantially lower time-averaged320

error with a truth (cf. Fig. 3c,d) at all L-shells, cf. Fig. 4b.321

The results in Figs. 2–4 have been obtained with observational errors set much larger322

than the model error: αm = 25 and αo = 100αm. In this situation, the EKF can more323

easily correct the model forecast’s state-vector components at grid points away from the324

observation sites [Ghil and Malanotte-Rizzoli, 1991]: When the model is assumed to be325

more accurate than the observations, then the EKF’s weights in Eq. (9) for such locations326
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are non-negligible, due to the spatial correlations inferred from the error covariance matrix.327

The log-normal formulation, due to its capability to capture better very large variations in328

PSD values, allows for much larger corrections of the model forecast where the gradients329

are steepest.330

When the observational and model errors are comparable, say αm = αo, both formula-331

tions yield very similar data assimilation results, with but small differences in prediction332

skill: the smallness of the differences apparent in Fig. 5 is largely due to the fact that333

the model forecast is modified to a much lesser extent at grid points away from the ob-334

servation sites. Finally, when the model error is much larger than the observational error,335

the EKF approximates the “direct-insertion method,” in which the observations simply336

replace the model forecast at all the points where observations are taken. In this case337

(not shown), the EKF results are the same, regardless of the formulation chosen. At the338

opposite end of the error ratio scale, when the model errors are negligible, the EKF will339

ignore the observations completely.340

These results suggest that there is a certain range of ratios between observational and341

model errors within which the log-normal EKF formulation will perform better than342

the standard one. In particular, based on our fraternal-twin experiments with synthetic343

data, the log-normal formulation of the EKF is expected to perform better when the344

observational errors are larger than the model errors. In the next section, we verify these345

results by assimilating actual satellite data, whose errors are quite large.346

6.2. Spacecraft data assimilation

In this section, we compare the standard and the log-normal EKF formulations by assim-347

ilating PSD data derived from measurements on-board the Akebono and GEO spacecraft.348
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These are assimilated into the VERB-1D code with the loss parameters τLI = 10 days349

and ζ = 5 days; see Eq. (3) and Fig. 2a. Unlike in the fraternal-twin experiment of350

the preceding section, here we do not know the continuous spatio-temporal evolution of351

the true PSD field. Instead, we will consider as a comparison benchmark independent,352

high-quality observations from the CRRES spacecraft, with more complete coverage in353

time and space, as shown in Fig. 6a.354

Based on intercalibration of PSD data we assume αm = 25 for the model error in the355

VERB-1D code, while we take observational error αo = 200 for Akebono and αo = 400 for356

GEO. Such a choice of error parameters allows the Kalman filter to modify efficiently the357

full state vector, as described in Sec. 6.1. In agreement with our synthetic-data results358

there, the assimilation results (not shown) using the PSD data from the CRRES mission359

(shown in Fig. 6a) and from the GPS satellite (not shown) do not depend on the EKF360

formulation, since these two data sets are of higher quality and have smaller observational361

errors than the GEO and Akebono data.362

First, we assimilate the AKEBONO RDM measurements which do not include the near-363

Earth region of steep PSD gradients, L ≤ 3; the RDM observations are plotted in Fig.364

6b. The assimilation results for the standard EKF formulation (Fig. 6c) have several non-365

physical PSD maxima at L ≈ 3; these maxima are absent from the CRRES observations366

in Fig. 6a. The results for the log-normal EKF formulation in Fig. 6d, on the other hand,367

yield a smooth PSD field in much better agreement with the CRRES data of Fig. 6a.368

The prediction skill is shown in Fig. 7 and it is improved by both EKF filter formula-369

tions in comparison with the model simulation without the benefit of data assimilation.370
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However, the skill for the log-normal EKF is only modestly better at all L-values, i.e. the371

innovation variance is somewhat smaller than for the standard EKF.372

Unlike in the Akebono case, the GEO measurements cover only a very narrow L-range,373

at L ≈ 5; see Fig. 8b. Such a limited data set presents a greater challenge for the EKF in374

realistically reconstructing the PSD profile at low L-shells, far away from the observations375

points, cf. 7c. Even in this case, the prediction skill of the log-normal EKF is uniformly376

better over the L-range sampled by GEO, as can be seen in Fig. 9.377

7. Conclusions

This study was motivated by the recognition that both simulated and observed phase-378

space density (PSD) values in the radiation belts are subject to very large spatio-temporal379

variations, and that variations over several orders of magnitude may not be adequate380

for standard data assimilation methods based on least-squares minimization of normally381

distributed errors. We formulated therefore in Sec. 5 a model and filter version using the382

logarithm of the PSD as the dependent variable.383

Our “fraternal-twin” experiments in Sec. 6.1 showed that the proposed log-normal384

formulation of the extended Kalman filter (EKF) can substantially reduce the assimilation385

errors in regions of steep PSD gradients; see Figs. 2 and 3. The proposed methodology386

demonstrates the most substantial improvements when model errors are smaller than the387

observational errors. Such an error ratio allows the log-normal EKF implementation to388

modify the model forecast very efficiently in observation-void regions; these modifications389

lead to much better PSD predictions, as inferred from the variance reduction of the390

innovation sequence in Figs. 4 and 5.391
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These findings have been confirmed by assimilating PSD measurements from the GEO392

and Akebono satellites (Figs. 6–9), which have large observational errors derived from in-393

tercalibration studies. In particular, the log-normal EKF applied to Akebono observations394

yields an assimilated PSD field in which non-physical maxima are absent, according to395

independent CRRES validation data. In addition, the prediction skill of the log-normal396

formulation is better for both the GEO and Akebono data. The results of this study397

should thus be useful to researchers, as well as to spacecraft designers and engineers, in398

the transition to operational prediction of the near-Earth space environment of satellites399

and other high-technology systems.400

Our proposed rescaling methodology holds even greater promise for the data assimila-401

tion of multiple-satellite measurements for sophisticated, three-dimensional radiation-belt402

models. Such models describe much better competing loss and source mechanisms than403

the 1-D VERB code used in this study, thus reducing further model errors.404
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Figure 1. Operational forecast-and-assimilation cycle of a typical weather service that

combines the prediction and data assimilation processes. (a) Data are gathered from a

“window” of near-past and near-future data, at the synoptic times, 12 h apart; (b) data

are assimilated as they become available, at any model time step. In panel (b), the letters

‘T’ stand for the locations at which temperature profiles become available from an infrared

satellite sounder at a particular model time step, while the ‘+’ signs indicate grid points

that will be affected by those soundings due to the particular sequential filter applied to

the soundings. Adapted from (a) Ghil [1989], and (b) Ghil et al. [1979], respectively.
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Figure 2. “Fraternal-twin” experiment using synthetic observations from a model

simulation with different parameter values. The radiation belt model employs a Kp-

dependent lifetime parameterization outside the plasmasphere, with τLO = ζ/Kp(t), cf.

Eq. (3). (a) “Truth” given by the model solution with ζ = 5 days, also called the control

run or nature run; (b) model simulation assuming higher losses, with ζ = 1 day; (c)

synthetic observations taken from the control run in panel (a).
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Figure 3. Assimilation results for “fraternal-twin” experiment with forecasts from the

model in Fig. 2b and data from the control run in Fig. 2c: (a) using the standard EKF

formulation of Sec. 4; (b) same as in panel (a) but for the log-normal EKF of Sec. 5; (c)

difference between the assimilation results in panel (a) and the control run of Fig. 2a; (d)

difference between the assimilation results in panel (b) and the same control run.
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Figure 4. (a) Prediction skill of the models and the sequential estimation methods,

defined as variance E[zT
k zk] of the innovation sequence with zk given by Eq. (13); see text

for details. Black solid curve: variance of the synthetic PSD observations sampled from

the control run, cf. Fig. 2c; black dashed: model simulation with incorrect parameter

values and no data, cf. Fig. 2b; red: standard EKF; blue: same for the log-normal

EKF but converted into PSD values. Data assimilation clearly improves the models’

forecasting ability of the data for all L-values, with the smallest variance of the innovation

sequence for the log-normal formulation. These results are for observation errors much

larger than the model errors; see text for details. (b) Error computed as time mean of

the squared difference between assimilation results and control, given in both cases in

terms of PSD values: for the standard EKF (red curve, cf. Fig. 3c), and log-normal EKF

(blue curve, cf. Fig. 3d.)
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Figure 5. Same as in Fig. 4 but assuming equal model and observational errors; see

text for details. In this case, the performance of the standard EKF and the log-normal

EKF are quite comparable.
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(c) Assimilation results with EKF
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(d) Assimilation results with Log normal EKF
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Figure 6. Data assimilation results using real spacecraft data. (a) CRRES PSD obser-

vations; (b) assimilated Akebono observations; (c) assimilation results with the standard

EKF; (d) assimilation results with the log-normal EKF. The log-normal formulation pro-

vides better agreement of the assimilation results with the CRRES observations in the

inner belt, L < 3, where the PSD gradients are strong.
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Figure 7. Prediction skill for real spacecraft data. Same color conventions as in Figs. 4a

and 5a — solid black: variance of the Akebono PSD observations shown in Fig. 6b; dashed

black: model simulation with no data (see again Fig. 2a); red and blue: standard and

log-normal EKF, respectively. The Akebono data improve the model’s forecasting ability

over all L-values, and the log-normal formulation exhibits the smallest variance of the

innovation sequence.
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(c) Assimilation results with EKF
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(d) Assimilation results with Log normal EKF
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Figure 8. Same as in Fig. 6 but for assimilating observations from the GEO satellite.
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Figure 9. Same as in Fig. 7 but for assimilating observations from the GEO satellite.

The log-normal formulation provides again a smaller variance of the innovation sequence

than the standard algorithm, and hence better prediction; compare the blue and red

curves, respectively.
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