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•  The IPCC process: results and further questions."
•  Natural climate variability as a source of uncertainties"

–  sensitivity to initial data  error growth"
–  sensitivity to model formulation  see below!"

•  Uncertainties and how to fix them"
–  structural in/stability "
–  statistical stability (current project results)"

•  Hierarchy of models"
–  “toy” models – Lorenz model (Chekroun et al. poster)"
–  an ENSO-DDE model (Zaliapin et al. poster)"
–  the ICTP-AGCM (Bracco et al. poster)"

•  Applications to IPCC-type problems"
" – climate sensitivity and climate response (Chekroun et al. poster, bis)"
" – interdecadal predictions (Kondrashov et al. poster; "
" " " " " " " "   pls. see next talk, by A. W. Robertson et al.)"



Temperatures rise: 
•  What about impacts? 
•  How to adapt? 

Source : IPCC (2007), !
!AR4, WGI, SPM  

The answer, my friend, 
is blowing in the wind, 
i.e., it depends on the  
accuracy and reliability 
of the forecast … 



Letʼs say CO2 doubles:"
"How will “climate” change?"

    Ghil (Encycl. Global Environmental  "
    Change, 2002)"

2. Climate is purely periodic;"
    if so, mean temperature will"
    (maybe) shift gradually to its"
    new equilibrium value. "
    But how will the period, amplitude"
    and phase of the limit cycle change?"

1. Climate is in stable equilibrium"
    (fixed point); if so, mean temperature"
    will just shift gradually to its new "
    equilibrium value."

3. And how about some “real stuff” "
    now: chaotic + random?"



The uncertainties "
"might be intrinsic, "

rather than mere"
"“tuning problems”"

If so, maybe"
stochastic structural !
stability could help!"

The DDS dream of structural stability (from Abraham  & Marsden, 1978)"

Might fit in nicely with"
     recent taste for "
“stochastic "
     parameterizations” 



Mathematics of climate sensitivity-I

The Ruelle response formula
From a mathematical point of view, climate sensitivity can be analyzed
in terms of sensitivity of SRB measures.

The thermodynamic formalism à la Ruelle, in the RDS context, helps to
understand the response of systems out-of-equilibrium, to changes in
the parameterizations (Kifer, Liu, Gundlach,...).

The Ruelle response formula: Given an SRB measure µ of an
autonomous chaotic system ẋ = F (x), an observable Φ : X → R, and a
smooth time-dependent perturbation Gt , then the time-dependent
variations δtµ, of µ is given by:

δt < µ, Φ >=

Z t

−∞
dτ

Z
µ(dx)Gτ (x) · ∇x(Φ ◦ ϕt−τ (x)),

where ϕt is the flow of the unperturbed system ẋ = F (x) and
< µ, Φ >:=

R
Φ(x)dµ(x).

This formula permits to compute the response of the system without
ensemble of long-run simulations!

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Mathematics of climate sensitivity-II

The susceptibility function
In the case of perturbation of the form Gt(x) = φ(t)G(x), the Ruelle
response formula can be written:

δt < µ, Φ >=

Z
dt ′κ(t − t ′)φ(t ′),

where κ is called the response function. The Fourier transform κ̂ of the
response function is called the susceptibility function.

In this case ˆδt < µ, Φ >(ξ) = κ̂(ξ)φ̂(ξ) and since the r.h.s. is a product,
there are no frequencies in the linear response that are not present in
the signal.

In general, the situation can be more complicated and the theory gives
the following criteria of high-sensitivity:

C: Poles of the susceptibility function κ̂(ξ) in the upper-half plane
⇒ High sensitivity of the systems response function κ(t).

RDS theory offers a path for extending this criteria when random
perturbations are considered.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Pathwise linear response: Numerical results

Lower-right panel shows pathwise linear response in a
stochastic Lorenz model (cf. poster Chekroun et al.).

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Thermocline depth deviations  
from the annual mean in the  

eastern Pacific 

Wind-forced ocean waves  
(Eastward Kelvin, Westward 

Rossby) 
Delay due to finite wave velocity 

Strength of the  
atmosphere-ocean  

coupling Seasonal cycle forcing 

A conceptual delay differential model for ENSO variability: 
What has been learned and what comes next 

Poster 22, Wednesday, March 31, 11:35-1:30PM 

Main results:  
(1) Theory of this non-autonomous DDE (existence, uniqueness, continuous 
dependence, existence of pullback attractor);  
(2) Software (FORTRAN-90) for DDE numerical exploration (standard software 
cannot handle full parameter space exploration); 
(3) Numerical analysis of the model in its full 3-D space of physically relevant 
parameters; 
(4) Model explains: quasi-periodic ENSO behavior; intermittency of El Niño/La Niña 
events; phase locking (warm events around Christmas); interdecadal variability. 



1.Instabilities in the trajectory 
maximum 

t = 0.15 t = 0.5 t = 0.9 

2.Pullback attractor:  
A way to explore asymptotic 
behavior of driven systems   



 Goal:  
To examine optimization strategies for a complex climate model, 
including the behavior of error measures used as contributions to a 

cost function 
•  Model and set-up: The ICTP AGCM 
•  Methods: Low order polynomial fits to the climate model outputs in the 

parameter space; compare linear and non-linear contributions. 
•  Evaluate multi-objective approach as opposed a cost function that 

uses pre-determined, user-supplied, weights to optimize different 
climate variables 

Achievements:  

 For large scale measures (such as RMS of climate variables) we find 
that low order fitting procedures are quite successful. This leads to a 
constrained optimization problem simple enough to solve with 
standard algorithms. We then optimize for multiple objective functions 
associated with different climate variables---the location of the optima 
in parameter space quantifies the ‘contradiction’ between objectives 
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Global optima for the ICTP AGCM calculated for different objective functions 
optimized separately for various climate variables. It shows the contradiction between 
different objective functions (experienced by modelers as ‘one thing got better but the 
others got worse’). Optima can then be given a strict partial order to inform user 
decisions. Small spheres are obtained with a fitting procedure of order N (in the # of 
parameters); in most cases they give a reasonable approximation to an order N2 
procedure (larger spheres).  



Reserve Slides 



It’s gotta do with us, at 
least a bit, ain’t it? 

But just how much? 

IPCC (2007)"



Courtesy Tim Palmer, 2009"



Summary!
•  A change of paradigm for open, non-autonomous systems"
•  Random attractors are (i) spectacular, (ii) useful, and "
"(iii) just starting to be explored for climate applications."

Work in progress!
•  Study the effect of specific stochastic parametrizations "
"on model robustness."

•  Applications to intermediate models and GCMs."
•  Implications for climate sensitivity."
•  Implications for predictability?"



What do we know?!
•  Itʼs getting warmer."
•  We do contribute to it."
•  So we should act as best we know and can!"

What do we know less well?!
•     By how much?"

  – Is it getting warmer …"
  – Do we contribute to it …"

•     How does the climate system (atmosphere, ocean, ice, etc.) really work?"
•     How does natural variability interact with anthropogenic forcing?"

What to do?!
•     Better understand the system and its forcings."
•     Explore the modelsʼ, and the systemʼs, robustness and sensitivity "

    – stochastic structural and statistical stability!"
    – linear response = response function + susceptibility function!!"
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