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1. INTRODUCTION

The physical growth mechanism of EI-Nino/Southern-Oscillation (ENSO) is quite well
understood: is due to the positive atmospheric feedbacks on equatorial SST anomalies via the
surface wind stress, cf. Bjerknes [1969]. Still, ENSO’s unstable quasi-periodic behavior prevents
Its robust predictions, even at subannual lead times. Conceptual numerical modeling plays a
prominent role in understanding ENSO variablility and developing forecasts. Despite the existence
and importance of comprehensive numerical models, much of our theoretical understanding of
ENSO comes from relatively simple models. Initiated in the 1980s, the study of such
conceptual models has significantly contributed to shedding new light on many aspects of ENSO,
Including its quasi-periodic behavior, onset of instablilities, phase locking, power spectrum, and
Interdecadal variability.

This project focuses on theoretical and numerical exploration of a conceptual modeling
approach that deals with a simplified picture of ENSO dynamics yet allows one to achieve a
rather comprehensive understanding of ENSO’s underlying mechanisms and their interplay.
The projects explores a deterministically chaotic, nonlinear paradigm to explain the complexities
of ENSO dynamics by the nonlinear interplay of its principal internal mechanisms.

2. SUMMARY OF RESULTS

We studied a forced delay differential equation (DDE) for ENSO variability. The model combines
two key mechanisms that participate iIn ENSO dynamics: (i) delayed negative feedback caused
by oceanic waves, and (il) seasonal forcing. The main results are summarized by Ghil et al.
[2008b] and Zaliapin and Ghil [2010]. We have developed an appropriate software and described
the model behavior in the three-dimensional (3-D) space of its physically relevant parameters —
oceanic wave delay r, strength x of ocean-atmosphere coupling, and amplitude b of seasonal
forcing — and established two regimes of variability, stable and unstable, separated by a sharp
neutral curve In parameter space. A detailed numerical exploration of model solutions has found
() Numerous scenarios relevant to the ENSO physics, including quasi-periodic EI Nino/La Nina
events, interdecadal variability, and patterns reminiscent of Madden-Julian oscillations or
westerly wind bursts; (i) The phase locking of solutions to the seasonal cycle: local
temperature maxima and minima tend to occur at the same position within this cycle, which is a
characteristic feature of the observed El Nino events; (iii) Parametric instabilities in the location
of extrema; (iv) Co-existence of multiple solutions for the same parameter values in certain
parameter ranges; (v) Scenario by which the model goes from simple (period-1) to more
complicated (period-k) solutions. Furthermore, we have applied to our model the concept of
pullback attractor (PBA, [Ghil et al., 2008a]) and demonstrated that its dynamics — whether
periodic or quasi-periodic — occurs on a two-dimensional torus. This behavior reflects the
competition between two oscillatory mechanisms: an external one due to the seasonal forcing
and an internal one due to the delayed feedbacks. Such an interpretation is much harder to obtain
from the complex, parameter-sensitive dynamics of the model using more traditional, theoretical

and numerical, approaches. We expect to see similar behavior in much more detailed and
realistic models, where it Is harder to describe Iits causes as completely.

3. WHAT'S NEXT

The results and collaborations established within this project have prepared us to address the
following problems: (1) Explore the quasi-biennial and quasi-quadrennial modes of variability
associated with ENSO; and more generally, study the modes of low-frequency ENSO variability in
a full hierarchy of models; (2) Further develop the pullback attractor (PBA) approach to ENSO
modeling. This includes a study of PBA geometry and its dependence on the model parameters
as well as a study of the system’s physical measure on the PBA; (3) Expand the present study to
the analysis of ENSO variability under global climate change (e.g., global warming); and (4)
Explore more realistic conceptual models of ENSO that will include positive delayed feedbacks on
the thermocline depth (temperature) and oceanic wave.

4. MODEL: FORMULATION AND SOLUTION PROPERTIES

We consider the Ghil et al. [2008b] model, summarized here as follows:
d
h(t) = —tanh|{xh(t - 7) |+ bcos(2xt)

Thermocline depth deviations |

from the annual mean in the
eastern Pacific

Strength of the
atmosphere-ocean

coupling Seasonal cycle forcing

Wind-forced ocean waves . |
(Eastward Kelvin, Westward Rossby)  Delay due to finite wave velocity

Theorem 1 (Existence, unigueness, continuous dependence); see Ghil et al. [2008b]

’ o)
| dh(t
di ) =—tanh|xh(t—7)|+bcos(2zt), t>0 (1)
h(t) = (1), te[-7,0) (2)
The IVP (1-2) has a unigue solution on [0, ) for any set («x,b, 7, ).
This solution depends continuously on initial data ¢(t), delay r,
and the rhs of (1) (in an appropriate norm).

Corollary 1 (Detection of unstable solutions)

A discontinuity in a solution profile (see Fig. 7 below) indicates existence of an unstable solution that
separates the attractor basins of two stable solutions.
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5. INSTABILITIES

Ghil et al. [2008b] have discovered two domains in the model’'s parameter space:
stable and unstable. The stable domain Is characterized by unique period-1
solutions: no multiple solutions exist in this domain. The unstable domain exhibits
physically plausible behavior with quasi-periodic solutions; in this domain multiple
solutions obtain almost everywhere. This panel illustrates instabilities in the
trajectory maximum; similar results are obtained for other trajectory statistics:
minimum, mean, variance, etc.
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6. BEHAVIOR OF EXTREMA (INTERMITTENCY)

Figure 3 shows the values of local maxima (r=c/) and minima (blue) as a function of the oceanic wave
delay 7. Ghil et al. [2008] have found that the solution period generally increases with z. Such a period
Increase Is associated with an increase of the number of distinct local extrema, each of which is
observed once a year. This increase follows a pattern, shown in Fig. 5, that is typical of chaos In
discrete-time dynamical systems (maps) and suggests that the DDE model’s continuous-time solutions
also evolve to larger and larger periods through a sequence of increasingly complex chaotic regimes.
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Figure 3: Values of local maxima (r=c) and minima (blue) as a function of oceanic wave
delay. Periodic and chaotic behavior alternate intermittently.

/. TIME-DEPENDENT ATTRACTOR: PULLBACK APPROACH

The concept of attractor plays an important role in studying autonomous
dynamical systems. Pullback Attractor (PBA) Is a generalization of the concepts
of attractor and strange attractor to non-autonomous (driven) systems,; see
Ghil et al. [2008a] and references therein. A PBA formalism has been applied to
studying the DDE ENSO model, as well as a broader class of models.

Theorem 2 (Existence of PBA in a DDE system)

The class of DDE considered

Let w € Cp(R,R") an almost periodic function. Let Q be the closure of
{w(t + -); t € R} for the topology of uniform convergence,

X = F(X(8)) + J(X(t — 7)) +w(t), w e P

supplemented by

with 7 > 0 and ¢» € C°(R, R").

Existence of PBA
Theorem. Assume that there exist o« > 0, and 3 > 0, s.t.

(F(x),X) < —al|X|>+ 3, ¥ x € R".

and that J : R” — R" is continuous and bounded i.e.
AM >0, s.t. |[J(&)]| <M forall £ € R”.
Then there exists a global pullback attractor of (2).
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Figure 5: Distribution of the values of local maxima within a chaotic
regime that separates period-1 and period-3 trajectories
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 Numerical system’s forward attractor may suggest that the
dynamics Is quasi-periodic or weakly chaotic.

 Numerical system’s PBA, shown In over the static
attractor in the “movie frames”, clearly shows that the
dynamics --- periodic or quasi-periodic --- occurs on a 2-D
torus within the three-dimensional space generated by the
"product" of the 2-D manifolds.
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Figure 6: Forward attractor (a,b) and pullback attractor (c-h) for the DDE ENSO model.
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