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MODELMODEL
• ICTP AGCM (Molteni F 2003 Climate Dyn 20 175 191; Bracco et al• ICTP AGCM (Molteni F., 2003, Climate Dyn. 20, 175-191; Bracco et al. 
2004 Climate Dyn 23 659-678)2004, Climate Dyn. 23, 659 678)

Spectral dynamical core• Spectral dynamical corep y
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annual mean) change relative to the standard case when convective relative humidity reanalysis reconstructed from model quadratic fits for two-dimensional slices• Shortwave radiation scheme uses two spectral bands annual mean) change relative to the standard case when convective relative humidity reanalysis, reconstructed from model quadratic fits for two dimensional slices
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4 19 l h idit 0 90 i it 8 49 f d i KNITRO li• Bulk aerodynamics formulas for surface fluxes case); (b) linear contribution aμmax and (c) quadratic contribution b(μmax)2 In mm/day 4.19, rel. humidity = 0.90, viscosity = 8.49 found using KNITRO nonlinearBulk aerodynamics formulas for surface fluxes
• Estimation of cloud cover and its thickness
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Figure 5: Global optima
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