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• ICTP AGCM (Molteni F 2003 Climate Dyn 20 175 191; Bracco et al• ICTP AGCM (Molteni F., 2003, Climate Dyn. 20, 175-191; Bracco et al. 
2004 Climate Dyn 23 659-678)2004, Climate Dyn. 23, 659 678)

Spectral dynamical core• Spectral dynamical corep y
• Eight Sigma-levels spectral triangular truncation at total wave number 30Eight Sigma levels, spectral triangular truncation at total wave number 30
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b d l d ib d th h ldboundary layer exceeds a prescribed threshold Figure 2: (left) Speedy ensemble mean JJA precipitation (as a departure from the Figure 4: RMS error of modeled June-August precipitation relative to NCEPy y p
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annual mean) change relative to the standard case when convective relative humidity reanalysis reconstructed from model quadratic fits for two-dimensional slices• Shortwave radiation scheme uses two spectral bands annual mean) change relative to the standard case when convective relative humidity reanalysis, reconstructed from model quadratic fits for two dimensional slices
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• Estimation of cloud cover and its thickness
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Figure 5: Global optima
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investigated P is precipitation T isDJF DJF investigated. P is precipitation, T isDJF
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JJA Note the negative temperature U V are windJJA JJA Note the negative temperature, U, V are windJJ JJ
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