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Our DOE-funded work has developed a twin approach of non-
homogeneous hidden Markov models (NHMMs) and coupled ocean-
atmosphere (O-A), intermediate-complexity models (ICMs) to 
identify the potentially predictable modes of climate variability  and to 
investigate their impacts on the regional-scale. We have developed 
a family of latent-variable NHMMs to simulate historical records of 
daily rainfall, and used them to downscale seasonal predictions. We 
have also developed empirical mode reduction (EMR) models for 
gaining insight into the underlying dynamics in observational data 
and general circulation model (GCM) simulations. Using coupled O-
A ICMs, we have identified a new mechanism of interdecadal climate 
variability, involving the midlatitude oceans' mesoscale eddy field 
and nonlinear, persistent atmospheric response to the oceanic 
anomalies. A  related decadal mode is also identified,  associated  
with the oceans' thermohaline circulation.

The goal of the continuation is to build on these ICM results and 
NHMM/EMR model developments and software to strengthen two 
key pillars of  support  for the development and application of climate 
models  for climate change projections on time scales of decades to 
centuries,  namely: (a) dynamical and theoretical understanding of 
decadal-to-interdecadal oscillations and their predictability; and (b) 
an interface from climate models to applications, in order to inform 
societal adaptation strategies to climate change at the regional 
scale, including model calibration,  correction, downscaling and, 
most importantly, assessment and interpretation of spread and 
uncertainties in multi-model ensembles.

• to assess the uncertainties in atmosphere-ocean GCM climate-
change projections at the scale of local rainfall statistics
• to assess candidate schemes with respect to potential 
predictability  and prediction skill at decadal time scales, using 
empirical and intermediate dynamical models
• to estimate potential biases in current global climate projections 
due to lack of active eddy  dynamics in state-of-the-art AOGCMs
• to develop  parallel, scalable Bayesian estimation software for a 
family of NHMM and EMR models 

Acknowledgment: This work is supported by a grant from the U.S.  
Department of Energy Climate Change Prediction Program (CCPP).

Introduction

Goal

Objectives Intermediate Coupled Models Bimodal regimes of atmospheric mid-laititude jets coupled to oscillations in the ocean’s wind-
driven and thermohaline circulations.

Empirical Models Hidden Markov Models applied to interpret and “downscale” GCM climate-change projections at regional scale.
Empirical Mode Reduction used to link ICM and GCM results.

Empirical Mode Reduction applied to mid-latitude 
atmospheric variability simulated by a 3-layer quasi-
geostrophic model. 
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Observed and simulated 10–15 year oscillation. Atmospheric bimodality in models and observations.Coupled QG channel atmosphere
and QG or PE sector ocean.
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Rainfall change over India 
in CCSM3 A1B Scenario 
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Hidden Markov Model (HMM) applied to 
CCSM3 simulated summer rainfall changes 
over NW India.

Introduction

Hidden Markov models have been utilized for at least the past decade for the analysis and 
downscaling of precipitation (see, e.g., Hughes et al., 1996). In analytical, or diagnostic 
mode, such models are capable of parsing observed precipitation time series over a network 
of stations into a small set of characteristic “hidden states” that identify patterns of covari-
ability in station rainfall. Such states can often be identified with corresponding patterns, or 
“weather states” of the large-scale circulation, that condition the observed fine-scale station 
rainfall fluctuations (Greene et al., 2007).

Central to the structure of such models is a matrix whose entries are the probabilities of tran-
sitions among the different states. In the downscaling mode this matrix is coupled to the 
large-scale flow field, which may thus modulate the transition probabilities. Given certain as-
sumptions, such a “non-homogeneous,” statistical model allows for the possibility of predic-
tion. Here, we construct such a model, compare it with the corresponding diagnostic model 
and generate station rainfall statistics for the A1B climate change scenario.

The analytical (homogeneous) and predictive (non-homogeneous) models are shown sche-
matically below. Scalar S represents the hidden state in effect on a particular day, vector R 
the rainfall distribution over the station network on that dat. Only R is observable; this is the 
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(a) Homogeneous model (b) Non-homogeneous model

significance of the model qualifier “hidden.” In (b) S is conditioned by an exogenous influ-
ence X, which may be vector or scalar. The choice of X is a non-trivial problem.

Below are shown (a) the “Viterbi sequence” for an homogeneous HMM and its climatology, 
applicable to the Jun-Sep Indian monsoon, and (b) the corresponding transition matrix.

Limitations of the homogeneous model structure

(a) Viterbi sequence and climatology

(b) Transition matrix: Entry ij gives 
the probability of a transition to state j, 
given a present state of i. (Entries on 
the main diagonal are the “self-trans-
ition probabilities.) The Viterbi se-
quence shows clearly that a time-
invariant transition matrix cannot be 
correct in the strict functional sense. 
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A shear-based index

As an index of monsoon strength, we utilize the vertical shear of the zonal wind 
(850-200 mb), averaged over a box extending from 5-20N, 40-80E, the “WSI1” 
index suggested by Wang and Fan (1998). This index exhibits a relatively high cor-
relation (0.61) with an OLR-based measure of Indian monsoon rainfall (computed 
for  1974-1997). All of the climate models exhibit a local shear maximum in this 
box, in both the 20c3m and A1B simulations. It is thus a relatively stable feature.
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The CMIP3 models exhibit a wide range of climatologies for the monsoon domain. 
Since downscaling aims to link the fine-scale station rainfall to large-scale model flow 
fields, these models were first compared on the basis of these large-scale fields -- the 
850mb horizontal winds and 500mb vertical velocity, comparing these with NCEP-
NCAR reanalysis winds. Fields from three of the more realistic models are shown 
below. (Horizontal velocities given in m s-1, vertical velocities in Pa s-1. JJAS climatolo-
gies for 1951-1970 are shown.)

(a) NCEP-NCAR reanalysis
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(b) GFDL-CM2.1
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mpi_echam5 850mb horizontal winds, 500mb vertical velocity
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(c) MPI ECHAM-5 (d) NCAR-CCSM3.0

GFDL-CM2.1, WSI1 index,1951-1970 (black) and 2071-2100
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A climatological shear map and time series for the NCEP-NCAR reanalysis are 
shown below in the two leftmost plots. The three plots to the right show the climato-
logical indices for the three models, for both the 1951-1970 period and for the years 
2071-2100 in the A1B scenario. For the latter (as well as for A2), there is a slight 
weakening for the ECHAM and NCAR models, very little change in CM2.1.

Dynamics vs. thermodynamics

Lower tropospheric water vapor is expected to increase as the planet, and in particu-
lar, the ocean surfaces, warm. This is owing to the strond dependence of saturation 
vapor pressure on temperature, as described by the Clausius-Clapeyron relation. A 
dynamical index, based solely on winds, would know about increased lower-
tropospheric humicity only indirectly. For this reason, NHMM simulations were 
conducted both with and without “Clausius-Clapeyron scaling.” The scaling was ap-

plied to the modeled intensity distributions, which consist of two-component mixed 
exponential, at all stations, and was dependent on the change in mean JJAS sea-
surface temperature in each model, between the periods simulated. SST was aver-
aged over a boxextending from 0-20N, 55-95E. Changes in GFDL, MPI and NCAR 
models were 2.5 K, 3.3 K and 2.4 K, leading to scaling factors of 15%, 19.5% and 
14.4%, respectively. 

Experimental results

Shown below are summaries, in statistical form of 200-year simulations using the 
NHMM. In each case, daily precipitation is simulated at each of the stations, consis-
tent with the fitted 
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Introduction

Hidden Markov models have been utilized for at least the past decade for the analysis and 
downscaling of precipitation (see, e.g., Hughes et al., 1996). In analytical, or diagnostic 
mode, such models are capable of parsing observed precipitation time series over a network 
of stations into a small set of characteristic “hidden states” that identify patterns of covari-
ability in station rainfall. Such states can often be identified with corresponding patterns, or 
“weather states” of the large-scale circulation, that condition the observed fine-scale station 
rainfall fluctuations (Greene et al., 2007).

Central to the structure of such models is a matrix whose entries are the probabilities of tran-
sitions among the different states. In the downscaling mode this matrix is coupled to the 
large-scale flow field, which may thus modulate the transition probabilities. Given certain as-
sumptions, such a “non-homogeneous,” statistical model allows for the possibility of predic-
tion. Here, we construct such a model, compare it with the corresponding diagnostic model 
and generate station rainfall statistics for the A1B climate change scenario.

The analytical (homogeneous) and predictive (non-homogeneous) models are shown sche-
matically below. Scalar S represents the hidden state in effect on a particular day, vector R 
the rainfall distribution over the station network on that dat. Only R is observable; this is the 
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(a) Homogeneous model (b) Non-homogeneous model

significance of the model qualifier “hidden.” In (b) S is conditioned by an exogenous influ-
ence X, which may be vector or scalar. The choice of X is a non-trivial problem.

Below are shown (a) the “Viterbi sequence” for an homogeneous HMM and its climatology, 
applicable to the Jun-Sep Indian monsoon, and (b) the corresponding transition matrix.

Limitations of the homogeneous model structure

(a) Viterbi sequence and climatology

(b) Transition matrix: Entry ij gives 
the probability of a transition to state j, 
given a present state of i. (Entries on 
the main diagonal are the “self-trans-
ition probabilities.) The Viterbi se-
quence shows clearly that a time-
invariant transition matrix cannot be 
correct in the strict functional sense. 
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A shear-based index

As an index of monsoon strength, we utilize the vertical shear of the zonal wind 
(850-200 mb), averaged over a box extending from 5-20N, 40-80E, the “WSI1” 
index suggested by Wang and Fan (1998). This index exhibits a relatively high cor-
relation (0.61) with an OLR-based measure of Indian monsoon rainfall (computed 
for  1974-1997). All of the climate models exhibit a local shear maximum in this 
box, in both the 20c3m and A1B simulations. It is thus a relatively stable feature.
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The CMIP3 models exhibit a wide range of climatologies for the monsoon domain. 
Since downscaling aims to link the fine-scale station rainfall to large-scale model flow 
fields, these models were first compared on the basis of these large-scale fields -- the 
850mb horizontal winds and 500mb vertical velocity, comparing these with NCEP-
NCAR reanalysis winds. Fields from three of the more realistic models are shown 
below. (Horizontal velocities given in m s-1, vertical velocities in Pa s-1. JJAS climatolo-
gies for 1951-1970 are shown.)

(a) NCEP-NCAR reanalysis
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(b) GFDL-CM2.1
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(c) MPI ECHAM-5 (d) NCAR-CCSM3.0

GFDL-CM2.1, WSI1 index,1951-1970 (black) and 2071-2100
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A climatological shear map and time series for the NCEP-NCAR reanalysis are 
shown below in the two leftmost plots. The three plots to the right show the climato-
logical indices for the three models, for both the 1951-1970 period and for the years 
2071-2100 in the A1B scenario. For the latter (as well as for A2), there is a slight 
weakening for the ECHAM and NCAR models, very little change in CM2.1.

Dynamics vs. thermodynamics

Lower tropospheric water vapor is expected to increase as the planet, and in particu-
lar, the ocean surfaces, warm. This is owing to the strond dependence of saturation 
vapor pressure on temperature, as described by the Clausius-Clapeyron relation. A 
dynamical index, based solely on winds, would know about increased lower-
tropospheric humicity only indirectly. For this reason, NHMM simulations were 
conducted both with and without “Clausius-Clapeyron scaling.” The scaling was ap-

plied to the modeled intensity distributions, which consist of two-component mixed 
exponential, at all stations, and was dependent on the change in mean JJAS sea-
surface temperature in each model, between the periods simulated. SST was aver-
aged over a boxextending from 0-20N, 55-95E. Changes in GFDL, MPI and NCAR 
models were 2.5 K, 3.3 K and 2.4 K, leading to scaling factors of 15%, 19.5% and 
14.4%, respectively. 

Experimental results

Shown below are summaries, in statistical form of 200-year simulations using the 
NHMM. In each case, daily precipitation is simulated at each of the stations, consis-
tent with the fitted 
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Introduction

Hidden Markov models have been utilized for at least the past decade for the analysis and 
downscaling of precipitation (see, e.g., Hughes et al., 1996). In analytical, or diagnostic 
mode, such models are capable of parsing observed precipitation time series over a network 
of stations into a small set of characteristic “hidden states” that identify patterns of covari-
ability in station rainfall. Such states can often be identified with corresponding patterns, or 
“weather states” of the large-scale circulation, that condition the observed fine-scale station 
rainfall fluctuations (Greene et al., 2007).

Central to the structure of such models is a matrix whose entries are the probabilities of tran-
sitions among the different states. In the downscaling mode this matrix is coupled to the 
large-scale flow field, which may thus modulate the transition probabilities. Given certain as-
sumptions, such a “non-homogeneous,” statistical model allows for the possibility of predic-
tion. Here, we construct such a model, compare it with the corresponding diagnostic model 
and generate station rainfall statistics for the A1B climate change scenario.

The analytical (homogeneous) and predictive (non-homogeneous) models are shown sche-
matically below. Scalar S represents the hidden state in effect on a particular day, vector R 
the rainfall distribution over the station network on that dat. Only R is observable; this is the 
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(a) Homogeneous model (b) Non-homogeneous model

significance of the model qualifier “hidden.” In (b) S is conditioned by an exogenous influ-
ence X, which may be vector or scalar. The choice of X is a non-trivial problem.

Below are shown (a) the “Viterbi sequence” for an homogeneous HMM and its climatology, 
applicable to the Jun-Sep Indian monsoon, and (b) the corresponding transition matrix.

Limitations of the homogeneous model structure

(a) Viterbi sequence and climatology

(b) Transition matrix: Entry ij gives 
the probability of a transition to state j, 
given a present state of i. (Entries on 
the main diagonal are the “self-trans-
ition probabilities.) The Viterbi se-
quence shows clearly that a time-
invariant transition matrix cannot be 
correct in the strict functional sense. 
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A shear-based index

As an index of monsoon strength, we utilize the vertical shear of the zonal wind 
(850-200 mb), averaged over a box extending from 5-20N, 40-80E, the “WSI1” 
index suggested by Wang and Fan (1998). This index exhibits a relatively high cor-
relation (0.61) with an OLR-based measure of Indian monsoon rainfall (computed 
for  1974-1997). All of the climate models exhibit a local shear maximum in this 
box, in both the 20c3m and A1B simulations. It is thus a relatively stable feature.
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The CMIP3 models exhibit a wide range of climatologies for the monsoon domain. 
Since downscaling aims to link the fine-scale station rainfall to large-scale model flow 
fields, these models were first compared on the basis of these large-scale fields -- the 
850mb horizontal winds and 500mb vertical velocity, comparing these with NCEP-
NCAR reanalysis winds. Fields from three of the more realistic models are shown 
below. (Horizontal velocities given in m s-1, vertical velocities in Pa s-1. JJAS climatolo-
gies for 1951-1970 are shown.)

(a) NCEP-NCAR reanalysis
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(c) MPI ECHAM-5 (d) NCAR-CCSM3.0

GFDL-CM2.1, WSI1 index,1951-1970 (black) and 2071-2100
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A climatological shear map and time series for the NCEP-NCAR reanalysis are 
shown below in the two leftmost plots. The three plots to the right show the climato-
logical indices for the three models, for both the 1951-1970 period and for the years 
2071-2100 in the A1B scenario. For the latter (as well as for A2), there is a slight 
weakening for the ECHAM and NCAR models, very little change in CM2.1.

Dynamics vs. thermodynamics

Lower tropospheric water vapor is expected to increase as the planet, and in particu-
lar, the ocean surfaces, warm. This is owing to the strond dependence of saturation 
vapor pressure on temperature, as described by the Clausius-Clapeyron relation. A 
dynamical index, based solely on winds, would know about increased lower-
tropospheric humicity only indirectly. For this reason, NHMM simulations were 
conducted both with and without “Clausius-Clapeyron scaling.” The scaling was ap-

plied to the modeled intensity distributions, which consist of two-component mixed 
exponential, at all stations, and was dependent on the change in mean JJAS sea-
surface temperature in each model, between the periods simulated. SST was aver-
aged over a boxextending from 0-20N, 55-95E. Changes in GFDL, MPI and NCAR 
models were 2.5 K, 3.3 K and 2.4 K, leading to scaling factors of 15%, 19.5% and 
14.4%, respectively. 

Experimental results

Shown below are summaries, in statistical form of 200-year simulations using the 
NHMM. In each case, daily precipitation is simulated at each of the stations, consis-
tent with the fitted 
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NCAR-CCSM3.0, WSI1 index for 1951-1970 (black) and 2071-2100
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Non-homogeneous Hidden Markov Model (NHMM) 
applied to observed rainfall over India. Projections 
made with (i) CCSM3 shear index change; (ii)  shear 
index change + Clausius-Clapeyron scaling.

Observed Summer 
Daily Rainfall

Simulated Rainfall:
Δ(shear index)

Simulated Rainfall:
Δ(shear index) + CC scaling

CCSM3 vertical wind 
shear over India

Reduced model in phase space x of EOFs 
with two hidden levels (r1 & r2) driven by 

spatially-correlated white noise. 
Estimated via least-squares fit.


