
The El-Niño/Southern-Oscillation (ENSO) dominates 
interannual climate variability and plays a key role in 
seasonal-to-interannual prediction. Much is known by 
now about the main physical mechanisms that give 
rise to and modulate ENSO, but the values of several 
parameters that enter these mechanisms are 
unknown.  Here we apply Extended Kalman Filtering 
(EKF) for both state and parameter estimation in an 
intermediate, nonlinear, coupled ocean--atmosphere 
model (ICM) of ENSO  (Jin & Neelin, 1993). 
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-obtain ``observations” (i.e., synthetic data) from  

model run with “truth” parameter values µ = 0.8, 
δs =0 (delayed oscillator)
- start with  “wrong” model parameters: µ = 0.56, 
δs =0.8 (westward propagating mode) and 
assimilate “truth” observations. 

- goal: recover  model parameters of “truth” by 
assimilating SST “TAO data” from 15 equatorial 
Pacific locations that resembles the Tropical 
Atmosphere Ocean (TAO) project array.
- the model errors are assumed to be mainly in the 
atmospheric wind stress.

EKF for parameter estimation

What are the “optimal” μ, δs?

An upper-ocean, reduced-gravity model of the Tropical 
Pacific and a steady-state atmospheric response to 
the sea surface temperature (SST).  Model behavior is 
very sensitive to two key parameters: (i) the ocean-
atmosphere coupling coefficient between SST and 

wind stress anomalies µ, which measures the degree 

of nonlinearity and (ii) the surface-layer coefficient δs, 
which determines the period of the model's self-
sustained oscillation in the absence of seasonal 
forcing. Depending on the values of these parameters, 
the spatio-temporal pattern of model solutions is either 
that of a delayed oscillator or of a westward 
propagating mode.     

                                                                                                   

- Since a smooth estimation of the parameter is 
often required, a small value of its model error 
tends to be a good choice. 
- convergence depends on the initial uncertainty 
of the parameters; parameter estimates do not 
depend significantly on model error of the state 
and/or observational errors;
- once converged, parameters fluctuate about 
their “true” values and are bound within the error 
of the EKF’s estimated variance.  
- parameter estimation can reduce error in non-
observed variables (here ocean currents). 

     

- Parameters are non observable directly, BUT state 
innovations drive parameter changes via the state-
parameter cross-covariance:

- The  “augmented state” approach can be easily 
generalized for various Kalman filter approximations: 
EnKF, reduced-state KF. 

In the “state augmentation” method the parameters 
are treated as additional state variables. For 
simplicity, let us assume that there is only one 
unknown parameter µ in the discrete numerical model 
F for the state vector x. The underlying “true” natural 
system for x is then model F and in the simplest case 
persistence equation for µ, perturbed by  noise ε and 
εµ with given covariances Q=< ε(t) ε(t)T >, Qµ=< εµ(t) 
εµ(t)T >.

The Kalman filter obtains analysis (“a”) and reduces 
the error by assimilating state observations with 
specified error covariance R= < εo(t) εo(t)T > :            
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The “augmented” numerical model  advances the 
forecast  (“f”) and propagates its error covariance 
matrix P: 
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(
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This work is a part of DOE-CCPP research project: 
Robust climate projections and stochastic  
stability of dynamical systems. 

x̄k = M̄kx̄k−1 + ε̄k; M̄ = ∂F̄
∂x̄
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-Iterative estimation in a loop ensures optimality in 
the earlier part of the record and independence 
from initial parameter guesses
-Parameters switch very fast between the two 
distinct modes of ENSO. Rapid adjustments occur 
for strong ENSO events. 
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To successfully apply observational SSTs from 
the  IRI/LDEO Climate Data Library (1975-2005) 
in our parameter estimation scheme, we had to 
mach the climatology of the model and 
observations.  

x̄
f
k = M̄kx̄

f
k−1

; P̄
f
k = M̄kP̄

f
k−1

M̄T
k + Q̄

- Results suggest that our ICM is too idealized to 
represent the complex evolution patterns of the observed 
SST, but it is skillful when the ENSO signals are strong.
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