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1. Can we reduce uncertainties in climate
projections?
• Last IPCC report (AR4): GCM overfitting over the 20th century leads to divergent behavior

for the latter part of the 21st century.

Figure 1: Frequency distribution of global mean, annual mean, near-surface temperature (Tg) for

(a) 2,017 GCM simulations, and doubled CO2; and for

(b) a subset of 414 stable simulations, without substantial climate drift (Stainforthet al., Nature, 2005).

• The range-of-uncertainty issue may be an intrinsic, rather than a mere “tuning” problem:
we need theoretical insights, as well as checking theoretical results on intermediate climate
models.

Our analysis proceeds along the three following axes:

(1) Parameter sensitivity is investigated in an infinite-dimensional dynamical systems with
delay, which models the El-Niño/Southern-Oscillation (ENSO) variability.

(2) Parameter sensitivity is explored in a stripped-down climate model, SPEEDY.

(3) Stochastic parametrizations are increasingly being used in modeling subgrid-scale
processes in GCMs. We investigate the large-scale effect on random perturbations in the
framework of random dynamical system (RDS) theory, fundamental aspects of climate
sensitivity is discussed in the framework of Ruelle’s response theory.

What are Random Dynamical Systems (RDSs)?

• We have a model of the noise(Ω,F ,P, θt) that is parametrized by time. The parametrization of realizationsω

is provided by adriving system θt which is anergodic one-parameter group.

• The dynamics is viewed on a“phase space× probability space,”X × Ω, called thebundle, and the cocycle
property enables one to treat trajectories asflowson this bundle.

• A path of the stochastic process corresponds to a selection of points in each fiber of the resulting bundle.
Fibers are “glued together” by noise. The cocycle, also called RDS, provides afiber-by-fiber viewof the
dynamics.

Figure 2: The bundle and the cocycle: the stochastic dynamics as a flow.

Random attractors and invariant measures

• We are looking for measuresµ onΩ×X that are invariant w.r.t. the dynamics. Central to our approach is the
concept ofsample measuresµω of µ. Mathematically, it is given byµ(B) =

∫
Ω µω(Bω)P(dω), with Bω the

intersection of a measurable setB of X × Ω with anω-fiber. Physically? Let’s see.

• The random attractor,A(ω) in Fig. 3, involvespullback attraction: we look at the phase-space location at time
t starting several experiments far enough in the past andfor the same realization. Hence we assess the
“attracting regime” at timet.

• The sample measureµω evolves with time,µω 7→ µθtω, and corresponds to thefrozen statisticsat timet: for
each piece ofA(ω), it gives the probability to end up on that piece.

Schematic view of the random attractor’s life
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Figure 3: The curved arrow depicts the pullback attraction.

2. Sample measures: a change of paradigm
Effect of noise on the Lorenz system

• The Lorenz model is perturbed by multiplicative noise: dx = s(y − x)dt + σxdWt,
dy = (rx− y−xz)dt+σydWt, dz = (−bz +xy)dt+σzdWt, whereWt is a Wiener process
andσ > 0 the noise intensity; we call the resulting model[SLM] . The figure 4 corresponds
to projection onto the(y, z) plane,

∫
µω(x, y, z)dx. One billion initial points have been used

and the pullback attractor is computed fort = 40. The parameter values are the classical
ones —r = 28, s = 10, andb = 8/3 — while σ = 0.3 andδt = 5 · 10−3. The color bar is on
a log-scale and quantifies theprobability to end upin a particular region of phase space.
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Figure 4: Snapshot of a stochastic Lorenz model’sglobal random attractor A(ω) and of the corresponding

sample measureµω, for a given, fixed realizationω. Notice the interlaced filament structures between highly

(yellow) and moderately (red) populated regions.

Application to a stochastic El Nĩno model
•We consider a low-order, coupled tropical-atmosphere–ocean model of ENSO

(Timmermann & Jin,GRL, 2002; hereafterTJ model). Three variables: thermocline depth
anomalyh, and SSTsT1 andT2 in the western and eastern basin.

Ṫ1 = −α(T1 − Tr)− 2εu
L (T2 − T1),

Ṫ2 = −α(T2 − Tr)− w
Hm

(T2 − Tsub),

ḣ = r(−h− bLτ/2),

Tsub = Tr − Tr−Tr0
2 [1− tanh(H + h2 − z0)/h

∗]
τ = a

β(T1 − T2)[ξt − 1].

The quantities areτ , the wind stress anomalies, equatorial upwellingw = −βτ/Hm, zonal
advectionu = βLτ/2, and subsurface temperatureTsub. Wind stress bursts are modeled as
white noiseξt of varianceσ andε measures the strength of the zonal advection. We refer to
TJ for the other parameters.
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• Intermittencyis illustrated in the upper-left panel, for two different initial states att = 0
(blueandredcurves) and the same realizationω; only the red curve appears where the two
are visually indistinguishable. Six snapshots of the attractor and the sample measuresµω

they support are shown at regular, 1.6-year intervals in the bottom panels; they are
projected onto the(h− T2) plane, withT2 on the abscissa, and their timing corresponds to
interannual variability. The forward PDF is shown in the upper-right panel: it averages the
sample measuresµω, i.e. “E(µω) =PDF.”

• Intermittency is synonymous of “weak chaos” in stochastic system and has been observed
in other empirical models of ENSO; cf poster Kondrashovet al..

3. Low frequency variability (LFV) and sample
measures
• Two types of motion are present in the evolution of the sample measuresµθtω. First, a

pervasive “jiggling” of the overall structure can be traced back to the roughness of the
Wiener process and to the multiplicative way it enters into the [SLM] model. Second, there
is a smooth and quite regularlow-frequency motionpresent in the evolution of the sample
measures, which seems to be driven by the deterministic system’s unstable limit cycles and
is thus related to the well-known lobe dynamics. The latter motion is illustrated in Fig. 6.

Figure 6: The time intervalδt between two consecutive snapshots of the sample measure

– moving from left to right and top to bottom – is related to the LFV of the [SLM] model.

• The sample measures give all thefrozen statisticsof a stochastic system (cf. last panel) and

are furthermore naturally linked with the LFV of the system.

4. Pathwise sensitivity of sample measures
Pathwise statistical stability in a stochastic Lorenz model

•We keep the same parameter values as in Fig. 4 and perturb slightly the noise intensityσ
from its valueσ0 = 0.5. A cubeC is fixed inR3 such that the support of the sample
measures lie always inC, andC is discretized over a regular mesh withN 3 nodes: we
obtain then a numerical approximationµσ0,N

ω of the measuresµσ0
ω .
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Figure 7: Weak pathwise sensitivity of the sample measure of the [SLM].

• The upper-left panel shows theL1−errorδN,ε(t) as a function ofN where
δN,ε(t) :=

∫
C |pσ0,N

θtω
− pσ0−ε,N

θtω
| dx, and wherepσ,N

θtω
(x) is the “density” of the discrete sample

measureµσ0,N
θtω

for ε = 10−2 and three different sets of initial data; the number of pointsn in
the latter isn = 503, 1003 and3003 for theblue, redand black curves, respectively. The
upper-right panel displaysδN,ε(t) for t varying over 1.5 time units,40.5 < t < 42.0, while
N = 600 andε = 10−2. The lower-left panel plots a snapshot of the two sample measures
that correspond to noise intensityσ0 andσ0 − ε at the end of the time series ofδN,ε(t) in the
upper-right panel. The lower-right panel showsδN,ε(t) as a function ofε for N = 900 and
n = 2003; this error clearly converges to zero asε → 0⇒ Statistical stability!

• Statistical stabilitymeans that the sample measure varies smoothly w.r.t. parameters.

•We have even apathwise linear responseas it shown clearly the lower-right panel of Fig. 5
for ε > 5.10−3 ⇒ no sudden changes in response to a small parameter change.

5. Mathematics of climate sensitivity
• How typical is it to encounter sudden changes in response to a small parameter change?

•Most of the results are based on ensemble of simulations.

•We propose here fundamental aspects of this question.

The Sinai-Ruelle-Bowen (SRB) property
• RDS theory offers a rigorous way to define random versions of stable and unstable

manifolds, via the Lyapunov spectrum and the Oseledec multiplicative theorem.

•When the sample measuresµω of an RDS have absolutely continuous conditional measures
on the random unstable manifolds, thenµω is called arandom SRB measure.

• If the sample measure of an RDSϕ is SRB, then its a “physical” measure in the sense that:

lim
s→−∞

1

t− s

∫ t

s

Φ ◦ ϕ(s, θ−sω)x ds =

∫

A(θtω)

Φ(x)µθtω(dx), (1)

for almost everyx ∈ X (in the Lebesgue sense), and for every continuous observable
Φ : X → R.

• These SRB measures govern in fact all thefrozen statisticsof the system.

•When SRB, the measureµω is also the image of the Lebesgue measure under the stochastic
flow ϕ: for each region ofA(ω), it gives theprobability to end upon that region, when
starting from a volume.

• It appears that most of stochastic systems exhibiting a positive Lyapunov exponent exhibit
an random SRB measure (Ledrappier and Young, 1988). The stochastic Lorenz system as
well as the stochastic model of ENSO used here satisfy this property. Figures 4 and 5 show
therefore random SRB measures.

The Ruelle response formula
• From a mathematical point of view, climate sensitivity can be analyzed in terms of

sensitivity of SRB measures.

• Thethermodynamic formalism̀a la Ruelle,in the RDS context, helps to understand the
response ofsystems out-of-equilibrium, to changes in the parameterizations.

• The Ruelle response formula: Given an SRB measureµ of an autonomous chaotic system
ẋ = F (x), an observableΦ : X → R, and a smooth time-dependent perturbationGt, then
the time-dependent variationsδtµ, of µ is given by:

δt < µ, Φ >=

∫ t

−∞
dτ

∫
µ(dx)Gτ(x) · ∇x(Φ ◦ ϕt−τ(x)), (2)

whereϕt is the flow of the unperturbed systeṁx = F (x), and< µ, Φ >:=
∫

Φ(x)µ(dx) .

• This formula permits to compute the response of the system without ensemble of long-run
simulations. The invariant measureµ of the unperturbed system is the “expansive” part of
the computation, but whenµ is known the formula gives the response without integrating
the perturbed systeṁx = F (x) + Gt(x).

The susceptibility function
• In the case of a perturbationGt(x) := φ(t)G(x), the Ruelle response formula can be

written:

δt < µ, Φ >=

∫
dt′κ(t− t′)φ(t′),

whereκ is called theresponse function. TheFourier transformF(κ) of the response
function is called thesusceptibility function.

• In this caseF(δt < µ, Φ >)(ξ) = F(κ)(ξ)F(φ)(ξ) and since the r.h.s. is a product, there are
no frequencies in the linear response that are not present in the signal.

• In general, the situation can be more complicated and the theory gives the following criteria
of high-sensitivity:

C: Poles of the susceptibility functionF(κ)(ξ) in the upper-half plane⇒ High
sensitivity of the systems response functionκ(t).

• Sudden changes in responseto a small parameter change are thus related to thepresence of
such poles.

• The stochastic Lorenz system studied here do not exhibit such poles due to pathwise linear
response, but other low-dimensional models are known to exhibit such poles as the Henon
map.

• RDS theory offers a path for extending this criteria when random perturbations are
considered.

• Sensitivity analysis ofstochastic intermediate climate modelswithin this framework is
the next step!
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