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1. Can we reduce uncertainties In climate
projections?

e Last IPCC report (AR4): GCM overfitting over the 20th century leads to divergent beha
for the latter part of the 21st century.
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Figure 1: Frequency distribution of global mean, annual mean, near-surface tempefgttoe (
(a) 2,017 GCM simulations, and doubled £@nd for
(b) a subset of 414 stable simulations, without substantial climate drift (Stairgball) Nature, 2005).

e The range-of-uncertainty issue may be an intrinsic, rather than a mere “tuning” problem:

we need theoretical insights, as well as checking theoretical results on intermediate cl
models.

Our analysis proceeds along the three following axes:

(1) Parameter sensitivity is investigated in an infinite-dimensional dynamical systems wi
delay, which models the EI-No/Southern-Oscillation (ENSO) variability.

(2) Parameter sensitivity is explored in a stripped-down climate model, SPEEDY.

(3) Stochastic parametrizations are increasingly being used in modeling subgrid-scale
processes in GCMs. We investigate the large-scale effect on random perturbations |
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framework of random dynamical system (RDS) theory, fundamental aspects of climate

sensitivity is discussed in the framework of Ruelle’s response theory.

What are Random Dynamical Systems (RDSs)?

e \We have a model of the nois2, F, P, 0;) that is parametrized by time. The parametrization of realizations
IS provided by alriving system 6, which is anergodic one-parameter group

e The dynamics is viewed on“ahase space probability space, X x (), called thebundle, and the cocycle
property enables one to treat trajectorief@sson this bundle.

e A path of the stochastic process corresponds to a selection of points in each fiber of the resulting bundle.

Fibers are “glued together” by noise. The cocycle, also called RDS, provitles-dy-fiber viewof the
dynamics.

® 2 is a random dynamical systemn

o B () (x, w) = (B(t)w, @(t, wIx) is a flow

Figure 2: The bundle and the cocycle: the stochastic dynamics as a flow.

on the bundle

Random attractors and invariant measures

e We are looking for measureson 2 x X that are invariant w.r.t. the dynamics. Central to our approach is the

concept osample measurgs, of ;. Mathematically, it is given by,(B) = |, p.(B.)P(dw), with B,, the
intersection of a measurable gebf X x () with anw-fiber. Physically? Let's see.

e The random attractod(w) in Fig. 3, involvespullback attractionwe look at the phase-space location at ti
t starting several experiments far enough in the pasfanitie same realizatiarHence we assess the
“attracting regime” at time.
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e The sample measugg, evolves with timey,, — uy,,,, and corresponds to tliezen statisticat timet: for
each piece ofd(w), it gives the probability to end up on that piece.

Schematic view of the random attractor’s life
Pullback attraction to A(W)
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Figure 3: The curved arrow depicts the pullback attraction.

vier The Lorenz model is perturbed by multiplicative noise:-d s(y — x)dt + ozdW;,

M3Ve consider a low-order, coupled tropical-atmosphere—ocean model of ENSO

th

T\ =-o(fi - T,) - 24T, - Th),
T =-al-T)— 7 (Ta — Tow),
h =r(—h—0bL7/2),
n the
Towp =T — 25101 — tanh(H + hy — 2)/h*]
T = %(Tl — T2>[€t — 1]
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2. Sample measures: a change of paradigm
Effect of noise on the Lorenz system

dy = (re —y — xz)dt + oydW;, dz = (—bz + xy)dt + o0 2zdW;, wherelV; is a Wiener process
ando > 0 the noise intensity; we call the resulting mofeLM] . The figure 4 corresponds

to projection onto théy, z) plane, [ u.,(z,y, z)dz. One billion initial points have been used

and the pullback attractor is computed foe 40. The parameter values are the classica
ones —r = 28, s = 10, andb = 8/3 — while o = 0.3 anddt = 5 - 1073, The color bar is of
a log-scale and quantifies tpeobability to end upn a particular region of phase space.

—

Figure 4: Snapshot of a stochastic Lorenz modgitdal random attractor .A(w) and of the corresponding
sample measure,,, for a given, fixed realizatiow. Notice the interlaced filament structures between highly

(yellow) and moderatelyré€d populated regions.

Application to a stochastic El Nino model

(Timmermann & JinGRL, 2002; hereaftefJ model). Three variables: thermocline depth
anomalyh, and SST4; and7; in the western and eastern basin.

The quantities are, the wind stress anomalies, equatorial upwelling: —37/H,,, zonal
advectionu = GL7/2, and subsurface temperatirg,. Wind stress bursts are modeled as
white noises,; of variances ande measures the strength of the zonal advection. We refer
TJ for the other parameters.
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e Intermittencyis illustrated in the upper-left panel, for two different initial states at0
(blueandredcurves) and the same realizationonly the red curve appears where the twc
are visually indistinguishable. Six snapshots of the attractor and the sample measures
they support are shown at regular, 1.6-year intervals in the bottom panels; they are
projected onto théh — T;) plane, with7; on the abscissa, and their timing corresponds
iInterannual variability The forward PDF is shown in the upper-right panel: it averages
sample measures,, i.e. “E(u,) =PDF.”

tc
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¢ Intermittency is synonymous of “weak chaos” in stochastic system and has been obsel
in other empirical models of ENSO,; cf poster Kondrashkoul..

3. Low frequency variability (LFV) and sample
measures

e Two types of motion are present in the evolution of the sample meagyesirst, a
pervasive “jiggling” of the overall structure can be traced back to the roughness of the
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Figure 6: The time intervalt between two consecutive snapshots of the sample measure

— moving from left to right and top to bottom — is related to the LFV of the [SLM] model.

are furthermore naturally linked with the LFV of the system.

4. Pathwise sensitivity of sample measures

Pathwise statistical stability in a stochastic Lorenz model

e We keep the same parameter values as in Fig. 4 and perturb slightly the noise intens
from its values, = 0.5. A cubeC is fixed inIR® such that the support of the sample
measures lie always ifi, andC is discretized over a regular mesh witi¥ nodes: we
obtain then a numerical approximatipfy-" of the measureg.
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Figure 7: Weak pathwise sensitivity of the sample measure of the [SLM].

e The upper-left panel shows tlig—errordy (¢) as a function ofV where

One(t) = [o Ipgt — pio ™| dx, and wherey; (x) is the “density” of the discrete samp

measurmgfc;N for e = 107% and three different sets of initial data; the number of poinits
the latter ish = 50°, 100° and300° for theblue redand black curves, respectively. The

) upper-right panel displaysy (t) for ¢ varying over 1.5 time unitsl0.5 < t < 42.0, while
N = 600 ande = 10~2. The lower-left panel plots a snapshot of the two sample measu
that correspond to noise intensity ando, — € at the end of the time series &f .(¢) in the
y upper-right panel. The lower-right panel shotws (¢) as a function ot for N = 900 and
e n = 200%; this error clearly converges to zeroas- 0 = Statistical stability!

e Statistical stabilitymeans that the sample measure varies smoothly w.r.t. parameters.

Ve have even aathwise linear respongs it shown clearly the lower-right panel of Fig.
for e > 5.107° = no sudden changes in response to a small parameter change

Wiener process and to the multiplicative way it enters into the [SLM] model. Second, there -
is a smooth and quite regulew-frequency motiorpresent in the evolution of the sample The Sinai-Ruelle-Bowen (SRB) property
measures, which seems to be driven by the deterministic system’s unstable limit cycles§ WE&DS theory offers a rigorous way to define random versions of stable and unstable

IS thus related to the well-known lobe dynamics. The latter motion is illustrated in Fig. 6

® The sample measures give all thezen statistice®f a stochastic system (cf. last panel) an

ity
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5. Mathematics of climate sensitivity

e How typical is it to encounter sudden changes in response to a small parameter change?

e Most of the results are based on ensemble of simulations.
e \We propose here fundamental aspects of this question.

manifolds, via the Lyapunov spectrum and the Oseledec multiplicative theorem.

e When the sample measures of an RDS have absolutely continuous conditional meas
on the random unstable manifolds, thenis called aaandom SRB measure

e If the sample measure of an R8s SRB, then its a “physical’ measure in the sense th

(1)

1 t

lim / P o p(s,0_sw)r ds = / O () o, (dr),
s——o00t — S Jg A(Orw)
for almost everyr € X (in the Lebesgue sense), and for every continuous observable
d: X — R.

e These SRB measures govern in fact allfezen statisticef the system.

e When SRB, the measurg, is also the image of the Lebesgue measure under the stoch
flow o: for each region ofd(w), it gives theprobability to end upn that region, when
starting from a volume.

e |t appears that most of stochastic systems exhibiting a positive Lyapunov exponent e
an random SRB measure (Ledrappier and Young, 1988). The stochastic Lorenz syst
well as the stochastic model of ENSO used here satisfy this property. Figures 4 and !
therefore random SRB measures.
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The Ruelle response formula

® From a mathematical point of view, climate sensitivity can be analyzed in terms of
sensitivity of SRB measures

e Thethermodynamic formalisra la Ruelle,in the RDS contexthelps to understand the
response ofystems out-of-equilibriugrto changes in the parameterizations.

e The Ruelle response formul&iven an SRB measuyeof an autonomous chaotic system
= = F(x), an observablé : X — R, and a smooth time-dependent perturbatignthen
the time-dependent variationg:, of x is given by:

O < p, & >= / dT//L(dCE)GT<CC) V(Do (x)), (2)

wherey; is the flow of the unperturbed systeim= F'(z), and< p, ® >:= [ ®(z)u(dx) .
e This formula permits to compute the response of the system without ensemble of lon

C
simulations. The invariant measyref the unperturbed system is the “expansive” part of
(

the computation, but whemis known the formula gives the response without integrating
the perturbed system= F'(x) + Gy(x).

The susceptibility function

® In the case of a perturbatidr;(z) := ¢(t)G(x), the Ruelle response formula can be
written:

5 ® S / dt'k(t — ¢)o(t),

wherex is called theresponse functianTheFourier transfornsF () of the response
function is called theusceptibility function

e In this caseF (o; < p, ® >)(&) = F(k)(&)F(¢)(€) and since the r.h.s. is a product, there
no frequencies in the linear response that are not present in the signal.
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¢ In general, the situation can be more complicated and the theory gives the following criteric

of high-sensitivity:

¢: Poles of the susceptibility functionF(x)(¢) in the upper-half plane = High
sensitivity of the systems response functior(t).

e Sudden changes in resporieea small parameter change are thus related tpitagence of
such poles

e The stochastic Lorenz system studied here do not exhibit such poles due to pathwise
response, but other low-dimensional models are known to exhibit such poles as the H

map.

e RDS theory offers a path for extending this criteria when random perturbations are
considered.

e Sensitivity analysis o$tochastic intermediate climate modelsvithin this framework is

S the next step!
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