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Summary for Policymakers 

PROJECTED PATTERNS OF PRECIPITATION CHANGES

Figure SPM.7. Relative changes in precipitation (in percent) for the period 2090–2099, relative to 1980–1999. Values are multi-model 
averages based on the SRES A1B scenario for December to February (left) and June to August (right). White areas are where less than 
66% of the models agree in the sign of the change and stippled areas are where more than 90% of the models agree in the sign of the 
change.  {Figure 10.9}

Extratropical storm tracks are projected to move 
poleward, with consequent changes in wind, 
precipitation and temperature patterns, continuing the 
broad pattern of observed trends over the last half-
century.  {3.6, 10.3} 

Since the TAR, there is an improving understanding 
of projected patterns of precipitation. Increases in the 
amount of precipitation are very likely in high latitudes, 
while decreases are likely in most subtropical land 
regions (by as much as about 20% in the A1B scenario 
in 2100, see Figure SPM.7), continuing observed 
patterns in recent trends.  {3.3, 8.3, 9.5, 10.3, 11.2 to 
11.9} 

Based on current model simulations, it is very likely that 
the meridional overturning circulation (MOC) of the 
Atlantic Ocean will slow down during the 21st century. 
The multi-model average reduction by 2100 is 25% 
(range from zero to about 50%) for SRES emission 
scenario A1B. Temperatures in the Atlantic region 
are projected to increase despite such changes due to 
the much larger warming associated with projected 
increases in greenhouse gases. It is very unlikely that 
the MOC will undergo a large abrupt transition during 
the 21st century. Longer-term changes in the MOC 

Anthropogenic warming and sea level rise would 
continue for centuries due to the time scales 
associated with climate processes and feedbacks, 
even if greenhouse gas concentrations were to be 
stabilised.  {10.4, 10.5, 10.7}

Climate-carbon cycle coupling is expected to add 
carbon dioxide to the atmosphere as the climate system 
warms, but the magnitude of this feedback is uncertain. 
This increases the uncertainty in the trajectory of 
carbon dioxide emissions required to achieve a 
particular stabilisation level of atmospheric carbon 
dioxide concentration. Based on current understanding 
of climate-carbon cycle feedback, model studies 
suggest that to stabilise at 450 ppm carbon dioxide 
could require that cumulative emissions over the 21st 
century be reduced from an average of approximately 
670 [630 to 710] GtC (2460 [2310 to 2600] GtCO2) to 
approximately 490 [375 to 600] GtC (1800 [1370 to 
2200] GtCO2). Similarly, to stabilise at 1000 ppm, this 
feedback could require that cumulative emissions be 
reduced from a model average of approximately 1415 
[1340 to 1490] GtC (5190 [4910 to 5460] GtCO2) to 
approximately 1100 [980 to 1250] GtC (4030 [3590 to 
4580] GtCO2).  {7.3, 10.4}
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State-space models of daily rainfall patterns:
Hidden Markov Models

state at
time t

station
rainfall
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[ζt , ∇.(vq)t ]

St-1 Rt

rainfall
distribution
parameters

Markov
chain

exogenous 
variables 
at time t

HMMs) were also visually compared. The means and maps obtained from the two different methods
were found to be quite similar (not shown). The fact that an alternative clustering methodology
such as K-means, that uses no information about temporal ordering of the rainfall measurements,
produces state descriptions that are qualitatively similar to those produced by the HMM, suggests
that these states are an inherent property of the data and insensitive to the particular modeling
methodology being used.

In summary, daily rainfall states 1 and 2 identified by the HMM are associated with well-known
patterns of interannual variability in winds, OLR and SST. These associations provide a basis for
the downscaling of seasonal GCM predictions, and this is pursued in the following section.

5 A NonHomogeneous HMM Downscaling Prototype

The NHMM generalizes the homogeneous HMM in that the transition probabilities in Equation 2
are allowed to vary with time. In particular, for downscaling applications the transition probabilities
between states are allowed to vary as a function of external inputs. Hughes and Guttorp (1994)
introduced this model in the context of modelling rainfall occurrence. The NHMM used in this
paper is based on this original work of Hughes and Guttorp, with some minor modifications.

In this section we illustrate the ability of an NHMM to downscale atmospheric GCM simulations
over NE Brazil. It is found that introducing atmospheric input variables does not visibly change
the appearance of the state composites, nor appreciably change the rainfall probabilities. Thus, a
4-state model is chosen for consistency with the HMM in the previous section.

For demonstration purposes and for consistency with IRI’s current seasonal-forecast scheme, we
define the inputs to the NHMM from the GCM’s simulated seasonal-mean rainfall anomaly. The
daily values needed as inputs to the NHMM are derived by simply repeating the seasonal-mean
input value for each day within the FMA season.

5.1 The NonHomogeneous Hidden Markov Model

Let Xt be a D-dimensional column vector of predictors for day t, derived for example from
a GCM. By X1:T we will denote the sequence X1, . . . ,XT . We now replace Equation 2 in the
homogeneous HMM with:

P (St|S1:t−1,X1:T ) = P (St|St−1,Xt) , (3)

so that the hidden state on day t depends both on the predictor vector Xt for day t and the
value of the hidden rainfall state St−1 on day t − 1. Because Xt can vary in time, this results in
transition probabilities between states that are can vary in time in response to changes in X, i.e.,
an inhomogeneous model. The corresponding graphical model is shown in Fig. 14.

The hidden state transitions in Equation 3 are modelled by a polytomous (or multinomial) logistic
regression:

P (St = i|St−1 = j,Xt = x) =
exp (σji + ρ�

ix)
�K

k=1 exp
�
σjk + ρ�

kx
� . (4)

19Non-homogeneous HMM: “NHMM”





Climate change downscaling:
	 (1) Disaggregation with shear-driven NHMM 
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Climate change downscaling:
	 (2) Generalized linear model for rainfall intensity
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Empirical prediction models:
	 (1) Empirical mode reduction (EMR)

Sampling past noise to drive ENSO forecasts
D. Kondrashov, M. D. Chekroun and M. Ghil

Atmospheric and Oceanic Sciences Department and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, USA

1. Motivation

• Improve ENSO long-lead forecasts (beyond 7–8 months),

unreliable for current state–of–the–art statistical and dynamical

models, by exploiting low-frequency-variability (LFV)

episodic connection to the driving “noise” in empirical

dynamical model.

2. Empirical Model Reduction (EMR)

•EMR methodology attempts to construct low-order nonlinear

system of prognostic equations driven by stochastic forcing,

and to estimate both the dynamical operator and properties of

the driving noise directly from observations or high-level

model simulation:

ẋ = Ax + B(x,x) + L(x, rk
t , ξt, t),

ṙk
t = bk(x, r0

t , ..., r
k
t ) + rk+1

t , k ∈ {0, ..., K} (1)

•x is a state vector, typically principal components of climate

fields. A, B, L are estimated by multiple linear regression

(MLR) by using estimated tendencies ∆x as predictants.

Multi-level modeled multivariate stochastic forcing rk
t

represents unresolved processes, and the linear maps bk are

estimated recursively. The number of levels is determined so

that the lag-0 covariance of the regression residual rK
t

converges to a constant matrix Q = cov(rK
t ), while its lag-1

covariance vanishes. The rK+1
t = ξt, called the (K + 1)th

level’s residual stochastic forcing reconstructs the original time

series exactly.

3. EMR ENSO model.

•A two-level (K = 1) EMR model with seasonal cycle, obtained

by using 20 leading PCs of monthly Tropical Pacific SST

anomalies (Kondrashov et al. 2005), is highly competitive in

intraseasonal ENSO prediction:

iri.columbia.edu/climate/ENSO/currentinfo/modelviews.html

•ENSO quasi-quadriennial (QQ) 4-year and quasi-biennial (QB)

2-year LFV modes are captured by damped oscillatory

eigenmodes of linearized dynamical EMR operator, that are

excited by noise (aka nonnormal growth perturbations) and

interaction with seasonal cycle.

4. Singular spectrum analysis (SSA)

• SSA is a data-adaptive method for spectral estimation and is

extension of classic principal components analysis (PCA) in

time domain. SSA is based on diagonalizing time-laggged

covariance matrix; the set of its eigenvectors is an optimal set

of data-adaptive narrowband filters for decomposing the

variance within sliding time window. It is particularly well

suited for the analysis of time series exhibiting quasi-periodic

LVF behavior. The parts of time series that correspond to

trends, oscillatory modes or noise can be identified by using

reconstructed components (RCs).

4. Past Noise Forecasting (PNF)

• Since EMR estimates the history of the noise ξt that ENSO

“lives” on, it offers an opportunity to refine ensemble mean of

standard EMR prediction, by exploiting pathwise relation of

LFV episodes to the driving noise.

• Since ξt is stationary, we can parameterize the space of

probability Ω by a one-to-one time-dependent family of

transformations. If ξt is known over [0, t∗], we can use sliding

windows of length δ “scanning” the noise over [0, t∗] to derive a

set St∗ of noise “snippets”, which can serve as new realizations

ξt(ω) to compute EMR prediction: x(t∗ + t, t∗,xt∗; ω), t ∈ [0, δ].

•Note that ensemble means of EMR forced by spatially

correlated white noise distributed according N(0, Q), and by ξt

snippets of St∗, are the same. Thus we need to refine St∗!

•To do so, (S1) SSA is applied to select similar episodes in the

history of the LFV phase in PC1 w.r.t. the immediate phase at

time t∗ –start of prediction, and (S2) based on such

occurrences, appropriate noise snippets from the “past noise”

are selected to obtain prediction of EMR model.

• S1. To find similar LFV episodes, we compute RCk as sum of

k leading SSA RCs of PC1, and find times tj < t∗ −∆ such

that RCk(tj : tj + ∆) is close enough to RCk(t∗ −∆ : t∗) in rms

error and correlation over continuous time interval of size ∆:

T�t∗ :=
�
tj ∈ (0, t∗ −∆) :

rms(RCk(tj : tj + ∆)−RCk(t∗ −∆ : t∗)) ≤ α, and,

corr(RCk(tj : tj + ∆), RCk(t∗ −∆ : t∗)) ≥ 1− β
�
,

(2)

• S2. The refined set of noise “snippets” to compute EMR

prediction from time t∗ is given by following subset of St∗,

S �
t∗ := {ζ tj ∈ St∗ : tj ∈ T�t∗}; (3)

where each ζ tj is a copy of length δ of the residual noise ξt in

the past.

•The PNF prediction for δ = 16 months ahead is given by the

mean over ensemble driven by S �
t∗.

!! !" # " ! $ % &# &" &! &$
!'

!"

!&

#

&

"

'

()*+,-./01234

Figure 1: Principle of the PNF method: (vertical dashed) time t∗ at which we start prediction,

(red) PC1(t∗ −∆,t∗ + 16), with ∆ = 5, (black) RC2 of PC1 (that captures most energetic, QQ

mode); (green) RC2 analogues selected by (2); (magenta) corresponding PC1 analogues,

(dashed blue) EMR ensemble mean over whole set of snippets St∗; (cyan) PNF ensemble

plume driven by selected subset of snippets S �
t∗ in (3), x1(t∗ + t, t∗,xt∗; ζ tj)); (thick blue) PNF

ensemble mean over S �
t∗.

5. Numerical Results and Skill

The proof–of–concept PNF prediction consists of fitting EMR

model and obtaining full set of noise snippets St∗ for 1950–1999

training period, and performing validation in 2000-2009. Drastic

improvement of Niño-3 prediction beyond 6 months by

PNF-EMR is due to its ability to predict energetic LFV episodes

of QQ+QB in 2000-2009.
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Figure 2: Upper panel: Drastic improvement of Niño-3 prediction skill by PNF. Lower panel:

PNF improvement in predicting Niño-3 at 14-month-lead is consistent with energetic phase of

low-frequency modes (QQ + QB) components of Niño-3 (cyan), captured by SSA.

Interpretation: In the EMR ENSO model the chaos is “weak”

(cf. Fig. 4) and the sensitivity w.r.t. the forcing is reasonably

moderate (cf. Fig. 5). The refined set of noise snippets S �
t∗

corresponds to different initial conditions than at the time t∗ of

immediate forecasting, but is built on similar LFV phase in the

past (training period) preceding this time. Due to the weak

long-lead dependence on perturbations in the noise forcing and

initial conditions, it is thus natural to expect that forecasted
trajectories should “synchronize” with observed LFV (QQ+QB)

in the future at a longer lead as well, thus leading to improvement

in prediction skill.
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Figure 3: The Niño SST anomaly is defined as the area average over the rectangular box. PNF

skill is uniformly better (lower RMS, higher Corr) in the equatorial Tropical Pacific and Indian

Ocean, area where ENSO is active the most.

6. Theoretical justification of PNF method:

pathwise linear response and weak chaos in EMR

ENSO model.
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Figure 4: Weak sensitivity w.r.t. initial data and synchronization by the noise at long lead

times: x-axis is the normalized magnitude �x0 − x̂0� of a perturbation of an initial condition

x0 taken at time s. The y-axis represents normalized difference �x(t, s,x0; ω)− x(t, s, x̂0; ω)�

at 1 month (t− s = 1, upper-panel) and at 12 months (t− s = 12, lower panel), driven by

same noise realization ω.
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Figure 5: Pathwise linear response of EMR ENSO model to noise perturbation: The

x-axis represents normalized magnitude of noise perturbation [
� t

s �χu(ω�)− ξu(ω)�du]. The

blue dots represent the normalized response of the EMR model’solutions

�x(t, s,xs; ω)− x(t, s,xs; ω�)� integrated over t− s = 16 months, with initial condition xs

taken at time s, for arbitrary perturbations χt(ω�) = ξt(ω) + �ξt(ω�) (� > 0) of the residual

noise from its training period. The red dots correspond to the model’s response

�x(t∗ + t, t∗,xt∗; ω�)− x(t∗ + t, t∗,xt∗; ω)� integrated over t = 16 months and over the

validation period, for specific perturbations χt(ω�) ∈ St∗, i.e. from the full set of noise snippets

of the training period; where ξt(ω) is now the residual noise of the validation period. The

magenta dots are the same as the red ones except that χt(ω�) ∈ S �
t∗, i.e. the response is assessed

from the refined set of noise snippets obtained by the PNF procedure (cf. S1 & S2) in 4.
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1. Motivation

• Improve ENSO long-lead forecasts (beyond 7–8 months),

unreliable for current state–of–the–art statistical and dynamical

models, by exploiting low-frequency-variability (LFV)

episodic connection to the driving “noise” in empirical

dynamical model.

2. Empirical Model Reduction (EMR)

•EMR methodology attempts to construct low-order nonlinear

system of prognostic equations driven by stochastic forcing,

and to estimate both the dynamical operator and properties of

the driving noise directly from observations or high-level

model simulation:

ẋ = Ax + B(x,x) + L(x, rk
t , ξt, t),

ṙk
t = bk(x, r0

t , ..., r
k
t ) + rk+1

t , k ∈ {0, ..., K} (1)

•x is a state vector, typically principal components of climate

fields. A, B, L are estimated by multiple linear regression

(MLR) by using estimated tendencies ∆x as predictants.

Multi-level modeled multivariate stochastic forcing rk
t

represents unresolved processes, and the linear maps bk are

estimated recursively. The number of levels is determined so

that the lag-0 covariance of the regression residual rK
t

converges to a constant matrix Q = cov(rK
t ), while its lag-1

covariance vanishes. The rK+1
t = ξt, called the (K + 1)th

level’s residual stochastic forcing reconstructs the original time

series exactly.

3. EMR ENSO model.

•A two-level (K = 1) EMR model with seasonal cycle, obtained

by using 20 leading PCs of monthly Tropical Pacific SST

anomalies (Kondrashov et al. 2005), is highly competitive in

intraseasonal ENSO prediction:

iri.columbia.edu/climate/ENSO/currentinfo/modelviews.html

•ENSO quasi-quadriennial (QQ) 4-year and quasi-biennial (QB)

2-year LFV modes are captured by damped oscillatory

eigenmodes of linearized dynamical EMR operator, that are

excited by noise (aka nonnormal growth perturbations) and

interaction with seasonal cycle.

4. Singular spectrum analysis (SSA)

• SSA is a data-adaptive method for spectral estimation and is

extension of classic principal components analysis (PCA) in

time domain. SSA is based on diagonalizing time-laggged

covariance matrix; the set of its eigenvectors is an optimal set

of data-adaptive narrowband filters for decomposing the

variance within sliding time window. It is particularly well

suited for the analysis of time series exhibiting quasi-periodic

LVF behavior. The parts of time series that correspond to

trends, oscillatory modes or noise can be identified by using

reconstructed components (RCs).

4. Past Noise Forecasting (PNF)

• Since EMR estimates the history of the noise ξt that ENSO

“lives” on, it offers an opportunity to refine ensemble mean of

standard EMR prediction, by exploiting pathwise relation of

LFV episodes to the driving noise.

• Since ξt is stationary, we can parameterize the space of

probability Ω by a one-to-one time-dependent family of

transformations. If ξt is known over [0, t∗], we can use sliding

windows of length δ “scanning” the noise over [0, t∗] to derive a

set St∗ of noise “snippets”, which can serve as new realizations

ξt(ω) to compute EMR prediction: x(t∗ + t, t∗,xt∗; ω), t ∈ [0, δ].

•Note that ensemble means of EMR forced by spatially

correlated white noise distributed according N(0, Q), and by ξt

snippets of St∗, are the same. Thus we need to refine St∗!

•To do so, (S1) SSA is applied to select similar episodes in the

history of the LFV phase in PC1 w.r.t. the immediate phase at

time t∗ –start of prediction, and (S2) based on such

occurrences, appropriate noise snippets from the “past noise”

are selected to obtain prediction of EMR model.

• S1. To find similar LFV episodes, we compute RCk as sum of

k leading SSA RCs of PC1, and find times tj < t∗ −∆ such

that RCk(tj : tj + ∆) is close enough to RCk(t∗ −∆ : t∗) in rms

error and correlation over continuous time interval of size ∆:

T�t∗ :=
�
tj ∈ (0, t∗ −∆) :

rms(RCk(tj : tj + ∆)−RCk(t∗ −∆ : t∗)) ≤ α, and,

corr(RCk(tj : tj + ∆), RCk(t∗ −∆ : t∗)) ≥ 1− β
�
,

(2)

• S2. The refined set of noise “snippets” to compute EMR

prediction from time t∗ is given by following subset of St∗,

S �
t∗ := {ζ tj ∈ St∗ : tj ∈ T�t∗}; (3)

where each ζ tj is a copy of length δ of the residual noise ξt in

the past.

•The PNF prediction for δ = 16 months ahead is given by the

mean over ensemble driven by S �
t∗.
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Figure 1: Principle of the PNF method: (vertical dashed) time t∗ at which we start prediction,

(red) PC1(t∗ −∆,t∗ + 16), with ∆ = 5, (black) RC2 of PC1 (that captures most energetic, QQ

mode); (green) RC2 analogues selected by (2); (magenta) corresponding PC1 analogues,

(dashed blue) EMR ensemble mean over whole set of snippets St∗; (cyan) PNF ensemble

plume driven by selected subset of snippets S �
t∗ in (3), x1(t∗ + t, t∗,xt∗; ζ tj)); (thick blue) PNF

ensemble mean over S �
t∗.

5. Numerical Results and Skill

The proof–of–concept PNF prediction consists of fitting EMR

model and obtaining full set of noise snippets St∗ for 1950–1999

training period, and performing validation in 2000-2009. Drastic

improvement of Niño-3 prediction beyond 6 months by

PNF-EMR is due to its ability to predict energetic LFV episodes

of QQ+QB in 2000-2009.
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Figure 2: Upper panel: Drastic improvement of Niño-3 prediction skill by PNF. Lower panel:

PNF improvement in predicting Niño-3 at 14-month-lead is consistent with energetic phase of

low-frequency modes (QQ + QB) components of Niño-3 (cyan), captured by SSA.

Interpretation: In the EMR ENSO model the chaos is “weak”

(cf. Fig. 4) and the sensitivity w.r.t. the forcing is reasonably

moderate (cf. Fig. 5). The refined set of noise snippets S �
t∗

corresponds to different initial conditions than at the time t∗ of

immediate forecasting, but is built on similar LFV phase in the

past (training period) preceding this time. Due to the weak

long-lead dependence on perturbations in the noise forcing and

initial conditions, it is thus natural to expect that forecasted
trajectories should “synchronize” with observed LFV (QQ+QB)

in the future at a longer lead as well, thus leading to improvement

in prediction skill.
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Figure 3: The Niño SST anomaly is defined as the area average over the rectangular box. PNF

skill is uniformly better (lower RMS, higher Corr) in the equatorial Tropical Pacific and Indian

Ocean, area where ENSO is active the most.

6. Theoretical justification of PNF method:

pathwise linear response and weak chaos in EMR

ENSO model.
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Figure 4: Weak sensitivity w.r.t. initial data and synchronization by the noise at long lead

times: x-axis is the normalized magnitude �x0 − x̂0� of a perturbation of an initial condition

x0 taken at time s. The y-axis represents normalized difference �x(t, s,x0; ω)− x(t, s, x̂0; ω)�

at 1 month (t− s = 1, upper-panel) and at 12 months (t− s = 12, lower panel), driven by

same noise realization ω.
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Figure 5: Pathwise linear response of EMR ENSO model to noise perturbation: The

x-axis represents normalized magnitude of noise perturbation [
� t

s �χu(ω�)− ξu(ω)�du]. The

blue dots represent the normalized response of the EMR model’solutions

�x(t, s,xs; ω)− x(t, s,xs; ω�)� integrated over t− s = 16 months, with initial condition xs

taken at time s, for arbitrary perturbations χt(ω�) = ξt(ω) + �ξt(ω�) (� > 0) of the residual

noise from its training period. The red dots correspond to the model’s response

�x(t∗ + t, t∗,xt∗; ω�)− x(t∗ + t, t∗,xt∗; ω)� integrated over t = 16 months and over the

validation period, for specific perturbations χt(ω�) ∈ St∗, i.e. from the full set of noise snippets

of the training period; where ξt(ω) is now the residual noise of the validation period. The

magenta dots are the same as the red ones except that χt(ω�) ∈ S �
t∗, i.e. the response is assessed

from the refined set of noise snippets obtained by the PNF procedure (cf. S1 & S2) in 4.
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Sampling past noise to drive ENSO forecasts
D. Kondrashov, M. D. Chekroun and M. Ghil

Atmospheric and Oceanic Sciences Department and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, USA

1. Motivation

• Improve ENSO long-lead forecasts (beyond 7–8 months),

unreliable for current state–of–the–art statistical and dynamical

models, by exploiting low-frequency-variability (LFV)

episodic connection to the driving “noise” in empirical

dynamical model.

2. Empirical Model Reduction (EMR)

•EMR methodology attempts to construct low-order nonlinear

system of prognostic equations driven by stochastic forcing,

and to estimate both the dynamical operator and properties of

the driving noise directly from observations or high-level

model simulation:

ẋ = Ax + B(x,x) + L(x, rk
t , ξt, t),

ṙk
t = bk(x, r0

t , ..., r
k
t ) + rk+1

t , k ∈ {0, ..., K} (1)

•x is a state vector, typically principal components of climate

fields. A, B, L are estimated by multiple linear regression

(MLR) by using estimated tendencies ∆x as predictants.

Multi-level modeled multivariate stochastic forcing rk
t

represents unresolved processes, and the linear maps bk are

estimated recursively. The number of levels is determined so

that the lag-0 covariance of the regression residual rK
t

converges to a constant matrix Q = cov(rK
t ), while its lag-1

covariance vanishes. The rK+1
t = ξt, called the (K + 1)th

level’s residual stochastic forcing reconstructs the original time

series exactly.

3. EMR ENSO model.

•A two-level (K = 1) EMR model with seasonal cycle, obtained

by using 20 leading PCs of monthly Tropical Pacific SST

anomalies (Kondrashov et al. 2005), is highly competitive in

intraseasonal ENSO prediction:

iri.columbia.edu/climate/ENSO/currentinfo/modelviews.html

•ENSO quasi-quadriennial (QQ) 4-year and quasi-biennial (QB)

2-year LFV modes are captured by damped oscillatory

eigenmodes of linearized dynamical EMR operator, that are

excited by noise (aka nonnormal growth perturbations) and

interaction with seasonal cycle.

4. Singular spectrum analysis (SSA)

• SSA is a data-adaptive method for spectral estimation and is

extension of classic principal components analysis (PCA) in

time domain. SSA is based on diagonalizing time-laggged

covariance matrix; the set of its eigenvectors is an optimal set

of data-adaptive narrowband filters for decomposing the

variance within sliding time window. It is particularly well

suited for the analysis of time series exhibiting quasi-periodic

LVF behavior. The parts of time series that correspond to

trends, oscillatory modes or noise can be identified by using

reconstructed components (RCs).

4. Past Noise Forecasting (PNF)

• Since EMR estimates the history of the noise ξt that ENSO

“lives” on, it offers an opportunity to refine ensemble mean of

standard EMR prediction, by exploiting pathwise relation of

LFV episodes to the driving noise.

• Since ξt is stationary, we can parameterize the space of

probability Ω by a one-to-one time-dependent family of

transformations. If ξt is known over [0, t∗], we can use sliding

windows of length δ “scanning” the noise over [0, t∗] to derive a

set St∗ of noise “snippets”, which can serve as new realizations

ξt(ω) to compute EMR prediction: x(t∗ + t, t∗,xt∗; ω), t ∈ [0, δ].

•Note that ensemble means of EMR forced by spatially

correlated white noise distributed according N(0, Q), and by ξt

snippets of St∗, are the same. Thus we need to refine St∗!

•To do so, (S1) SSA is applied to select similar episodes in the

history of the LFV phase in PC1 w.r.t. the immediate phase at

time t∗ –start of prediction, and (S2) based on such

occurrences, appropriate noise snippets from the “past noise”

are selected to obtain prediction of EMR model.

• S1. To find similar LFV episodes, we compute RCk as sum of

k leading SSA RCs of PC1, and find times tj < t∗ −∆ such

that RCk(tj : tj + ∆) is close enough to RCk(t∗ −∆ : t∗) in rms

error and correlation over continuous time interval of size ∆:

T�t∗ :=
�
tj ∈ (0, t∗ −∆) :

rms(RCk(tj : tj + ∆)−RCk(t∗ −∆ : t∗)) ≤ α, and,

corr(RCk(tj : tj + ∆), RCk(t∗ −∆ : t∗)) ≥ 1− β
�
,

(2)

• S2. The refined set of noise “snippets” to compute EMR

prediction from time t∗ is given by following subset of St∗,

S �
t∗ := {ζ tj ∈ St∗ : tj ∈ T�t∗}; (3)

where each ζ tj is a copy of length δ of the residual noise ξt in

the past.

•The PNF prediction for δ = 16 months ahead is given by the

mean over ensemble driven by S �
t∗.
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Figure 1: Principle of the PNF method: (vertical dashed) time t∗ at which we start prediction,

(red) PC1(t∗ −∆,t∗ + 16), with ∆ = 5, (black) RC2 of PC1 (that captures most energetic, QQ

mode); (green) RC2 analogues selected by (2); (magenta) corresponding PC1 analogues,

(dashed blue) EMR ensemble mean over whole set of snippets St∗; (cyan) PNF ensemble

plume driven by selected subset of snippets S �
t∗ in (3), x1(t∗ + t, t∗,xt∗; ζ tj)); (thick blue) PNF

ensemble mean over S �
t∗.

5. Numerical Results and Skill

The proof–of–concept PNF prediction consists of fitting EMR

model and obtaining full set of noise snippets St∗ for 1950–1999

training period, and performing validation in 2000-2009. Drastic

improvement of Niño-3 prediction beyond 6 months by

PNF-EMR is due to its ability to predict energetic LFV episodes

of QQ+QB in 2000-2009.
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Figure 2: Upper panel: Drastic improvement of Niño-3 prediction skill by PNF. Lower panel:

PNF improvement in predicting Niño-3 at 14-month-lead is consistent with energetic phase of

low-frequency modes (QQ + QB) components of Niño-3 (cyan), captured by SSA.

Interpretation: In the EMR ENSO model the chaos is “weak”

(cf. Fig. 4) and the sensitivity w.r.t. the forcing is reasonably

moderate (cf. Fig. 5). The refined set of noise snippets S �
t∗

corresponds to different initial conditions than at the time t∗ of

immediate forecasting, but is built on similar LFV phase in the

past (training period) preceding this time. Due to the weak

long-lead dependence on perturbations in the noise forcing and

initial conditions, it is thus natural to expect that forecasted
trajectories should “synchronize” with observed LFV (QQ+QB)

in the future at a longer lead as well, thus leading to improvement

in prediction skill.
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Figure 3: The Niño SST anomaly is defined as the area average over the rectangular box. PNF

skill is uniformly better (lower RMS, higher Corr) in the equatorial Tropical Pacific and Indian

Ocean, area where ENSO is active the most.

6. Theoretical justification of PNF method:

pathwise linear response and weak chaos in EMR

ENSO model.
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Figure 4: Weak sensitivity w.r.t. initial data and synchronization by the noise at long lead

times: x-axis is the normalized magnitude �x0 − x̂0� of a perturbation of an initial condition

x0 taken at time s. The y-axis represents normalized difference �x(t, s,x0; ω)− x(t, s, x̂0; ω)�

at 1 month (t− s = 1, upper-panel) and at 12 months (t− s = 12, lower panel), driven by

same noise realization ω.
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Figure 5: Pathwise linear response of EMR ENSO model to noise perturbation: The

x-axis represents normalized magnitude of noise perturbation [
� t

s �χu(ω�)− ξu(ω)�du]. The

blue dots represent the normalized response of the EMR model’solutions

�x(t, s,xs; ω)− x(t, s,xs; ω�)� integrated over t− s = 16 months, with initial condition xs

taken at time s, for arbitrary perturbations χt(ω�) = ξt(ω) + �ξt(ω�) (� > 0) of the residual

noise from its training period. The red dots correspond to the model’s response

�x(t∗ + t, t∗,xt∗; ω�)− x(t∗ + t, t∗,xt∗; ω)� integrated over t = 16 months and over the

validation period, for specific perturbations χt(ω�) ∈ St∗, i.e. from the full set of noise snippets

of the training period; where ξt(ω) is now the residual noise of the validation period. The

magenta dots are the same as the red ones except that χt(ω�) ∈ S �
t∗, i.e. the response is assessed

from the refined set of noise snippets obtained by the PNF procedure (cf. S1 & S2) in 4.
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1. Motivation

• Improve ENSO long-lead forecasts (beyond 7–8 months),

unreliable for current state–of–the–art statistical and dynamical

models, by exploiting low-frequency-variability (LFV)

episodic connection to the driving “noise” in empirical

dynamical model.

2. Empirical Model Reduction (EMR)

•EMR methodology attempts to construct low-order nonlinear

system of prognostic equations driven by stochastic forcing,

and to estimate both the dynamical operator and properties of

the driving noise directly from observations or high-level

model simulation:

ẋ = Ax + B(x,x) + L(x, rk
t , ξt, t),

ṙk
t = bk(x, r0

t , ..., r
k
t ) + rk+1

t , k ∈ {0, ..., K} (1)

•x is a state vector, typically principal components of climate

fields. A, B, L are estimated by multiple linear regression

(MLR) by using estimated tendencies ∆x as predictants.

Multi-level modeled multivariate stochastic forcing rk
t

represents unresolved processes, and the linear maps bk are

estimated recursively. The number of levels is determined so

that the lag-0 covariance of the regression residual rK
t

converges to a constant matrix Q = cov(rK
t ), while its lag-1

covariance vanishes. The rK+1
t = ξt, called the (K + 1)th

level’s residual stochastic forcing reconstructs the original time

series exactly.

3. EMR ENSO model.

•A two-level (K = 1) EMR model with seasonal cycle, obtained

by using 20 leading PCs of monthly Tropical Pacific SST

anomalies (Kondrashov et al. 2005), is highly competitive in

intraseasonal ENSO prediction:

iri.columbia.edu/climate/ENSO/currentinfo/modelviews.html

•ENSO quasi-quadriennial (QQ) 4-year and quasi-biennial (QB)

2-year LFV modes are captured by damped oscillatory

eigenmodes of linearized dynamical EMR operator, that are

excited by noise (aka nonnormal growth perturbations) and

interaction with seasonal cycle.

4. Singular spectrum analysis (SSA)

• SSA is a data-adaptive method for spectral estimation and is

extension of classic principal components analysis (PCA) in

time domain. SSA is based on diagonalizing time-laggged

covariance matrix; the set of its eigenvectors is an optimal set

of data-adaptive narrowband filters for decomposing the

variance within sliding time window. It is particularly well

suited for the analysis of time series exhibiting quasi-periodic

LVF behavior. The parts of time series that correspond to

trends, oscillatory modes or noise can be identified by using

reconstructed components (RCs).

4. Past Noise Forecasting (PNF)

• Since EMR estimates the history of the noise ξt that ENSO

“lives” on, it offers an opportunity to refine ensemble mean of

standard EMR prediction, by exploiting pathwise relation of

LFV episodes to the driving noise.

• Since ξt is stationary, we can parameterize the space of

probability Ω by a one-to-one time-dependent family of

transformations. If ξt is known over [0, t∗], we can use sliding

windows of length δ “scanning” the noise over [0, t∗] to derive a

set St∗ of noise “snippets”, which can serve as new realizations

ξt(ω) to compute EMR prediction: x(t∗ + t, t∗,xt∗; ω), t ∈ [0, δ].

•Note that ensemble means of EMR forced by spatially

correlated white noise distributed according N(0, Q), and by ξt

snippets of St∗, are the same. Thus we need to refine St∗!

•To do so, (S1) SSA is applied to select similar episodes in the

history of the LFV phase in PC1 w.r.t. the immediate phase at

time t∗ –start of prediction, and (S2) based on such

occurrences, appropriate noise snippets from the “past noise”

are selected to obtain prediction of EMR model.

• S1. To find similar LFV episodes, we compute RCk as sum of

k leading SSA RCs of PC1, and find times tj < t∗ −∆ such

that RCk(tj : tj + ∆) is close enough to RCk(t∗ −∆ : t∗) in rms

error and correlation over continuous time interval of size ∆:

T�t∗ :=
�
tj ∈ (0, t∗ −∆) :

rms(RCk(tj : tj + ∆)−RCk(t∗ −∆ : t∗)) ≤ α, and,

corr(RCk(tj : tj + ∆), RCk(t∗ −∆ : t∗)) ≥ 1− β
�
,

(2)

• S2. The refined set of noise “snippets” to compute EMR

prediction from time t∗ is given by following subset of St∗,

S �
t∗ := {ζ tj ∈ St∗ : tj ∈ T�t∗}; (3)

where each ζ tj is a copy of length δ of the residual noise ξt in

the past.

•The PNF prediction for δ = 16 months ahead is given by the

mean over ensemble driven by S �
t∗.
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Figure 1: Principle of the PNF method: (vertical dashed) time t∗ at which we start prediction,

(red) PC1(t∗ −∆,t∗ + 16), with ∆ = 5, (black) RC2 of PC1 (that captures most energetic, QQ

mode); (green) RC2 analogues selected by (2); (magenta) corresponding PC1 analogues,

(dashed blue) EMR ensemble mean over whole set of snippets St∗; (cyan) PNF ensemble

plume driven by selected subset of snippets S �
t∗ in (3), x1(t∗ + t, t∗,xt∗; ζ tj)); (thick blue) PNF

ensemble mean over S �
t∗.

5. Numerical Results and Skill

The proof–of–concept PNF prediction consists of fitting EMR

model and obtaining full set of noise snippets St∗ for 1950–1999

training period, and performing validation in 2000-2009. Drastic

improvement of Niño-3 prediction beyond 6 months by

PNF-EMR is due to its ability to predict energetic LFV episodes

of QQ+QB in 2000-2009.
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Figure 2: Upper panel: Drastic improvement of Niño-3 prediction skill by PNF. Lower panel:

PNF improvement in predicting Niño-3 at 14-month-lead is consistent with energetic phase of

low-frequency modes (QQ + QB) components of Niño-3 (cyan), captured by SSA.

Interpretation: In the EMR ENSO model the chaos is “weak”

(cf. Fig. 4) and the sensitivity w.r.t. the forcing is reasonably

moderate (cf. Fig. 5). The refined set of noise snippets S �
t∗

corresponds to different initial conditions than at the time t∗ of

immediate forecasting, but is built on similar LFV phase in the

past (training period) preceding this time. Due to the weak

long-lead dependence on perturbations in the noise forcing and

initial conditions, it is thus natural to expect that forecasted
trajectories should “synchronize” with observed LFV (QQ+QB)

in the future at a longer lead as well, thus leading to improvement

in prediction skill.
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Figure 3: The Niño SST anomaly is defined as the area average over the rectangular box. PNF

skill is uniformly better (lower RMS, higher Corr) in the equatorial Tropical Pacific and Indian

Ocean, area where ENSO is active the most.

6. Theoretical justification of PNF method:

pathwise linear response and weak chaos in EMR

ENSO model.
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Figure 4: Weak sensitivity w.r.t. initial data and synchronization by the noise at long lead

times: x-axis is the normalized magnitude �x0 − x̂0� of a perturbation of an initial condition

x0 taken at time s. The y-axis represents normalized difference �x(t, s,x0; ω)− x(t, s, x̂0; ω)�

at 1 month (t− s = 1, upper-panel) and at 12 months (t− s = 12, lower panel), driven by

same noise realization ω.
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Figure 5: Pathwise linear response of EMR ENSO model to noise perturbation: The

x-axis represents normalized magnitude of noise perturbation [
� t

s �χu(ω�)− ξu(ω)�du]. The

blue dots represent the normalized response of the EMR model’solutions

�x(t, s,xs; ω)− x(t, s,xs; ω�)� integrated over t− s = 16 months, with initial condition xs

taken at time s, for arbitrary perturbations χt(ω�) = ξt(ω) + �ξt(ω�) (� > 0) of the residual

noise from its training period. The red dots correspond to the model’s response

�x(t∗ + t, t∗,xt∗; ω�)− x(t∗ + t, t∗,xt∗; ω)� integrated over t = 16 months and over the

validation period, for specific perturbations χt(ω�) ∈ St∗, i.e. from the full set of noise snippets

of the training period; where ξt(ω) is now the residual noise of the validation period. The

magenta dots are the same as the red ones except that χt(ω�) ∈ S �
t∗, i.e. the response is assessed

from the refined set of noise snippets obtained by the PNF procedure (cf. S1 & S2) in 4.
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Sampling past noise to drive ENSO forecasts
D. Kondrashov, M. D. Chekroun and M. Ghil

Atmospheric and Oceanic Sciences Department and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, USA

1. Motivation

• Improve ENSO long-lead forecasts (beyond 7–8 months),

unreliable for current state–of–the–art statistical and dynamical

models, by exploiting low-frequency-variability (LFV)

episodic connection to the driving “noise” in empirical

dynamical model.

2. Empirical Model Reduction (EMR)

•EMR methodology attempts to construct low-order nonlinear

system of prognostic equations driven by stochastic forcing,

and to estimate both the dynamical operator and properties of

the driving noise directly from observations or high-level

model simulation:

ẋ = Ax + B(x,x) + L(x, rk
t , ξt, t),

ṙk
t = bk(x, r0

t , ..., r
k
t ) + rk+1

t , k ∈ {0, ..., K} (1)

•x is a state vector, typically principal components of climate

fields. A, B, L are estimated by multiple linear regression

(MLR) by using estimated tendencies ∆x as predictants.

Multi-level modeled multivariate stochastic forcing rk
t

represents unresolved processes, and the linear maps bk are

estimated recursively. The number of levels is determined so

that the lag-0 covariance of the regression residual rK
t

converges to a constant matrix Q = cov(rK
t ), while its lag-1

covariance vanishes. The rK+1
t = ξt, called the (K + 1)th

level’s residual stochastic forcing reconstructs the original time

series exactly.

3. EMR ENSO model.

•A two-level (K = 1) EMR model with seasonal cycle, obtained

by using 20 leading PCs of monthly Tropical Pacific SST

anomalies (Kondrashov et al. 2005), is highly competitive in

intraseasonal ENSO prediction:

iri.columbia.edu/climate/ENSO/currentinfo/modelviews.html

•ENSO quasi-quadriennial (QQ) 4-year and quasi-biennial (QB)

2-year LFV modes are captured by damped oscillatory

eigenmodes of linearized dynamical EMR operator, that are

excited by noise (aka nonnormal growth perturbations) and

interaction with seasonal cycle.

4. Singular spectrum analysis (SSA)

• SSA is a data-adaptive method for spectral estimation and is

extension of classic principal components analysis (PCA) in

time domain. SSA is based on diagonalizing time-laggged

covariance matrix; the set of its eigenvectors is an optimal set

of data-adaptive narrowband filters for decomposing the

variance within sliding time window. It is particularly well

suited for the analysis of time series exhibiting quasi-periodic

LVF behavior. The parts of time series that correspond to

trends, oscillatory modes or noise can be identified by using

reconstructed components (RCs).

4. Past Noise Forecasting (PNF)

• Since EMR estimates the history of the noise ξt that ENSO

“lives” on, it offers an opportunity to refine ensemble mean of

standard EMR prediction, by exploiting pathwise relation of

LFV episodes to the driving noise.

• Since ξt is stationary, we can parameterize the space of

probability Ω by a one-to-one time-dependent family of

transformations. If ξt is known over [0, t∗], we can use sliding

windows of length δ “scanning” the noise over [0, t∗] to derive a

set St∗ of noise “snippets”, which can serve as new realizations

ξt(ω) to compute EMR prediction: x(t∗ + t, t∗,xt∗; ω), t ∈ [0, δ].

•Note that ensemble means of EMR forced by spatially

correlated white noise distributed according N(0, Q), and by ξt

snippets of St∗, are the same. Thus we need to refine St∗!

•To do so, (S1) SSA is applied to select similar episodes in the

history of the LFV phase in PC1 w.r.t. the immediate phase at

time t∗ –start of prediction, and (S2) based on such

occurrences, appropriate noise snippets from the “past noise”

are selected to obtain prediction of EMR model.

• S1. To find similar LFV episodes, we compute RCk as sum of

k leading SSA RCs of PC1, and find times tj < t∗ −∆ such

that RCk(tj : tj + ∆) is close enough to RCk(t∗ −∆ : t∗) in rms

error and correlation over continuous time interval of size ∆:

T�t∗ :=
�
tj ∈ (0, t∗ −∆) :

rms(RCk(tj : tj + ∆)−RCk(t∗ −∆ : t∗)) ≤ α, and,

corr(RCk(tj : tj + ∆), RCk(t∗ −∆ : t∗)) ≥ 1− β
�
,

(2)

• S2. The refined set of noise “snippets” to compute EMR

prediction from time t∗ is given by following subset of St∗,

S �
t∗ := {ζ tj ∈ St∗ : tj ∈ T�t∗}; (3)

where each ζ tj is a copy of length δ of the residual noise ξt in

the past.

•The PNF prediction for δ = 16 months ahead is given by the

mean over ensemble driven by S �
t∗.
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Figure 1: Principle of the PNF method: (vertical dashed) time t∗ at which we start prediction,

(red) PC1(t∗ −∆,t∗ + 16), with ∆ = 5, (black) RC2 of PC1 (that captures most energetic, QQ

mode); (green) RC2 analogues selected by (2); (magenta) corresponding PC1 analogues,

(dashed blue) EMR ensemble mean over whole set of snippets St∗; (cyan) PNF ensemble

plume driven by selected subset of snippets S �
t∗ in (3), x1(t∗ + t, t∗,xt∗; ζ tj)); (thick blue) PNF

ensemble mean over S �
t∗.

5. Numerical Results and Skill

The proof–of–concept PNF prediction consists of fitting EMR

model and obtaining full set of noise snippets St∗ for 1950–1999

training period, and performing validation in 2000-2009. Drastic

improvement of Niño-3 prediction beyond 6 months by

PNF-EMR is due to its ability to predict energetic LFV episodes

of QQ+QB in 2000-2009.
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Figure 2: Upper panel: Drastic improvement of Niño-3 prediction skill by PNF. Lower panel:

PNF improvement in predicting Niño-3 at 14-month-lead is consistent with energetic phase of

low-frequency modes (QQ + QB) components of Niño-3 (cyan), captured by SSA.

Interpretation: In the EMR ENSO model the chaos is “weak”

(cf. Fig. 4) and the sensitivity w.r.t. the forcing is reasonably

moderate (cf. Fig. 5). The refined set of noise snippets S �
t∗

corresponds to different initial conditions than at the time t∗ of

immediate forecasting, but is built on similar LFV phase in the

past (training period) preceding this time. Due to the weak

long-lead dependence on perturbations in the noise forcing and

initial conditions, it is thus natural to expect that forecasted
trajectories should “synchronize” with observed LFV (QQ+QB)

in the future at a longer lead as well, thus leading to improvement

in prediction skill.
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Figure 3: The Niño SST anomaly is defined as the area average over the rectangular box. PNF

skill is uniformly better (lower RMS, higher Corr) in the equatorial Tropical Pacific and Indian

Ocean, area where ENSO is active the most.

6. Theoretical justification of PNF method:

pathwise linear response and weak chaos in EMR

ENSO model.
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Figure 4: Weak sensitivity w.r.t. initial data and synchronization by the noise at long lead

times: x-axis is the normalized magnitude �x0 − x̂0� of a perturbation of an initial condition

x0 taken at time s. The y-axis represents normalized difference �x(t, s,x0; ω)− x(t, s, x̂0; ω)�

at 1 month (t− s = 1, upper-panel) and at 12 months (t− s = 12, lower panel), driven by

same noise realization ω.
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Figure 5: Pathwise linear response of EMR ENSO model to noise perturbation: The

x-axis represents normalized magnitude of noise perturbation [
� t

s �χu(ω�)− ξu(ω)�du]. The

blue dots represent the normalized response of the EMR model’solutions

�x(t, s,xs; ω)− x(t, s,xs; ω�)� integrated over t− s = 16 months, with initial condition xs

taken at time s, for arbitrary perturbations χt(ω�) = ξt(ω) + �ξt(ω�) (� > 0) of the residual

noise from its training period. The red dots correspond to the model’s response

�x(t∗ + t, t∗,xt∗; ω�)− x(t∗ + t, t∗,xt∗; ω)� integrated over t = 16 months and over the

validation period, for specific perturbations χt(ω�) ∈ St∗, i.e. from the full set of noise snippets

of the training period; where ξt(ω) is now the residual noise of the validation period. The

magenta dots are the same as the red ones except that χt(ω�) ∈ S �
t∗, i.e. the response is assessed

from the refined set of noise snippets obtained by the PNF procedure (cf. S1 & S2) in 4.
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Identification of low-frequency modes

“Stadium Wave” propagation in the 
“space” of 15 climate indices, as 
identified by singular spectrum analysis 
of observed data

Dependence of NAO and ENSO 
variability on stadium-wave multi-
decadal signal in the AT index

poster: Kravtsov et al.



Summary

• Hidden Markov Models for probabilistic downscaling of GCM climate 
predictions and projections

‣ identification of “dynamical” vs “thermodynamical” components of 
regional climate change

• Empirical low-order non-linear models with stochastic forcing for interannual 
prediction

• Identification of interdecadal modes in historical data and CMIP3 simulations
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• Multidecadal Oscillation and Northern Hemisphere’s climate
M. Wyatt, S. Kravtsov, and A. A. Tsonis

• Sampling past noise to drive ENSO forecasts 
D. Kondrashov, M. Chekroun, and M. Ghil (joint with Robust Climate 
Projections and Stochastic Stability of Dynamical Systems PI’d by M Ghil)

• Dynamical and extra-dynamical influences on Indian monsoon rainfall: 
Projections using a nonhomogeneous hidden Markov model 
A. M. Greene, A. W. Robertson, P. J. Smyth & S. Triglia


