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Abstract

The purpose of this review-and-research paper is twofold: (i) to review the role played in climate dynamics by
fluid-dynamical models; and (ii) to contribute to the understanding and reduction of the uncertainties in future
climate-change projections. To illustrate the first point, we review recent theoretical advances in studying the wind-
driven circulation of the oceans. In doing so, we concentrate on the large-scale, wind-driven flow of the mid-latitude
oceans, which is dominated by the presence of a larger, anticyclonic and a smaller, cyclonic gyre. The two gyres share
the eastward extension of western boundary currents, such as the Gulf Stream or Kuroshio, and are induced by the
shear in the winds that cross the respective ocean basins. The boundary currents and eastward jets carry substantial
amounts of heat and momentum, and thus contribute in a crucial way to Earth’s climate, and to changes therein.

Changes in this double-gyre circulation occur from year to year and decade to decade. We study this low-frequency
variability of the wind-driven, double-gyre circulation in mid-latitude ocean basins, via the bifurcation sequence
that leads from steady states through periodic solutions and on to the chaotic, irregular flows documented in the
observations. This sequence involves local, pitchfork and Hopf bifurcations, as well as global, homoclinic ones.

The natural climate variability induced by the low-frequency variability of the ocean circulation is but one of the
causes of uncertainties in climate projections. The range of these uncertainties has barely decreased, or even increased,
over the last three decades. Another major cause of such uncertainties could reside in the structural instability—in
the classical, topological sense—of the equations governing climate dynamics, including but not restricted to those
of atmospheric and ocean dynamics.

We propose a novel approach to understand, and possibly reduce, these uncertainties, based on the concepts and
methods of random dynamical systems theory. The idea is to compare the climate simulations of distinct general
circulation models (GCMs) used in climate projections, by applying stochastic-conjugacy methods and thus perform a
stochastic classification of GCM families. This approach is particularly appropriate given recent interest in stochastic
parametrization of subgrid-scale processes in GCMs.

As a very first step in this direction, we study the behavior of the Arnol’d family of circle maps in the presence
of noise. The maps’ fine-grained resonant landscape is smoothed by the noise, thus permitting their coarse-grained
classification.

Key words: Climate change, physical oceanography, dynamical systems, bifurcations, structural stochastic stability, Arnol’d
tongues.
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1. Introduction

Charney et al. [1] were the first to attempt a con-
sensus estimate of the equilibrium sensitivity of cli-
mate to changes in atmospheric CO2 concentrations.
The result was the now famous range for an increase
of 1.5 K to 4.5 K in global near-surface air temper-
atures, given a doubling of CO2 concentration.

As the relatively new science of climate dynam-
ics evolved through the 1980s and 1990s, it became
quite clear — from observational data, both instru-
mental and paleoclimatic, as well as model studies
— that Earth’s climate never was and is unlikely to
ever be in equilibrium. The three successive IPCC
reports (1991 [2], 1996, and 2001 [3]) concentrated
therefore, in addition to estimates of equilibrium
sensitivity, on estimates of climate change over the
21st century, based on several scenarios of CO2 in-
crease over this time interval, and using up to 18 gen-
eral circulation models (GCMs) in the fourth IPCC
Assessment Report (AR4) [4].

The GCM results of temperature increase over the
coming 100 years have stubbornly resisted any nar-
rowing of the range of estimates, with results for Ts

in 2100 as low as 1.4 K or as high as 5.8 K, accord-
ing to the Third Assessment Report. The hope in
the research leading up to the AR4 was that a set
of suitably defined “better GCMs” would exhibit a
narrower range of year-2100 estimates, but this does
not seem to have been the case.

The difficulty in narrowing the range of estimates
for either equilibrium sensitivity of climate or for
end-of-the-century temperatures is clearly con-
nected to the complexity of the climate system, the
multiplicity and nonlinearity of the processes and
feedbacks it contains, and the obstacles to a faithful
representation of these processes and feedbacks in
GCMs. The practice of the science and engineering
of GCMs over several decades has amply demon-
strated that any addition or change in the model’s
“parametrizations” — i.e., of the representation
of subgrid-scale processes in terms of the model’s
explicit, large-scale variables — may result in no-
ticeable changes in the model solutions’ behavior.

As an illustration, Fig. 1 shows the sensitivity
of an atmospheric GCM, which does not include a
dynamical ocean, to changes in its model parame-
ters. Several thousand simulations were performed
as part of the “climateprediction.net” experiment
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[6], using perturbations in several parameters of the
Hadley Centre’s HadAM3 model [7], coupled to a
passive, mixed-layer ocean model. The lower panel
of Fig. 1 clearly illustrates a wide range of responses
to CO2 doubling, from about −1 K to about 8 K [8].

Fig. 1. Frequency distributions of global mean, annual mean,
near-surface temperature (Tg) for (a) 2,017 GCM simula-
tions, and doubled CO2; and for (b) a subset of 414 stable
simulations, without substantial climate drift (from [8]).

The last IPCC report [4] has investigated climate
change as a result of various scenarios of CO2 in-
crease for a set of 18 distinct GCMs. The best esti-
mate of the temperature increase at the end of the
21st century from AR4 is about 4.0◦ C for the worst
scenario of greenhouse-gas increase, namely A1F1,
this scenario envisages, roughly speaking, a future
world with a very rapid economic growth. The likely
range of end-of-century increase in global tempera-
tures is of 2.4–6.4◦ C in this case, and comparably
large ranges of uncertainties obtain for all the other
scenarios as well [4]. The consequences of these scen-
tific uncertainties for the ethical quandaries arising
in the socio-economic and political decision-making
process involved in adaptation to and mitigation of
climate changes are discussed in [5].

An essential contributor to this range of uncer-
tainty is natural climate variability [9] of the cou-
pled ocean-atmosphere system. As mentioned al-
ready in [10], most GCM simulations do not ex-
hibit the observed interdecadal variability of the
oceans’ buoyancy-driven, thermohaline circulation
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[11]. This circulation corresponds to a slow, pole-to-
pole motion of the oceans’ main water masses, also
referred to as the overturning circulation. Cold and
denser waters sink in the subpolar North Atlantic
and lighter waters rise over much wider areas of the
lower and southern latitudes.

Another striking example of low-frequency,
interannual-and-interdecadal variability is provided
by the near-surface, wind-driven ocean circulation
[11,12]. Key features of this circulation are de-
scribed at length in Section 2. The influence of
strong thermal fronts — like the Gulf Stream in the
North Atlantic or the Kuroshio in the North Pacific
— on the mid-latitude atmosphere above is severely
underestimated. Typical spatial resolutions in the
century-scale GCM simulations of [2–4,6–8] are of
the order of 100 km at best, whereas resolutions of
20 km and less would be needed to really capture
the strong mid-latitude ocean-atmosphere coupling
just above the oceanic fronts [13,14].

An important additional source of uncertainty
comes from the difficulty to correctly parametrize
global and regional effects of clouds and their highly
complex small-scale physics. This difficulty is par-
ticularly critical in the tropics, where large-scale
features such as the El-Niño/Southern Oscillation
and the Madden-Julian oscillation are strongly
coupled with convective phenomena [15–17].

The purpose of this paper is twofold. First, we de-
scribe in Section 2 the most recent theoretical results
regarding the internal variability of the mid-latitude
wind-driven circulation, viewed as a problem in non-
linear fluid mechanics. These results rely to a large
extent on the deterministic theory of dynamical sys-
tems [18,19]. Second, we address in Section 3 the
more general issue of uncertainties in climate change
projections. Here we rely on concepts and methods
from random dynamical systems theory [20] to help
understand and possibly reduce these uncertainties.
Much of the material in the latter section is new; it is
supplemented by rigorous mathematical definitions
and results in Appendices A and B. A summary and
an outlook on future work follow in Section 4.

2. Natural variability of the wind-driven
ocean circulation

2.1. Observations

To a first approximation, the main near-surface
currents in the oceans are driven by the mean effect

of the winds. The trade winds near the equator blow
mainly from east to west and are called also the trop-
ical easterlies. In mid-latitudes, the dominant winds
are the prevailing westerlies, and towards the poles
the winds are easterly again. Three of the strongest
near-surface, mid-and-high-latitude currents are the
Antarctic Circumpolar Current, the Gulf Stream in
the North Atlantic, and the Kuroshio Extension off
Japan. The Antarctic Circumpolar Current, some-
times called the Westwind Drift, circles eastward
around Antarctica; see Fig. 2.

Fig. 2. A map of the main oceanic currents: warm currents
in red and cold ones in blue.

The Gulf Stream is an oceanic jet with a strong
influence on the climate of eastern North America
and of western Europe. Actually, the Gulf Stream is
part of a larger, gyre-like current system, which in-
cludes the North Atlantic Drift, the Canary Current
and the North Equatorial Current. It is also coupled
with the pole-to-pole overturning circulation. From
Mexico’s Yucatan Peninsula, the Gulf Stream flows
north through the Florida Straits and along the East
Coast of the United States. Near Cape Hatteras, it
detaches from the coast and begins to drift off into
the North Atlantic towards the Grand Banks near
Newfoundland.

The Coriolis force is responsible for the so-called
Ekman transport, which deflects water masses or-
thogonally to the near-surface wind direction and to
the right [21–23]. In the North Atlantic, this Ekman
transport creates a divergence and a convergence of
near-surface water masses, respectively, resulting in
the formation of two oceanic gyres: a smaller, cy-
clonic one in subpolar latitudes, the other larger and
anticyclonic in the subtropics. This type of double-
gyre circulation characterizes all mid-latitude ocean
basins, including the South Atlantic, as well as the
North and South Pacific.
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The double-gyre circulation is intensified as the
currents approach the East Coast of North Amer-
ica due to the β-effect. This effect arises primarily
from the variation of the Coriolis force with lati-
tude, while the oceans’ bottom topography also con-
tributes to it. The former, planetary β-effect is of
crucial importance in geophysical flows and induces
free Rossby waves propagating westward [21–23].

The currents along the western shores of the
North Atlantic and of the other mid-latitude ocean
basins exhibit boundary-layer characteristics and
are commonly called western boundary currents
(WBCs). The northward-flowing Gulf Stream and
the southward-flowing Labrador Current extension
meet near Cape Hatteras and yield a strong east-
ward jet. The formation of this jet and of the intense
recirculation vortices near the western boundary, to
either side of the jet, is mostly driven by internal,
nonlinear effects.

Figure 3 illustrates how these large-scale wind-
driven oceanic flows self-organize, as well as the re-
sulting eastward jet. Different spatial and time scales
contribute to this self-organization, mesoscales ed-
dies playing the role of the synoptic-scale systems in
the atmosphere. Warm and cold rings last for sev-
eral months up to a year and have a size of about 100
km; two cold rings are clearly visible in Fig. 3. Me-
anders involve larger spatial scales, up to 1000 km,
and are associated with interannual variability. The
characteristic scale of the jet and gyres is of several
thousand kilometers and they exhibit their own in-
trinsic dynamics on time scales of several years to
possibly several decades.

A striking feature of the wind-driven circulation
is the existence of two well-known North-Atlantic
oscillations, with a period of about 7 and 14 years,
respectively. Data analysis of various climatic vari-
ables, such as sea surface temperature (SST) over
the North Atlantic or sea level pressure (SLP) over
western Europe [24–26] and local surface air temper-
atures in Central England [27], as well as of proxy
records, such as tree rings in Britain, travertine con-
cretions in southeastern France [28], and Nile floods
over the last millennium or so [29], all exhibit strik-
ingly robust oscillatory behavior with a 7-yr period
and, to a lesser extent, with a 14-yr period. Varia-
tions in the path and intensity of the Gulf Stream
are most likely to exert a major influence on the cli-
mate in this part of the world [30]. This is why theo-
retical studies of the low-frequency variability of the
double-gyre circulation are important.

Given the complexity of the processes involved,
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Fig. 3. A satellite image of the sea surface temperature (SST)
over the northwestern North Atlantic (U.S. National Oceanic
and Atmospheric Administration), together with a sketch
of the associated double-gyre circulation. An idealized view
of the amount of potential vorticity injected into the ocean
circulation by the trade winds, westerlies and polar easterlies
is shown to the right.

climate studies have been most successful when us-
ing not just a single model but a full hierarchy of
models, from the simplest “toy” models to the most
detailed GCMs [17]. In the following, we describe
one of the simplest models of the hierarchy used in
studying this problem.

2.2. A simple model of the double-gyre circulation

The simplest model that includes many of the
mechanisms described above is governed by the
barotropic quasi-geostrophic (QG) equations. The
term geostrophic refers to the fact that large-scale
rotating flows tend to run parallel to, rather than
perpendicular to constant-pressure contours; in the
oceans, these contours are associated with the devi-
ation from rest of the surfaces of equal water mass,
due to Ekman pumping. Geostrophic balance im-
plies in particular that the flow is divergence-free.
The term barotropic, as opposed to baroclinic, has
a slightly different meaning in geophysical fluid
dynamics than in engineering fluid mechanics: it
means that the model describes a single fluid layer
of constant density and therefore the solutions do
not depend on depth [21–23].

We consider an idealized, rectangular basin
geometry and simplified forcing that mimics the
distribution of vorticity contribution by the winds,
as sketched to the right of Fig. 3. In our idealized
model, the amounts of subpolar and subtropical
vorticity injected into the basin are equal and the
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rectangular domain Ω = (0, Lx) × (0, Ly) is sym-
metric about the axis of zero wind stress curl. The
barotropic two-dimensional (2-D) QG equations in
this idealized setting are:

qt + J(ψ, q)− ν∆2ψ + µ∆ψ = −τ sin
2πy

Ly
,

q = ∆ψ − λ−2
R ψ + βy.

(1)

Here q and ψ are the potential vorticity and stream-
function, respectively, and the Jacobian J corre-
sponds to the advection of potential vorticity by the
flow, J(ψ, q) = ψxqy − ψyqx = u · ∇q, where u =
(−ψy, ψx), x points east and y points north. The
physical parameters are the strength of the plane-
tary vorticity gradient β, the Rossby radius of de-
formation λ−2

R , the eddy-viscosity coefficient ν, the
bottom friction coefficient µ, and the wind-stress in-
tensity τ . We use here free-slip boundary conditions
ψ = ∆2ψ = 0; the qualitative results described be-
low do not depend on the particular choice of homo-
geneous boundary conditions.

We consider (1) as an infinite-dimensional dynam-
ical system and study its bifurcation sets as the pa-
rameters change. Two key parameters are the wind
stress intensity τ and the eddy viscosity ν. An im-
portant property of (1) is its mirror symmetry in the
y = Ly/2 axis. This symmetry can be expressed as
invariance with respect to the discrete Z2 group S:

S [ψ(x, y)] = −ψ(x, Ly − y); (2)

any solution of (1) is thus accompanied by its mirror-
conjugated solution. Hence, in generic terms, the
prevailing bifurcations are of either the symmetry-
breaking or the saddle-node or the Hopf type.

2.3. Bifurcations in the double-gyre problem

The historical development of a comprehensive
nonlinear theory of the double-gyre circulation
is interesting on its own, having seen substantial
progress in the last 15 years. One can distinguish
four main steps.

2.3.1. Symmetry-breaking bifurcations
The first step was to realize that the first generic

bifurcation of this QG model was a genuine pitchfork
bifurcation that breaks the system’s symmetry as
the nonlinearity becomes large enough [31–33]. The
situation is shown in Fig. 4. When the forcing is
weak or the dissipation is large, there is only one
steady solution, which is antisymmetric with respect

to the mid-axis of the basin. This solution exhibits
two large gyres, along with their typical, β-induced
WBCs. Away from the western boundary, such a
near-linear solution (not shown) is dominated by
Sverdrup balance between wind stress curl and the
meridional mass transport [21,34].

As the wind stress increases, the near-linear Sver-
drup solution develops an eastward jet along the
mid-axis, which penetrates farther into the domain.
This more intense, and hence more nonlinear solu-
tion is still antisymmetric about the mid-axis, but
loses its stability for some critical value of the wind-
stress intensity (indicated by “Pitchfork” in Fig. 4).

A pair of mirror-symmetric solutions emerges and
is characterized by a rather different vorticity dis-
tribution; the streamfunction fields associated with
the two stable steady-state branches are plotted to
the upper-left and right of Fig. 4. In particular, the
jet in such a solution exhibits a large meander, rem-
iniscent of the one seen in Fig. 3 just downstream of
Cape Hatteras; note that the colors in Fig. 4 have
been chosen to facilitate the comparison with Fig.
3. These asymmetric flows are characterized by one
gyre being stronger in intensity than the other and
therefore the jet is deflected either to the southeast
or to the northeast.

2.3.2. Gyre modes
The next step was taken in part concurrently with

[31,32] and in part shortly after [35–37] the first one.
It involved the study of time-periodic instabilities
through Hopf bifurcation from either an antisym-
metric or an asymmetric steady flow. Some of these
studies concentrated on the wind-driven circulation
formulated for the stand-alone, single gyre [37,38].
The idea was to develop a full generic picture of the
time-dependent behavior of the solutions in more
turbulent regimes, by classifying the various insta-
bilities in a comprehensive way. However, it quickly
appeared that one kind of asymmetric instabilities,
called gyre modes [32,35], was prevalent across the
full hierarchy of models of the double-gyre circula-
tion; furthermore, these instabilities trigger the low-
est nonzero frequency present in these models.

These modes always appear after the first pitch-
fork bifurcation, and it took several years to re-
ally understand their genesis: gyre modes arise as
two eigenvalues merge — one is associated with a
symmetric eigenfunction and responsible for the
pitchfork bifurcation, the other is associated with
an antisymmetric eigenfunction [39]; this merging
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Fig. 4. Generic bifurcation diagram for the barotropic QG
model of the double-gyre problem: the asymmetry of the
solution is plotted versus the intensity of the wind stress τ .
The streamfunction field is plotted for a steady-state solution
associated with each of the three branches; positive values
in red and negative ones in blue (after [46]).

is marked by M in Fig. 4.
Such a phenomenon is not a bifurcation stricto

sensu: one has topological C0 equivalence before
and after the eigenvalue merging, but not from the
C1 point of view. We recall here that functions are
Ck if they and their inverses are k times continu-
ously differentiable. Still, this phenomenon is quite
common in small-dimensional dynamical systems
with symmetry, as exemplified by the unfolding
of codimension-2 bifurcations of Bogdanov-Takens
type [19]. In particular, the fact that gyre modes
trigger the lowest-frequency of the model is due to
the frequency of these modes growing quadratically
from zero until nonlinear saturation. Of course,
these modes, in turn, become unstable shortly after
the merging, through a Hopf bifurcation, indicated
by “Hopf” in Fig. 4.

2.3.3. Global bifurcations
The importance of these gyre modes was further

confirmed recently through an even more puzzling

discovery. Several authors realized, independently of
each other, that the low-frequency dynamics of their
respective double-gyre models was driven by intense
relaxation oscillations of the jet [40–46]. These relax-
ation oscillations, already described in [32,35], were
now attributed to homoclinic bifurcations, with a
global character in phase space [19,22]. In effect, the
QG model reviewed here undergoes a genuine homo-
clinic bifurcation (see Fig. 4), which is generic across
the full hierarchy of double-gyre models. Moreover,
this global bifurcation is associated with chaotic be-
havior of the flow due to the Shilnikov phenomenon
[43,46], which induces horseshoes in phase space.

The connection between such homoclinic bifurca-
tions and gyre modes was not immediately obvious,
but Simonnet et al. [46] emphasized that the two
were part of a single, global dynamical phenomenon.
The homoclinic bifurcation indeed results from the
unfolding of the gyre modes’ limit cycles. This fa-
miliar dynamical scenario is again well illustrated
by the unfolding of a codimension-2 Bogdanov-
Takens bifurcation, where the homoclinic orbits
emerge naturally. We deal, once more, with the
lowest-frequency modes, since homoclinic orbits
have an infinite period. Due to the genericity of this
phenomenon, it was natural to hypothesize that
the gyre-mode mechanism, in this broader, global-
bifurcation context, gave rise to the observed 7-yr
and 14-yr North-Atlantic oscillations. Although this
hypothesis may appear a little farfetched, in view of
the simplicity of the double-gyre models analyzed
in detail so far, it poses an interesting question.

2.3.4. Quantization and open questions
The chaotic dynamics observed in the QG mod-

els after the homoclinic bifurcation is eventually de-
stroyed as the nonlinearity and the resolution both
increase. As one expects the real oceans to be in
a far more turbulent regime than those studied so
far, some authors proposed different mechanisms
for low-frequency variability in fully turbulent flow
regimes [47,48]. It turns out, though, that — just
as gyre modes could be reconciled with homoclinic-
driven dynamics, — the latter can also be reconciled
with eddy-driven dynamics, via the so-called quan-
tization of the low-frequency dynamics [49].

Primeau [50] showed that, in large basins com-
parable in size with the North Atlantic, there is
not only one but a set of successive pitchfork bi-
furcations. One supercritical pitchfork bifurcation,
associated with the destabilization of antisymmet-
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ric flows, is followed generically by a subcritical one,
associated this time with a stabilization of antisym-
metric flows (modulo high-frequency instabilities)
[49]. As a matter of fact, this phenomenon appears
to be a consequence of the spectral behavior of the
2-D Euler equations [51], and hence of the closely
related barotropic QG model in bounded domains.

Remarkably, this scenario repeats itself as the
nonlinearity increases, but now higher wavenumbers
are involved in physical space. Simonnet [49] showed
that this was also the case for gyre modes and the
corresponding dynamics induced by global bifur-
cations: the low-frequency dynamics is quantized
as the jet stream extends further eastward into the
basin, due to the increased forcing and nonlinearity.
Figure 5 illustrates this situation: two families of
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Fig. 5. Two-parameter plane, with the wind-stress intensity
τ vs. the eddy-viscosity coefficient ν: the curves indicate the
locations of supercritical and subcritical pitchfork bifurca-
tions. Each band is associated with a different wavenumber
and timescale (from [49]).

regimes can be identified, the colored bands corre-
spond to (supercritical) regimes driven by the gyre
modes, the others to (subcritical) regimes driven by
the eddies. Note that this scenario is also robust to
perturbing the problem’s symmetry.

The successive-bifurcation theory appears there-
with to be fairly complete for barotropic, single-layer
models of the double-gyre circulation. This theory
also provides a self-consistent, plausible explanation
for the climatically important 7-year and 14-year os-
cillations of the oceanic circulation and the related
atmospheric phenomena in and around the North-
Atlantic basin [11,12,24–29,45,46]. The dominant 7-
and 14-year modes of this theory also survive per-
turbation by seasonal-cycle changes in the intensity
and meridional position of the westerly winds [52].

In baroclinic models, with two or more active
layers of different density, baroclinic instabilities
[11,14,21–23,30,38,45,47,48] surely play a funda-
mental role, as they do in the observed dynamics of
the oceans. However, it is not known to what ex-
tent baroclinic instabilities can destroy gyre-mode
dynamics. The difficulty lies in a deeper under-
standing of the so-called rectification process [53],
which arises from the nonzero mean effect of the
baroclinic component of the flow.

Roughly speaking, rectification drives the dynam-
ics far away from any steady states. In this situa-
tion, dynamical systems theory cannot be used as
an explanation of complex, observed behavior re-
sulting from successive bifurcations that are rooted
in a simple steady state. Other tools from statisti-
cal mechanics and nonequilibrium thermodynamics
should, therefore, be considered [54–57]. Combining
these tools with those of the successive-bifurcation
approach may eventually lead to a more general and
complete physical characterization of gyre modes in
realistic models.

3. Climate-change projections and random
dynamical systems (RDSs)

As discussed in Section 1, the climate system’s
natural variability and the difficulties in parametriz-
ing subgrid-scale processes are not the only causes
for the uncertainties in projecting future climate
evolution. In this section, we address more generally
these uncertainties and present a novel approach for
treating them. To do so, we start with some simple
ideas about deterministic vs. stochastic modeling.

3.1. Background and motivation

Many physical phenomena can be modeled by de-
terministic evolution equations. Dynamical systems
theory is essentially a geometric approach for study-
ing the asymptotic, long-term properties of solutions
to such equations in phase space. Pioneered by H.
Poincaré [58], this theory took great strides over the
last fifty years. To apply the theory in a reliable
manner to a set of complex physical phenomena, one
needs a criterion to evaluate the robustness of a given
model within a class of dynamical systems. Such a
criterion should help us deal with the inescapable
uncertainties in model formulation, whether due to
incomplete knowledge of the governing laws or inac-
curacies in determining model parameters.
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In this context, Andronov and Pontryagin [59]
took a major step toward classifying dynamical sys-
tems, by introducing the concept of structural sta-
bility. Structural stability means that a small, con-
tinuous perturbation of a given system preserves its
dynamics up to a homeomorphism, i.e., up to a one-
to-one continuous change of variables that trans-
forms the phase portrait of our system into that of
the nearby system; thus fixed points go into fixed
points, limit cycles into limit cycles, etc. Closely re-
lated is the notion of hyperbolicity introduced by
Smale [60]. A system is hyperbolic if, (very) loosely
speaking, its limit set can be continuously decom-
posed into invariant sets that are either contracting
or expanding; see [61] for more rigorous definitions.

A very simple example is the phase portrait in
the neighborhood of a fixed point of saddle type.
In this case, the Hartman-Grobman theorem states
that the dynamics in this neighborhood is struc-
turally stable. The converse statement, i.e. whether
structural stability implies hyperbolicity, is still an
open question; the equivalence between structural
stability and hyperbolicity has only been shown in
the C1 case, under certain technical conditions [62–
65]. Bifurcation theory is well grounded in the set-
ting of hyperbolic dynamics. Problems with hyper-
bolicity and bifurcations arise, however, when one
deals with more complicated limit sets.

Hyperbolicity was introduced initially to help
pursue the “dynamicist’s dream” of finding, in the
abstract space of all possible dynamical systems,
an open and dense set consisting of structurally
stable ones. Being open and dense, roughly speak-
ing, means that any possible dynamical system can
be approximated by systems taken from this set,
while systems in its complement are negligible in a
suitable sense.

Smale conjectured that hyperbolic systems form
an open and dense set in the space of all C1 dy-
namical systems. If this conjecture were true then
hyperbolicity would be typical of all dynamics.
Unfortunately, though, this conjecture is only true
for one-dimensional dynamics and flows on disks
and surfaces [66]. Smale [67] himself found several
counterexamples to his conjecture. Newhouse [68]
was able to generate open sets of nonhyperbolic
diffeomorphisms using homoclinic tangencies. For
the physicist, it is even more striking that the fa-
mous Lorenz attractor [69] is structurally unstable.
Families of Lorenz attractors, classified by topolog-
ical type, are not even countable [70,71]. In each of
these examples, we observe chaotic behavior in a

nonhyperbolic situation, i.e., nonhyperbolic chaos.
Nonhyperbolic chaos appears, therefore, to be a

severe obstacle to any “easy” classification of dy-
namic behavior. As mentioned by Palis [65], Kol-
mogorov already suggested at the end of the sixties
that “the global study of dynamical systems could
not go very far without the use of new additional
mathematical tools, like probabilistic ones.” Once
more, Kolmogorov showed prophetic insight, and
nowadays the concept of stochastic stability is an im-
portant tool in the study of genericity and robust-
ness for dynamical systems. To replace the failed
program of classifying dynamical systems based on
structural stability and hyperbolicity, Palis [65] for-
mulated the following global conjecture: systems hav-
ing only finitely many attractors (i.e. periodic or
chaotic sinks) – such that (i) the union of their basins
has full Lebesgue measure; and (ii) each is stochasti-
cally stable in their basins of attraction – are dense
in the Cr, r ≥ 1 topology. A system is stochastically
stable if its Sinai-Ruelle-Bowen (SRB) measure [72]
is stable with respect to stochastic perturbations,
and the SRB measure is given by limn→∞ 1

n

∑
i δzi ,

with zi being the successive iterates of the dynamics.
This measure is obtained intuitively by allowing the
entire phase space to flow onto the attractor [73].

Stochastic stability is fundamentally based on er-
godic theory. We would like to consider a more geo-
metric approach, which can provide a coarser, more
robust classification of GCMs and their climate-
change projections. In this section, we propose such
an approach, based on concepts from the rapidly
growing field of random dynamical systems (RDSs),
as developed by L. Arnold [20] and his “Bremen
group,” among others. RDS theory describes the
behavior of dynamical systems subject to external
stochastic forcing; its tools have been developed to
help study the geometric properties of stochastic
differential equations (SDEs). In some sense, RDS
theory is the stochastic counterpart of the geometric
theory of ordinary differential equations (ODEs).
This approach provides a rigorous mathematical
framework for a stochastic form of robustness, while
the more traditional, topological concepts do not
seem to be appropriate.

3.2. RDSs, random attractors, and robust
classification

Stochastic parametrizations for GCMs aim at
compensating for our lack of detailed knowledge on
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small spatial scales in the best way possible [74–79].
The underlying assumption is that the associated
time scales are also much shorter than the scales
of interest and, therefore, the lag correlation of the
phenomena being parametrized is negligibly small.
Stochastic parametrizations thus essentially trans-
form a deterministic autonomous system into a
nonautonomous one, subject to random forcing.

Explicit time dependence in a dynamical system
immediately raises a technical difficulty. Indeed, the
classical notion of attractor is not always relevant,
since any object in phase space is “moving” with
time and the natural concept of forward asymptotics
is meaningless. One needs therefore another notion
of attractor. In the deterministic nonautonomous
framework, the appropriate notion is that of a pull-
back attractor [80], which we present below. The
closely related notion of random attractor in the sto-
chastic framework is also explained briefly below,
with further details given in Appendix A.

3.2.1. Framework and objectives
Before defining the notion of pullback attractor,

let us recall some basic facts about nonautonomous
dynamical systems. Consider the ODE

ẋ = f(t, x) (3)

on a vector space X; this space could even be infinite-
dimensional, if we were dealing with partial or func-
tional differential equations, as is often the case in
fluid-flow and climate problems. Rigorously speak-
ing, we cannot associate a dynamical system act-
ing on X with a nonautonomous ODE; neverthe-
less, in the case of unique solvability of the initial-
value problem, we can introduce a two-parameter
family of operators {S(t, s)}t≥s acting on X, with
s and t real, such that S(t, s)x(s) = x(t) for t ≥ s,
where x(t) is the solution of the Cauchy problem
with initial data x(s). This family of operators sat-
isfies S(s, s) = IdX and S(t, τ)◦S(τ, s) = S(t, s) for
all t ≥ τ ≥ s, and all real s. This family of opera-
tors is called a “process” by Sell [81].It extends the
classical notion of the resolvent of a nonautonomous
linear ODE to the nonlinear setting.

We can now define the pullback attractor as sim-
ply the family of invariant sets {A(t)} that satisfy
for every real t and all x0 in X:

lim
s→−∞

dist (S(t, s)x0,A(t)) = 0. (4)

“Pullback” attraction does not involve running time
backwards; it corresponds instead to the idea of mea-
surements being performed at present time t in an

experiment that was started at some time s < t in
the past: the experiment has been running for long
enough, and we are thus looking now at an “at-
tracting state.” Note that there exists several ways
of defining a pullback attractor — the one retained
here is a local one (cf. [80] and references therein);
see [82] for further information on nonautonomous
dynamical systems in general.

In the stochastic context, noise forcing is mod-
eled by a stationary stochastic process. If the de-
terministic dynamical system of interest is coupled
to this stochastic process in a reasonable way —
to be expressed below by the “cocycle property” —
then random pullback attractors may appear. These
pullback attractors will exist for almost each sample
path of the driving stochastic process, so that the
same probability distribution governs both sample
paths and their corresponding pullback attractors.
A more detailed explanation is given in Appendix A.

Roughly speaking, this concept of random attrac-
tor provides a geometric framework for the descrip-
tion of asymptotic regimes in the context of sto-
chastic dynamics. To compare different stochastic
systems in terms of their random attractors that
evolve in time, it would be nice to be able to identify
the common underlying geometric structures via a
random change of variables. This identification is
achieved through the concept of stochastic equiva-
lence that is developed in Appendix A, and it is cen-
tral in obtaining a coarser and more robust classifi-
cation than in the purely deterministic context.

Returning now to our main objective, suppose
for instance that one is presented with results from
two distinct GCMs, say two probability distribu-
tions functions (PDFs) of the temperature or precip-
itation in a given area. These two PDFs are gener-
ated, typically, by an ensemble of each GCM’s sim-
ulations, as described in the introduction, and they
are likely to differ in their spatial pattern. To ascer-
tain the physical significance of this discrepancy, one
needs to know how each GCM result varies as either
a parametrization or a parameter value are changed.

In order to consider the difficult question of why
GCM responses to CO2 doubling might differ, one
idea is to investigate the structure of the space of all
GCMs. We mean therewith the space of all deter-
ministic GCMs, when their stochastic parametriza-
tions are switched off. We know, by now, from expe-
rience with GCM results over several decades— in-
cluding the four IPCC assessment reports [2–4] and
the climateprediction.net exercise [6–8]—that there
is enormous scatter in this space; see also [84,85].
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Our question, therefore, is: can we achieve a more
robust classification of GCMs when stochastic para-
metrizations are used and for a given level of the
noise?

As mentioned in Section 3.1, such a classification
is not feasible by restricting ourself to deterministic
systems and topological concepts. As one switches
on stochastic parametrizations [74–79], the situa-
tion might change, and hopefully improve, dramat-
ically: as the noise level becomes large enough, the
models’ deterministic behavior may be completely
destroyed, and all the results could cluster into one
huge, diffuse clump. We would like, therefore, to
investigate how a classification based on stochas-
tic equivalence evolves as the level of the noise or
the stochastic parametrizations change. As the noise
tends to zero, do we recover the “granularity” of the
set of all deterministic dynamical systems? This idea
is schematically represented in Fig. 6: for a given
level of the noise, we expect the space of all GCMs
to be decomposed into a possibly finite number of
classes. Within one of these classes, all the GCMs
are topologically equivalent in the stochastic sense
defined above; see Eq. (A.2).
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Fig. 6. A conjectural view of stochastic classification for
GCMs, using the concept of random attractors. Each point in
red represents a GCM in which stochastic parametrizations
are switched off, while each gray area represents a cluster of
stochastically equivalent GCMs for a given level of the noise.

Serious difficulties might arise in this program,
due to the presence of nonhyperbolic chaos in cli-
mate models. Several studies have pointed out that
the characteristics of nonhyperbolic chaos in the
presence of noise may depend on its intensity and
statistics [86–89].

Such issues, however, go well beyond the setting
of this paper and are left for further investigation.
Much more modestly, we will study here whether,
in certain very simple cases, the conjectural view of

Fig. 6 might be relevant for some dynamical systems
that are “metaphors” of climate dynamics. The fol-
lowing subsection is dedicated to the study of such a
metaphorical object, namely the Arnol’d circle map.

3.2.2. The stochastically perturbed circle map
To go beyond our pictorial view of stochastic clas-

sification for GCMs in Fig. 6, we study now the effect
of noise on a family of diffeomorphisms of the circle.
This toy model exhibits two features of interest for
our purpose. The first one is that the two-parameter
family {Fτ,ε} defined by Eq. (5) below exhibits an in-
finite number of topological classes [18]. The second
feature of interest is the frequency-locking behavior
observed in many field of physics in general [90–92]
and in some El-Niño/Southern-Oscillation (ENSO)
models in particular [93–99]. Studying noise effects
on these two features has, therefore, physical and
mathematical, as well as climatological relevance.

Many physical and biological systems exhibit
interference effects due to competing periodicities.
One such effect is mode locking, which is due to non-
linear interaction between an “internal” frequency
ωi of the system and an “external” frequency ωe.
In the ENSO case, the external periodicity is the
seasonal cycle. A simple model for systems with two
competing periodicities is the well-known Arnol’d
family of circle maps

xn+1 = Fτ,ε(xn) := xn+τ−ε sin(2πxn) mod 1, (5)

where basically τ := ωi/ωe and ε parameterizes the
magnitude of nonlinear effects; the map (5) is often
called the standard circle map [18].

These maps also represent frequency locking near
a bifurcation of Neimark-Sacker type (e.g. [100], p.
434); here the parameter τ is typically interpreted
as the novel (internal) frequency involved in the bi-
furcation and ε corresponds to the nonlinearity near
the bifurcation.

Such nonlinear coupling between two oscillators
gives rise to a characteristic pattern, in the plane of ε
vs. τ , called Arnol’d tongues. We computed this pat-
tern numerically for the family of Eq. (5), together
with a cross-section at a fixed value of ε; see Fig.
7. This cross-section exhibits the so-called Devil’s
staircase, with “steps” on which the rotation num-
ber [58] is constant within each Arnol’d tongue; the
rotation number measures the average rotation per
iterate of (5).

For ε = 0, two types of phenomena occur: either τ
is rational and in this case the dynamics is periodic
with period q, where τ = p/q, or τ is irrational and
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Fig. 7. Arnol’d tongues for the family of diffeomorphisms of
the circle; units for τ and ε are 5·10−4 and 10−4 respectively.
Devil’s staircase in the cross-section to the right.

the iterates {xn} fill the whole circle densely. As
ε increases, an Arnol’d tongue of increasing width
grows out of each τ = p/q on the abscissa ε = 0. It
follows that, in this very simple case, such an Arnol’d
tongue corresponds to hyperbolic dynamics that is
robust to perturbations, as verified by linearizing
the map at the periodic point; the rotation number
is then rational and equal to p/q.

The set of all these tongues is dense within the
whole circle map family, while the Lebesgue mea-
sure of this set, at given ε, tends to zero as ε goes to
zero. On the contrary, if a point in the (τ, ε)-plane
does not belong to an Arnol’d tongue, the rotation
number for those parameter values is irrational and
the dynamics is nonhyperbolic; the latter fact fol-
lows, for instance, from a theorem of Denjoy [101]
showing that such dynamics is smoothly equivalent
to an irrational rotation. The probability to observe
nonhyperbolic dynamics tends therewith to unity as
ε goes to zero. One has, therefore, a countably infi-
nite number of distinct topological classes, namely
the Arnol’d tongues p/q, and an uncoutably infinite
number of maps with irrational rotation numbers.

What happens when noise is added in Eq. (5)?
We consider here the case of additive forcing by a
noise process obtained via sampling at each iterate
n a random variable with uniform density and inten-
sity σ. Experiments with colored, rather than white
noise and multiplicative, rather than additive noise
led to the same qualitative results. The results for
additive white noise are shown in Fig. 8 for three
different levels of noise intensity σ.

As expected, only the largest tongues survive the
presence of the noise; in particular, there is only a

finite number of surviving tongues, shown in red in
Fig. 8. Within such a surviving tongue, the random
attractor A(ω) is a random periodic cycle of period
q (not shown). In the blue region outside the Arnol’d
tongues, the random attractor is a fixed but random
point A(ω) = {a(ω)}: if one starts a numerical sim-
ulation for a fixed realization of the noise ω, all ini-
tial data x converge to the same fixed point a, say.
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Effect of the noise on the PDF of the Arnol’d tongue 1/3 

Fig. 8. Arnol’d tongues in the presence of additive noise with
different noise amplitudes σ. Upper panels: Arnol’d tongues
for σ = 0.05, 0.10 and 0.15; lower panel: PDF for ε = 0.9
and the three σ-values in the upper panels: σ = 0.05 (red
curve), σ = 0.10 (blue curve), and σ = 0.15 (black curve).

We illustrate this remarkable property in Fig. 9 in
the case of a random fixed point, for given ε and τ .
The Lyapunov exponent for the three distinct tra-
jectories shown in the figure is strictly negative and
the trajectories are exponentially attracted to the
single random fixed point a(ω), the realization of the
driving system θ(ω) being the same for all the tra-
jectories; see Appendices A and B. Kaijser [102] pro-
vided rigorous results on this type of synchroniza-
tion phenomenon, but in a totally different concep-
tual setting. Interestingly, as the noise intensity in-
creases, the Lyapunov exponent becomes more neg-
ative, so that the synchronization occurs even more
rapidly, given a fixed realization ω.

This clustering behavior of trajectories with dif-
ferent initial data is in fact well known for flows on
the circle [103]. In our example, this phenomenon in
phase space is related to a smoothing of the Devil’s
staircase in parameter space, the latter cannot be
solely explained by the former. Indeed, we show in
Appendix B that for different irrational numbers
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Fig. 9. Synchronization by additive noise: three distinct tra-
jectories (in blue, red and black) of xn+1 = Fτ,ε;ω(xn), with
Fτ,ε;ω given by (B.1); the three trajectories start from three
initial points on the circle, but are driven by the same real-
ization ω of the noise, and thus converge to the same random
fixed point a(ω), which is moving with time. The parameters
are ε = 0.5, τ = 0.283 and σ = 0.3, and the corresponding
Lyapunov exponent is λ ' −0.0104.

and a sufficiently high noise level, the correspond-
ing stochastic dynamics are stochastically equiva-
lent, an equivalence that results in the smoothing of
certain steps of the Devil’s staircase.

As shown in the lower panel of Fig. 8, there is also
a direct relationship between the random dynamics
and the support of the PDF on the circle. For a given
noise level, this support can either be the union of
a finite number of disjoint intervals (red and blue
curves) or it can fill the whole circle (black curve).
The random attractor is, accordingly, either a ran-
dom periodic orbit, with the disjoint intervals being
visited in succession, or a random fixed point; this
PDF behavior characterizes the level of the noise
needed to destroy a given tongue.

An exact definition of random fixed point and ran-
dom periodic orbit is given in Appendix B, where
we provide a rigorous justification of the numerical
results in Figs. 7, 8, and 9. This theoretical analysis
helps clarify the interaction between noise and non-
linear dynamics in the context of the GCM classifi-
cation problem we are interested in.

4. Concluding remarks

We recall that Section 2 dealt with the natural, in-
terannual and interdecadal variability of the ocean’s
wind-driven circulation. The oceans’ internal vari-
ability is an important source of uncertainty in past-
climate reconstructions and future-climate projec-

tions [9–12]. In Section 3 and Appendices A and B,
we dealt more generally with the problem of struc-
tural instability as a possible cause for the stubborn
tendency of the range of uncertainties in climate
change projections to increase, rather than diminish
over the last three decades [1–4]; see again Fig. 1. We
summarize here the main results of the two sections
in succession, and outline several open problems.

The wind-driven double-gyre circulation dom-
inates the near-surface flow in the oceans’ mid-
latitude basins. Particular attention was paid to
the North Atlantic and North Pacific, traversed
by the best-known oceanic jets, namely the Gulf
Stream and the Kuroshio Extension (see Fig. 2).
The wind-driven circulation exhibits very rich in-
ternal dynamics and multiscale behavior associated
with turbulent mesoscales (see Fig. 3). Aside from
the intrinsic interest of this problem in physical
oceanography, these major oceanic currents help
regulate the climate of the adjacent continents,
while their low-frequency variability affects past,
present and future global climate.

Thanks in part to the systematic use of dynamical
systems theory, a comprehensive understanding of
simple, barotropic, quasi-geostrophic (QG) models
of the double-gyre circulation has been achieved over
the last two decades, and was reviewed in Section
2 here. In particular, the importance of symmetry-
breaking and homoclinic bifurcations (see Fig. 4)
in explaining the observed low-frequency variability
has been validated across a wide hierarchy of mod-
els, including models with much more comprehen-
sive physical formulation, more realistic geometry,
and greater resolution in the horizontal and verti-
cal [11,12]. This successive-bifurcation theory also
provides a self-consistent explanation for the climat-
ically important 7-year and 14-year oscillations of
the oceanic circulation and the related atmospheric
phenomena in and around the North-Atlantic basin
[11,12,24–29,45,46].

The next challenge in physical oceanography is to
reconcile the points of view of dynamical systems
theory and statistical mechanics in describing the
interaction between the largest scales of motion and
geostrophic mesoscale turbulence, which is fully cap-
tured in baroclinic QG models. We emphasize that
the complexity of these models of the double-gyre
circulation is intermediate between high-end GCMs
and simple “toy” models; these models offer, there-
fore, an ideal laboratory to test our ideas. In partic-
ular, stochastic parametrizations of the rectification
process, absent in barotropic QG models, could be
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studied using some of the concepts and tools from
RDS theory presented here. Note that the RDS ap-
proach has already been used in the context of sto-
chastic partial differential equations, in particular
for showing the existence of random attractors, as
well as stable, unstable and inertial manifolds. Thus
RDS concepts and tools are not restricted to finite-
dimensional systems [104–106].

In Section 3, we have addressed the range-of-
uncertainty problem for IPCC-class GCM simula-
tions (see Fig. 1) by considering them as stochasti-
cally perturbed dynamical systems. This approach
is consonant with recent interest for stochastic
parametrizations in the high-end modeling-and-
simulation community [74–79]. Rigorous mathemat-
ical results from the dynamical systems literature
suggest that — in the absence of stochastic ingredi-
ents — GCMs as well as simpler models, found on
the lower rungs of the modeling hierarchy [17], are
bound to differ from each other in their results.

This sensitivity follows from the fact that, among
deterministic dynamical systems, those that are hy-
perbolic are essentially the only ones that are also
structurally stable, at least in the C1 case [62–65].
Thus, because hyperbolic systems are not dense in
the set of smooth deterministic ones [67], we are led
to conclude that the topological, structural-stability
approach does not guarantee deterministic-model
robustness, in spite of its many valuable contribu-
tions so far. Related issues for GCM modeling were
emphasized recently by Mitchell [83], Held [84] and
McWilliams [85].

We have gone one step further and considered
model robustness in the presence of stochastic terms;
such terms could represent either parametrizations
of unresolved processes in GCMs or stochastic com-
ponents of natural or anthropogenic forcing, such
as volcanic eruptions or fluctuations in greenhouse
gas or aerosol emissions. Despite the obvious gap
between idealized models and high-end simulations,
we have brought to bear random dynamical systems
(RDS) theory [20] on the former.

In this framework, we have considered a robust-
ness criterion that could replace structural stabil-
ity, through the concept of stochastic conjugacy (see
Figs. A.1 and A.2). We have shown, for a stochasti-
cally perturbed Arnol’d family of circle maps, that
noise can enhance model robustness. More precisely,
this circle map family exhibits structurally stable, as
well as structurally unstable behavior. When noise
is added, the entire family exhibits stochastic struc-
tural stability, based on the stochastic-conjugacy

concept, even in those regions of parameter space
where deterministic structural instability occurs for
vanishing noise (see Figs. 7 and 8).

Clearly the hope that noise can smooth the very
highly structured pattern of distinct behavior types
for climate models, across the full hierarchy, has to
be tempered by a number of caveats. First, serious
questions remain at the fundamental, mathematical
level about the behavior of nonhyperbolic chaotic
attractors in the presence of noise [86–88]. Likewise,
the case of driving by nonergodic noise is being ac-
tively studied [107–109].

Second, the presence of certain manifestations of
a Devil’s staircase has been documented across the
full hierarchy of ENSO models [17,93–99], as well as
in certain observations [17,99]. Interestingly, both
GCMs and observations only exhibit a few, broad
steps of the staircase, such as 4 : 1 = 4 yr, 4 : 2 = 2
yr, and 4 : 3 ∼= 16 months. Does this result actually
support the idea that nature and its detailed models
always provide sufficient noise to achieve consider-
able smoothing of the much finer structure apparent
in simpler models? Be that as it may, we need a much
better understanding of how different types of noise
— additive and multiplicative, white and colored —
act across even a partial hierarchy of models, say
from the simplest ones, like those studied in Section
3, to the intermediate ones considered in Section 2.

Third, one needs to connect more closely the na-
ture of a stochastic parametrization and its effects
on the model’s behavior in phase-parameter space.
As shown in Appendix B, not all types of noise are
equal with respect to these effects. We are thus left
with a rich, and hopefully fruitful, set of questions,
which we expect to pursue in future work.
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Appendix A. RDSs and random attractors

We present here briefly the mathematical con-
cepts and tools of random dynamical systems, ran-
dom attractors and stochastic equivalence. We shall
use the concept of pullback attractor introduced in
Section 3.2.1 to define the closely related notion
of a random attractor, but need first to define an
RDS. We denote by T the set Z, for maps, or R, for
flows. Let (X,B) be a measurable phase space, and
(Ω,F ,P, (θ(t))t∈T) be a metric dynamical system
i.e. a flow in the probability space (Ω,F ,P), such
that (t, ω) 7→ θ(t)ω is measurable and θ(t) : Ω → Ω
is measure preserving, i.e., θ(t)P = P.

Let ϕ : T × Ω ×X → X, (t, ω, x) 7→ ϕ(t, ω)x, be
a mapping with the two following properties:

(R1): ϕ(0, ω) = IdX , and
(R2) (the cocycle property): For all s, t ∈ T and
all ω ∈ Ω,

ϕ(t + s, ω) = ϕ(t, θ(s)ω) ◦ ϕ(s, ω).

If ϕ is measurable, it is called a measurable RDS
over θ. If, in addition, X is a topological space (re-
spectively a Banach space), and ϕ satisfies (t, ω) 7→
ϕ(t, ω)x continuous (resp. Ck, 1 ≤ k ≤ ∞) for all
(t, ω) ∈ T × Ω, then ϕ is called a continuous (resp.
Ck) RDS over the flow θ. If so, then

(ω, x) 7→ Θ(t)(x, ω) := (θ(t)ω, ϕ(t, ω)x), (A.1)

is a (measurable) flow on Ω × X, and is called the
skew-product of θ and ϕ. In the sequel, we shall use
the terms “RDS” or “cocycle” synonymously.

The choice of the so-called driving system θ is
a crucial step in this set-up; it is mostly dictated
by the fact that the coupling between the station-
ary driving and the deterministic dynamics should
respect the time invariance of the former, as illus-
trated in Fig. A.1. The driving system θ also plays an
important role in establishing stochastic conjugacy
[110] and hence the kind of classification we aim at.

The concept of random attractor is a natural and
straightforward extension of the definition of pull-
back attractor (4), in which Sell’s [81] process is re-
placed by a cocycle, cf. Fig. A.1, and the attractor
A now depends on the realization ω of the noise, so
that we have a family of random attractorsA(ω), cf.
Fig. A.2. Roughly speaking, for a fixed realization of
the noise, one “rewinds” the noise back to t → −∞
and lets the experiment evolve (forward in time) to-
wards a possibly attracting set A(ω); the driving
system θ enables one to do this rewinding without
changing the statistics, cf. Figs. A.1 and A.2.

Fig. A.1. Random dynamical systems (RDS) viewed as a flow
on the bundle X × Ω = “dynamical space” × “probability
space.” For a given state x and realization ω, the RDS ϕ
is such that Θ(t)(x, ω) = (θ(t)ω, ϕ(t, ω)x) is a flow on the
bundle.
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Fig. A.2. Schematic diagram of a random attractor A(ω),
where ω ∈ Ω is a fixed realization of the noise. To be at-
tracting, for every set B of X in a family B of such sets,
one must have limt→+∞ dist(B(θ(−t)ω),A(ω)) = 0 with
B(θ(−t)ω) := ϕ(t, θ(−t)ω)B; to be invariant, one must have
ϕ(t, ω)A(ω) = A(θ(t)ω). This definition depends strongly on
B; see [112] for more details.

Other notions of attractor can be defined in the
stochastic context, in particular based on the orig-
inal SDE; see [111] or [112] for a discussion on this
topic. The present definition, though, will serve us
well.

Having defined RDSs and random attractors, we
now introduce the notion of stochastic equivalence
or conjugacy, in order to rigourously compare two
RDSs; it is defined as follows: two cocycles ϕ1(ω, t)
and ϕ2(ω, t) are conjugated if and only if there exists
a random homeomorphism h ∈ Homeo(X) and an
invariant set such that h(ω)(0) = 0 and

ϕ1(ω, t) = h(θ(t)ω)−1 ◦ ϕ2(ω, t) ◦ h(ω). (A.2)

Stochastic equivalence extends classic topological
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conjugacy to the bundle space X × Ω, stating that
there exists a one-to-one, stochastic change of vari-
ables that continuously transforms the phase por-
trait of one sample system in X into that of any
other such system.

Appendix B. Coarse-graining of the circle
map family

We provide here a rigorous justification of the nu-
merical results obtained in Section 3.2.2 on the topo-
logical classification of the family of Arnol’d circle
maps in the presence of noise. Consider the follow-
ing random family of diffeomorphisms:

Fτ,ε;ω(x) := x + τ + σω− ε sin(2πx) mod 1, (B.1)

for x ∈ S1, ε a real parameter in (0, 1), and ω a ran-
dom parameter distributed in the compact interval
I = [−1/2, 1/2] with fixed distribution ν and noise
intensity σ. We denote by Fτ,ε the corresponding
deterministic family of diffeomorphisms when the
noise is switched off, σ = 0.

In the RDS framework, we need to specify the
metric dynamical system modeling the noise. We
choose here the interval σI as the base for the prob-
ability space Ω and define the flow θ simply as map-
ping the point ω into its successor in a sequence of
realizations of the noise. One could also use an ir-
rational rotation on Ω for instance; in either case,
ergodicity is ensured.

For the sake of simplicity, we omit for the moment
the dependence on τ and ε. In discrete time, with
T = Z, we define a map φ : T × Ω × S1 → S1,
(n, ω, x) 7→ φ(n, ω)x, such that

φ(n, ω) :=





Fθn−1ω ◦ · · · ◦ Fω, n ≥ 1,

IdS1 , n = 0,

F−1
θnω ◦ · · · ◦ F−1

θ−1ω, n ≤ −1.

(B.2)

One can prove easily that this φ satisfies the cocycle
property and is in fact a C∞ RDS on S1 over θ.

The pair of mappings Θ := (θ, φ) is the corre-
sponding skew-product (A.1), and it defines a flow
on Ω× S1 by the relation:

(ω, x) 7→ Θ(n)(ω, x) := (θnω, φ(n, ω)x). (B.3)

A stationary measure m on S1 under the random
diffeomorphism Fτ,ε;ω yields a Θ-invariant measure
µ := m× ν, i.e. Θnµ = µ; explicitly,

∫

Ω×S1
f(ω, x)µ(dω, dx) =

∫

Ω×S1
f(θnω, φ(n, ω)x)µ(dω, dx)

(B.4)

for all n ∈ T and f ∈ L1(Ω× S1, µ).
Let us recall the following important proposition

[113] concerning the stationary measures obtained
from the random family {Fτ,ε;ω}.
Theorem 1 The random circle diffeomorphism
Fτ,ε;ω has a unique stationary measure mτ,ε. The
support of mτ,ε consists either of q mutually disjoint
intervals or of the entire circle S1. The density func-
tion φτ,ε is in C∞(S1) and depends C∞ on τ . The
invariant measure µ is ergodic. If the support of m
is connected, then it is mixing and so is µ.
Mixing for m means that, for any bounded function
f : S1 → R, and for an arbitrary initial point x0 ∈
S1, E(f(φ(n, ω)x0) tends to

∫
S1 f(x)m(dx) as n →

+∞; see [114] for more on random attractors and
mixing.

For deterministic diffeomorphisms of the circle,
the rotation number measures the average rotation
per iterate of Fτ,ε. In the presence of noise, one can
still define a rotation number for Fτ,ε;ω, namely

ρτ,ε;ω(x) = lim
k→∞

F̃ k
τ,ε;ω(x)− x

k
, (B.5)

where F̃ denotes the lift of a map F , acting on S1

modulo 1, to a map acting on R. For fixed τ and ε,
we can then show that ρτ,ε;ω exists for ν-almost all ω
and is a constant; this constant ρτ ;ω is independent
of x and ω [113]. Furthermore, τ → ρτ,ε is C∞ for
each ε, which is not true in the deterministic case
with σ = 0; see again [113].

Theorem 1 has a natural geometric counterpart
in terms of random attractors, as confirmed through
our numerical study; see again Fig. 8. More precisely,
we introduce also the following definitions of ran-
dom fixed point and random periodic orbit; these de-
finitions differ somewhat from those given in [113].
Definition 1 A random fixed point is a measurable
map a : Ω → S1 for which

φ(1, ω)a(ω) = a(θ(ω)), (B.6)

for ν-almost all ω ∈ Ω, i.e. such that Ω× a(Ω) is an
invariant set for the flow given by the skew-product
Θ. A random periodic orbit of period q is likewise an
invariant set with cardinality q in fibers S1×{ω} for
ν-almost all ω.

With these definitions, the following results of
[113] still hold.
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Theorem 2 For a random diffeomorphism Fτ,ε;ω of
the circle S1, with a stationary measure m supported
on a union E of q disjoint intervals, the correspond-
ing skew-product Θ restricted to E has precisely one
attracting random periodic orbit and one repelling
random periodic orbit.
Attraction in the preceding theorem means that
limn→∞ |Fn

ω (x)− Fn
ω (a(ω))| = 0, for a set of initial

data (x, ω) ∈ S1 × Ω with positive λ × ν-measure,
in the case of a random attracting fixed point; here
λ is Lebesgue measure on S1 and the extension to a
random periodic orbit is obvious.

Using these two theorems and rigorous results on
random point attractors [112], we can show that (i)
if the support of the stationary measure is the whole
circle (black curve in Fig. 8), then there exists one
random fixed point which is pullback attracting; and
(ii) if the support consists of q disjoint intervals, then
the random attractor is a random periodic orbit of
period q (red and blue curves).

Having explained how the connectedness of the
PDF support at different noise levels is related to
the nature of the random attractor, we now turn to
an explanation of the “disappearance” of the smaller
steps in the Devil’s staircase, as the noise level in-
creases. To do so, we consider the Lyapunov spec-
trum of an RDS, which still relies on the Oseledets
[115] multiplicative ergodic theorem (MET).

To state an MET for RDS on manifolds, we differ-
entiate φ(n, ω) at x ∈ S1, and obtain the linear map

Tφ(n, ω, x) : TxM → Tφ(n,ω)xM, (B.7)

where Tφ is a continuous linear cocycle on the tan-
gent bundle TM of the manifold M over the skew-
product flow Θ. If the flow φ possesses an ergodic in-
variant measure µ such that the required integrabil-
ity condition for applying the MET is verified with
respect to µ, then the MET holds for φ over M [116].

Because of Theorem 1 here, we can apply the MET
to our problem and conclude that a unique Lya-
punov exponent exists for the linearization of each
diffeomorphism belonging to our family of random
diffeomorphisms, and that this exponent is indepen-
dent of the realization of the noise. We show next
how to use the Lyapunov spectrum in studying the
stochastic equivalence classes of a given RDS family,
along with its driving system θ. This last aspect of
the classification problem is outlined for linear hy-
perbolic cocycles.

N.D. Cong [117] has shown that, even in the lin-
ear context, the main difference with respect to the
deterministic case is that the classification depends

strongly on the properties of θ, which is directly
linked to the system noise and its modeling. For in-
stance, if θ is an irrational rotation on S1, one can
construct infinitely many classes of hyperbolic cocy-
cles that are not pairwise topologically equivalent,
by playing essentially with the orientations of the
cocyles, i.e. reversing between clockwise and anti-
clockwise rotation on S1. As we shall see, such dif-
ficulties can be avoided in the case of noisy Arnol’d
tongues, especially for additive noise. Related issues
still form an active research area in RDS theory; see
[116] for a brief survey.

A key ingredient for the linear classification is the
notion of coboundary, which we recall herewith.
Definition 2 A measurable set K ⊂ Ω is called a
coboundary if there exists a set H ∈ F such that
K = H4θH, where H4θH denotes the symmetric
difference of H and θH.

Let A and B be two linear random maps on Rd,
and denote by deg A(ω) and deg B(ω) the degrees
of the maps A(ω) and B(ω) with respect to a cho-
sen random orientation. These degrees are just the
sign of the determinant of the corresponding ran-
dom matrices, and equal −1 or 1; see [110,117] for
details. Consider the two linear hyperbolic cocycles
ΦA and ΦB , associated with the maps A and B, and
the following subset of Ω:

CAB = {ω ∈ Ω|deg A(ω) · deg B(ω) = −1}; (B.8)

CAB is just the set of all ω ∈ Ω for which the degrees
of the two linear maps A(ω) and B(ω) differ.

The main theorem for the classification of our dif-
feomorphisms of S1 follows [117].
Theorem 3 Two one-dimensional linear hyper-
bolic cocycles ΦA and ΦB are conjugate if and only
if the following conditions hold:

(i) sign λA = sign λB, and
(ii) the associated set CAB is a coboundary.

Here λA and λB indicate the Lyapunov exponents
of ΦA and ΦB , respectively.

Before applying this result, let us explain heuris-
tically how a Devil’s staircase step that corresponds
to a rational rotation number can be “destroyed”
by a sufficiently intense noise. Consider the period-
1 locked state in the deterministic setting. At the
beginning of this step, a pair of fixed points is cre-
ated, one stable and the other unstable. As the bi-
furcation parameter is increased, these two points
move away from each other, until they are π radi-
ans apart. Increasing the parameter further causes
the fixed points to continue moving along, until they
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finally meet again and are annihilated in a saddle-
node bifurcation, thus signaling the end of the lock-
ing interval.

When noise is added, we have to distinguish be-
tween a “strongly locked” regime, where the stable
and unstable fixed points are nearly π radians apart,
and a “weakly locked” regime, where these two fixed
points are close to each other. In both regimes, the
relaxation time in the vicinity of the stable point rep-
resents an important time scale of the problem. In
the strongly locked regime, this is the only time scale
of interest. In the weakly locked regime, though, the
process of escaping across the unstable fixed point
is nonnegligible and the associated escape time be-
comes the second time scale of interest. From these
heuristic considerations it follows that the distinc-
tion between strong and weak locking depends on
the strength of the external noise.

If we consider period-T locked states, with T ≥ 2,
the same kind of reasoning can be applied to the
stable and unstable T -cycle. We conclude therefore,
for a fixed ε > 0, that the narrower Devil’s staircase
steps are the least robust, while the wider ones are
the most robust.

The fact that a locked case becomes unlocked
when noise is growing implies in particular that the
rotation number ρτ,ε becomes irrational for a suffi-
ciently high noise level. According to Theorem 2.1
of [102], the Lyapunov exponent is strictly negative
in this case almost surely. Moreover, by reinterpret-
ing other results of Kaijser [102] in our RDS frame-
work, we can show that the random attractor is in
fact a random fixed point; this, in turn, allows us
to conclude that the corresponding linearized cocy-
cle at this random fixed point is hyperbolic. Next,
by using the Hartman-Grobman theorem for RDSs
[118–120], we can conjugate the nonlinear cocycle
with its linearization; in fact, Theorem 3.1 of [119]
says that this conjugacy is global.

Consider now two linearized cocycles ΦA and ΦB ,
at one and the same or at two distinct random fixed
points of the family of random diffeomorphisms, for
the same noise intensity, and denote by A(ω) and
B(ω) the random linear parts of the cocycles ΦA and
ΦB respectively; it follows from our model of noisy
circle maps that CAB is empty. Indeed, the noise be-
ing additive, the random orientation is preserved for
different parameter values. But θ is assumed to be
ergodic, and so we have that Ω4θΩ is empty and,
therefore, CAB is a coboundary. Therewith, Theo-
rem 3 can be applied to obtain the desired result for
the problem considered here: with an appropriate

amount of noise, two deterministic diffeomorphisms
that are not topologically equivalent can fall into the
same topological stochastic class! The numerical re-
sults of Section 3.2 are entirely in agreement with
this assertion.

Note that the set CAB could differ from a
coboundary, if the noise occurred additively in the
phase of the nonlinear term, for instance. Here we
see the importance of noise modeling in obtain-
ing the conjectural view of Fig. 6 for a family of
dynamical systems in general.

It follows, in particular, that the exact nature of
the stochastic parametrizations in a family of GCMs
does matter. It’s not enough to follow the trend by
devising and implementing such parametrizations:
one should test that a given parametrization, once
found to be suitable in other respects, does improve
the proximity, in an appropriate sense, between cli-
mate simulations within the family of GCMs for
which it has been been developed.
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