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The smooth and the rough

The late 19" and early 20" century saw a flourishing of both

- continuous function theory (Riemann—integration,
Weierstrass—approximation, etc.), and

- measure theory (Borel—-sets, Cantor—transfinite numbers,
Daniell-integration, Lebesgue—measure)

> Physical applications of mathematics,

though, tended to use differential equations,

both ordinary and partial (ODEs and PDEs).

These seemed to require the use of smooth, continuously

differentiable functions for their solutions.

It is only later in the 20™ century that functional analysis and
distributions were introduced to deal with rough solutions

of PDEs (Friedrichs, Leray, Sobolev, Schwartz, etc.).
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B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman & Co, SF, 1982



carly seli-similar ooje
The Cantor (1883) ternary set ()
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Recipe: remove middle thirds of remaining intervals

Measure = 0, Cardinality = Continuum,
Topology = Perfect set that is nowhere dense

Cantor dust
in 2-D and 3-D

H.J.S. Smith,
Oxford U. Museum

)H.J.S. Smith (1875), P. du Bois-Reymond (1880), V. Volterra (1881)



Early self-similar objects — IlI

The Peano curve 2" other space-filling curves

Question: Is the cardinality of the unit interval and the unit square the same?
The first 3 steps of constructing

the Peano (1890) curve +

The first 6 steps of constructing

the Hilbert (1891) curve - o
Typically, piecewise-linear , U U U U Allrallws
constructions:

A curve (with endpoints) is a continuous T—E—r
function whose domain is the unit interval [0, 1] ] [
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(C. Jordan, 1887)

THE FRACTAL GEOMETRY OF NATURE

Also Julia
sets, etc.
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Self-similarity in classical DDS - |

The Lorenz attractor
Drilling through the butterfly’s wings
yields a generalized Cantor set

Axonometric projection 3-D rendering



Self-similarity in classical DDS - Il

The Mandelbrot set is the set of values |t is a compact set contained in the

of ¢ € C for which the orbit of 0 under closed disk of radius 2 around the
origin; it is connected.

iteration of the complex quadratic polynomial
Znt1 = Z2 + ¢ remains bounded as n — oo.

Initial image of a Mandelbrot set The M-set and the Exterior distance
Z00m sequence logististic map estimate
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Flows after A. Mullhaupt (1984)

X continuous, £ continuous -
(vector fields, ODEs, PDEzs, and M c Gh” et al (2008)
FDEs/DDEs, SDEs)

BDES, kinetic logic

x discrete, ¢ continuous

X continuous, £ discrete
(diffeomorphisms,
OAEs, PAEs)

Automata

x discrete, £ discrete
(Turing machines, real computers,
CAs, conservative logic)




Short answer:
Maximum simplification of nonlinear dynamics
(non-differentiable time-continuous dynamical system)

Longer answer:

1) xeB = {0,1} X I
x(2) = x(z—1)
(simplest EBM: x = T) 0

2) x()=x(—1)

3) x,x,EB={0,1};0<60 =1

x, (1) =x,(t—6),0 =1/2
{xz(t) =x, (-1
Eventually periodic with

a period = 2(1+60)
(simplest OCM: x,=m, x,=T)




x, () =x,(t-0)
x,(t)=x,(t-1)Vx,(t-0) 0 is irrational

Increase in complexity!
Evolution: biological, cosmogonic, historical
But how much?

Dee & Ghil, SIAM J. Appl. Math. (1984), 44, 111-126



Aperiodic solutions with increasing complexity
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x(t) =x(t-1)Vx(t-06), 0 = "golden ratio"
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Conservative BDEs with irrational delays have aperiodic
solutions with a

N.B. Log-periodic behavior!




Period Epoch .
Recent or Millions of

2 Years Ago
Quaternary Holocene ‘ . g

Pleistocene

0.01

Pliocene
1.6

Miocene
53

Cenozoic

Oligocene

23.7

Eocene
36.6

Paleogene [Neogene

Paleocene

= 57.8

Cretaceous
66

Jurassic

Mesozoic

Triassic

Permian

Pennsylvanian
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Mississippian

Paleozoic

Devonian

Silurian

Ordovician

Cambrian

Density of events = log(7)

http://www.yorku.ca/esse/veo/earth/image/1-2-2.JPG
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Fractal sunburst

© Simple period
(O Complex period

4.0 Devil’s staircase
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Wave delay t (yrs)
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1. Hierarchical structure
2. Loading by external forces
3. Elements’ ability to fail & heal
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A. Gabrielov, V. Keilis-Borok, W. Newman, & I. Zaliapin (2000a, b, Phys. Rev. E; Geophys. J. Int.)




|. Zaliapin, V. Keilis-Borok & M. Ghil (2003a, J. Stat. Phys.)

IL: Low seismicity
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|. Zaliapin, V. Keilis-Borok & M. Ghil (2003a, J. Stat. Phys.)

Healing time, A,
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Consider on-off sites u(t) on a line and
ui(t) = up4(t-0,) A uft-0,) A u;,4(t-6y)

where A is the XOR operator, and
g, = const. for now is the time delay.

We use periodic boundary conditions,

ui(t) = upp(f)

and thus have n = 2N “ordinary” BDEs.

The initial state is uy(0) = 1,
with all other u(0) = 0.

The evolution of the solution is the

“Pascal’s triangle” in the figure.

For 4,= const. it is equivalent to an elementary CA (ECA).

Ghil et al. (Physica D, 2008)




TR HON PRI 2P
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is a “Green’s function” of the LT

partial BDE (PBDE) before.

This behavior is still equivalent to that of

an ECA, as long as U,= const. ,,-!Ef-!-!-!;--!-: °s
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Ghil et al. (Physica D, 2008)




The figure now shows the solution
of the same PBDE, when the initial
state is a random distribution of
“on” and “off” sites.

The qualitative behavior is characterized
by “triangles"” of empty (white) or
occupied (black) sites,

without any recurrent pattern.

This behavior does not depend on the
particular random initial state.

Ghil et al. (Physica D, 2008)




Random Dynamical Systems -

This theory is a combination of measure (probability) theory
and dynamical systems developed by the “Bremen group"
(L.Arnold, 1998). It allows one to treat Stochastic Differential
Equations (SDEs), and more general systems driven by some
“noise," as flows .

Setting:

(i) A phase space X. Example : R".

(i) A probability space (2, F,P). Example : The Wiener space
Q = Cp(R; R") with Wiener measure P = .

(i) A model of the noise 4(t) : Q — Q that preserves the
measure P, i.e. §(t)P = P; 0 is called the driving system.
Example : W (t,0(s)w) = W(t + s,w) — W(s,w); it starts
the noise at s instead of t = 0.

(iv) A mapping ¢ : R x Q x X — X with the cocycle property.
Example : The solution of an SDE.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity




Random Dynamical Systems -

A random attractor A(w) is both invariant and “pullback"

attracting:

(a) Invariant : ¢(t,w)A(w) = A(f(t)w).

(b) Attracting : VB C X, limi_, dist(¢(t, 8(—t)w)B, A(w)) =0
a.s.

Pullback attraction to A( )

BiO(-1,)w)

B(8(—t, o) {o}xX {BioxX

A ) L. wA(w )=A(B()w )
-
S e ———
B(—T o (0] At o Q
B(-Ty)w

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Disintegration of the measure supported by the R.A.

Disintegration of the measure supported by the Lorenz R.A.

=200 =15 =10; -5 0 5 10 15 20
X

@ We can compute the probability measure on the R.A. at some fixed time
t. We show a “projection”, [ u.(X,y, z)dy, with multiplicative noise:
dxi=Lorenz(xs, X2, X3)dt + o xidWys; i € {1,2,3}.

@ 10 million of initial points have been used for this picture!

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Disintegration of the measure supported by the R.A.

@ Sitill 1 Billion I.D., and o = 0.3.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity




Disintegration of the measure supported by the R.A.

@ Here a = 0.4. The sample measure is approximated for another
realization of the noise, starting from 8 billion I.D.

@ Now more serious stuff is coming...

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity




Disintegration of the measure supported by the R.A.

@ Still 1 Billion I.D., and o = 0.5. Another one?

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity
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Concluding remarks - |
Fractals are fun and they are quite useful, too.

USA Wildfires USA & ltalian Rockfalls
A Rock Fall/Slide Volume, Vg (m3)
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Frequency-size distributions for natural hazards
=> probabilistic hazard forecasting



Concluding remarks — Il
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Concluding remarks — I

Fractals are fun and they are quite useful, too.
Benoit was the Adam and the Kepler of fractals.
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Healing time, A,
|. Zaliapin, V. Keilis-Borok & M. Ghil

(2003a, J. Stat. Phys.)
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Extreme Events:
Causes and Consequences (E2-C2)

* EC-funded project bringing together researchers in
mathematics, physics, environmental and socio-
economic sciences.

- €1.5M over 3.5 years (March 2005-August 2008).

- Coordinating institute: Ecole Normale Supérieure.
- 17 ‘partners’ in 9 countries.

- 72 scientists + 17 postdocs/postgrads.

- PEB: M. Ghil (ENS, Paris, P.l.), S. Hallegatte (CIRED), B.
Malamud (KCL, London), A. Soloviev (MITPAN, Moscow),
P. Yiou (LSCE, Gif s/Yvette, Co-P.l.)
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