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  The late 19th and early 20th century saw a flourishing of both !
!- continuous function theory (Riemann–integration, !
!   Weierstrass–approximation, etc.), and!
!- measure theory (Borel–sets, Cantor–transfinite numbers,!
!   Daniell–integration, Lebesgue–measure)!

  Physical applications of mathematics, !
!though, tended to use differential equations, !
!both ordinary and partial (ODEs and PDEs). 

  These seemed to require the use of smooth, continuously!
!differentiable functions for their solutions.!

  It is only later in the 20th century that functional analysis and 
distributions were introduced to deal with rough solutions!
!of PDEs (Friedrichs, Leray, Sobolev, Schwartz, etc.). !
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Pascalʼs triangle!

Fill in odd numbers in the triangle !
In black, and you get the !
“Sierpinski gasket” !

   
   

B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman & Co, SF, 1982!



The Cantor (1883) ternary set (*)!
Recipe: remove middle thirds of remaining intervals!

   
   

(*) H.J.S. Smith (1875), P. du Bois-Reymond (1880), V. Volterra (1881) !

H.J.S. Smith, !
Oxford U. Museum!

Measure = 0, Cardinality = Continuum,!
Topology = Perfect set that is nowhere dense !

Cantor dust!
in 2-D and 3-D!



The Peano curve and other space-filling curves!
Question: Is the cardinality of the unit interval and the unit square the same? !
The first 3 steps of constructing !
the Peano (1890) curve + !
The first 6 steps of constructing !
the Hilbert (1891) curve!

   
   

Typically, piecewise-linear!
constructions: !
A curve (with endpoints) is a continuous !
function whose domain is the unit interval [0, 1] 
(C. Jordan, 1887)!

Also Julia !
sets, etc.!
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Self-similarity in classical DDS - I 

Axonometric projection! 3-D rendering!



Self-similarity in classical DDS - II 

Initial image of a Mandelbrot set 
zoom sequence!

The M-set and the !
logististic map!

It is a compact set contained in the 
closed disk of radius 2 around the 
origin; it is connected.!

Exterior distance 
estimate !
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after A. Mullhaupt (1984)  
 and M. Ghil et al. (2008) 



Short answer:  
 Maximum simplification of nonlinear dynamics 
 (non-differentiable time-continuous dynamical system)  

Longer answer:  
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Increase in complexity! 
Evolution: biological, cosmogonic, historical 
But how much? Dee & Ghil, SIAM J. Appl. Math. (1984), 44, 111-126 



Aperiodic solutions with increasing complexity 
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Conservative BDEs with irrational delays have aperiodic 
solutions with a power-law increase in complexity.   

N.B. Log-periodic behavior! 



http://www.yorku.ca/esse/veo/earth/image/1-2-2.JPG 
Density of events log( )t≅

Earliest  life
 







1. Hierarchical structure 

2. Loading by external forces 

3. Elements’ ability to fail & heal 

Interaction among elements 

A. Gabrielov, V. Keilis-Borok, W. Newman, & I. Zaliapin (2000a, b, Phys. Rev. E; Geophys. J. Int.) 



I. Zaliapin, V. Keilis-Borok & M. Ghil (2003a, J. Stat. Phys.) 



I. Zaliapin, V. Keilis-Borok & M. Ghil (2003a, J. Stat. Phys.) 



 Ghil et al. (Physica D, 2008) 
   

Consider on-off sites ui(t) on a line and 

ui(t) = ui–1(t-ϑt) Δ ui(t-ϑt) Δ ui+1(t-ϑt)  , 

where Δ is the XOR operator, and  
ϑt = const. for now is the time delay.  

We use periodic boundary conditions, 

ui(t) = ui+N(t) , 

and thus have n = 2N “ordinary” BDEs. 

The initial state is u0(0) = 1,  
        with all other ui(0) = 0. 

The evolution of the solution is the 
“Pascal’s triangle” in the figure.  
For ϑt = const. it is equivalent to an elementary CA (ECA). 



 Ghil et al. (Physica D, 2008) 
   

The figure now shows the “collision” 
of two waves, each started from an  
“on” site, while all other sites are “off.”  

Thus the solution in the previous slide 
is a “Green’s function” of the  
partial BDE (PBDE) before. 

This behavior is still equivalent to that of  
an ECA, as long as ϑt = const.  

But more interesting things will happen 
when that is no longer the case. 

Empty sites, ui(t) = 0 in white,  
while occupied sites, ui(t) = 0 are in black. 



 Ghil et al. (Physica D, 2008) 
   

The figure now shows the solution  
of the same PBDE, when the initial   
state is a random distribution of  
“on” and “off” sites.  

The qualitative behavior is characterized  
by ‘‘triangles'' of empty (white) or  
occupied (black) sites, 
without any recurrent pattern. 

This behavior does not depend on the  
particular random initial state. 



Random Dynamical Systems - RDS theory

This theory is a combination of measure (probability) theory
and dynamical systems developed by the “Bremen group"
(L.Arnold, 1998). It allows one to treat Stochastic Differential
Equations (SDEs), and more general systems driven by some
“noise," as flows .

Setting:

(i) A phase space X . Example : Rn.

(ii) A probability space (Ω,F , P). Example : The Wiener space
Ω = C0(R; Rn) with Wiener measure P = γ.

(iii) A model of the noise θ(t) : Ω → Ω that preserves the
measure P, i.e. θ(t)P = P; θ is called the driving system.
Example : W (t , θ(s)ω) = W (t + s, ω)−W (s, ω); it starts
the noise at s instead of t = 0.

(iv) A mapping ϕ : R× Ω× X → X with the cocycle property.
Example : The solution of an SDE.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Random Dynamical Systems - Random attractor

A random attractor A(ω) is both invariant and “pullback"
attracting:
(a) Invariant : ϕ(t , ω)A(ω) = A(θ(t)ω).
(b) Attracting : ∀B ⊂ X , limt→∞ dist(ϕ(t , θ(−t)ω)B,A(ω)) = 0

a.s.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Disintegration of the measure supported by the R.A.

Disintegration of the measure supported by the Lorenz R.A.

We can compute the probability measure on the R.A. at some fixed time
t . We show a “projection”,

R
µω(x , y , z)dy , with multiplicative noise:

dxi=Lorenz(x1, x2, x3)dt + α xidWt ; i ∈ {1, 2, 3}.
10 million of initial points have been used for this picture!

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Disintegration of the measure supported by the R.A.

Still 1 Billion I.D., and α = 0.3.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Disintegration of the measure supported by the R.A.

Here α = 0.4. The sample measure is approximated for another
realization of the noise, starting from 8 billion I.D.

Now more serious stuff is coming...

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Disintegration of the measure supported by the R.A.

Still 1 Billion I.D., and α = 0.5. Another one?

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity
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Frequency-size distributions for natural hazards !
  probabilistic hazard forecasting !

USA Wildfires! USA & Italian Rockfalls!

Malamud, Turcotte et al. (2004, ESPL)!Malamud, Morein & Turcotte (1998, Science)!
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I. Zaliapin, V. Keilis-Borok & M. Ghil  
(2003a, J. Stat. Phys.) 
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