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Abstract 

 
   Model assimilation of data strives to determine 
optimally the state of an evolving physical 
system from a limited number of observations. 
The present study represents the first attempt of 
applying the extended Kalman filter (EKF) 
method of data assimilation to shock-wave 
dynamics induced by a high-speed impact. EKF 
solves the full nonlinear state evolution and 
estimates its associated error-covariance matrix 
in time.  The state variables obtained by the 
blending of past model evolution with currently 
available data, along with their associated 
minimized errors (or uncertainties), are then 
used as initial conditions for further prediction 
until the next time at which data becomes 
available. In this study, a one-dimensional (1-D) 
finite-difference code is used along with data 
measured from a 1-D flyer plate experiment. The 
results demonstrate that the EKF assimilation of 
a limited amount of pressure data, measured at 
the middle of the target plate alone, helps track 
the evolution of all the state variables with 
reduced errors. 
  
1.  Introduction 
 
   Data assimilation has been used to estimate the 
state of a dynamic system by merging sparse 
data into a numerical model of the system [2, 4]. 
Based upon a prognostic model and a limited 
number of observations, data assimilation 
attempts to provide a more comprehensive 
system analysis which may lead to a better 
prediction. This approach has proven particularly 
fruitful recently in the atmospheric and oceanic 
sciences [2, 5]. 
   The extended Kalman filter (EKF) method [2, 
4, 5, 9, 10, 14] was designed to perform data 
assimilation with two stages: prediction and 
update. In the prediction stage, one solves the 
full nonlinear state evolution and, by using 
successive linearizations about the currently 
estimated state, advances the error covariance 
matrix in time. The update stage merges the 
model prediction and current observations, by 

giving each appropriate weights, to provide an 
“analyzed” or “assimilated” state. These weights 
are obtained through minimizing the trace of the 
error-covariance matrix (i.e., the mean-square 
errors) based on a probabilistic analysis. The 
EKF thus provides a consistent first-order 
approximation to the optimal estimate of the 
nonlinear state at the observation time, as well as 
the errors of this estimate.  
   The current study investigates the performance 
of EKF for simple flyer plate experiments in a 
one-dimensional (1-D) set-up where most of its 
nonlinearity is fairly well understood [1, 16]. The 
numerical model we use in this study is the 1-D 
version of the MESA code (MESA-1D) [15]. 
   EKF is a nonlinear extension of the Kalman 
filter [10, 11] in 1960 that had originally been 
developed for linear systems with a small 
number of model unknowns [4,12]. Its 
application to continuum-mechanics problems 
[2] requires substantial computer storage and a 
large number of operations [13]. The EKF has 
been used, therefore, in the atmospheric and 
oceanic sciences often for idealized problems [9, 
14]. The current study, therefore, serves as a 
severe test in applying EKF for a realistic 
problem represented by a 1-D configuration in 
shock dynamics. 
   This paper is organized as follows. In Section 2 
we give a brief review of the EKF method. 
Section 3 describes the MESA-1D code and the 
flyer plate experiments. Numerical results of 
applying EKF to actual experimental data appear 
in Section 4. Model uncertainties are discussed 
in Section 5. Concluding remarks appear in 
Section 6.  
 
2. Extended Kalman Filter (EKF) 
 

   A detailed formulation of the EKF can be 
found in Gelb [4], Ghil and Malanotte-Rizzoli 

[5], Miller et al. [14] and Ide and Ghil [9]. A 
brief summary of the EKF method is given in 
this section.  
   The EKF first predicts the state variables xf 

according to the system’s deterministic 
equations, as a usual practice, where x is an N-
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vector representing the state of the system (i.e., N 
is the number of the prognostic variables times 
the number of grid cells). The superscript ‘f’ 
stands for “forecast”. The EKF then predicts the 
error-covariance matrix Pf, defined by: 
  
     Pf ≡ E [( xf – xt ) ( xf – xt )T],         (2.1) 
 
where E represents the expectation operator, xt 
represents the “true” state, and the superscript 
‘T’ labels the transpose of a vector, using a 
matrix Riccati equation. The process described 
so far is straightforward and represents the 
EKF’s prediction stage. The update stage is 
described below. 
   When observations become available, the EKF 
updates xf and Pf to xa and Pa, respectively, 
where the superscript ‘a’ stands for 
“assimilated”. Least-square minimization of 
tr(Pf), where tr is the trace of a matrix yields the 
Kalman gain matrix K, which serves as a set of 
coefficient in weighting the so-called innovation 
vector, i.e. the difference between the actual 
observations and their model-predicted values.  
   The resultant xa and Pa will be the initial 
conditions for the next cycle of prediction and 
update. The repetition of the prediction and 
update steps in time represents the sequential 
estimate of the system state and its uncertainties 
as obtained by the EKF.  The performance of 
EKF can be measured by (1) evolution of tr(Pf,a)  

that indicates the estimated least-square errors; 
(2) evolution of selected components of Pf,a  that 
indicate how well the corresponding state 
variables are estimated in the least-square sense; 
and (3) comparison between the evolution of the 
observed and estimated state variables. 
   Both the system noise (or stochastic forcing) 
and solution errors due to numerical procedures 
and physical drawbacks have to be included in 
the prediction equation of Pf as given 
information. The solution errors may be 
determined by validation runs of the model 
against existing data [8] or by ensemble runs of 
the model against an ultra-high-resolution 
reference run [3]. In the current application, we 
combine both kinds of errors into one single 
term. 
 
3. MESA-1D and Flyer Plate 

Experiment 
 
   The MESA-1D code uses the Eulerian 
conservation equations for mass, momentum, 
internal energy, and the Mie-Gruneisen equation 

of state (EOS). A third-order Van Leer’s flux-
limiting scheme for advection is used in order to 
maintain steep gradients without introducing 
large spurious oscillations. The material 
constitutive model for time-dependent deviatoric 
stresses is based on the classical elastic-
perfectly-plastic treatment. The use of a ductile 
fracture (spall) model [1] is optional in the code. 
   The physical problem that we consider in this 
study is a 1-D flyer-plate experiment for which 
MESA-1D was used in a previous study [7]. A 
schematic diagram of the flyer-plate experiment 
is shown in Fig. 1. The flyer plate with a velocity 
of 0.0645 cm µs-1 (645m s-1) and a thickness of 
0.3 cm impacts the stationary target plate that is 
6 times thicker. This produces a shock that 
compresses the material to a Hugoniot pressure 
of about 20 Gpa at the impact plane. The shock 
waves travel into both plates with a speed of 
about 0.45 cm µs-1, estimated from the Hugoniot 
data. These waves eventually reach the other 
boundaries of the plates, where they reflect back 
into the plate interiors as rarefaction waves. 
When they meet again at about 4.7 µs, tensile 
forces occur and may cause spallation (ductile 
fracture) inside of the target plate [1].  
 
4. Pressure Data Assimilation 

 
   In this section, we assimilate the pressure data 
measured from a flyer plate experiment into 
MESA-1D using the EKF method. For the 
current study, we have pressure data collected at 
the middle of the target plate by a Manganin 
pressure gauge between 2.0 to 3.8 µs (cf. Fig. 2). 
Therefore, most of the discussion regarding data 
assimilation with EKF is devoted to this time 
interval.  
   Figure 2 shows the evolution of pressure with 
time at the middle of the target plate, as obtained 
by several distinct approaches. The 
corresponding curves are color-coded and 
identified in the figure caption. The pure 
prediction without any data assimilation (blue 
dash-dotted curve) exhibits numerical ringing 
(the Gibbs phenomenon) along its flat top 
portion, between 2.0 and 2.5 µs, due to the 
higher-order advection scheme. The difference 
between this curve and the actual data (green 
curve) is obvious, especially during the release-
wave interval, where the pressure starts to 
decrease with time. The result of assimilating the 
pressure data with the EKF (solid black curve) 
agrees rather well with the data points in green. 
The result suggests that, with the given 
observation and model errors, the data carries 
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more weight in the optimization process than the 
model. It even overcomes the numerical ringing 
during the flat top interval. 

   Note in Fig. 2 that there are three distinct time 
intervals with no data available: (i) 2.25 to 2.5 
µs, (ii) 2.7 to 2.9 µs, and (iii) 3.1 to 3.45 µs. 
During each of these intervals, the model run 
with EKF is essentially making a prediction, 
based upon the updated information at the 
beginning of the interval, until the next update. 
For the first two intervals, the model run with 
EKF does a credible prediction, as verified by 
comparing the prediction and the data points near 
the end of the time intervals.  
   As for the last interval that data are not 
available, the model run with EKF does not lead 
to a close matching of the next available data; 
instead, it coincides with the pure prediction as a 
result of the very similar initial conditions 
between the two cases during this interval. The 
sudden restoring feature at the end of this 
interval in the black curve shows that the EKF 
has very high confidence in the data. The further 
zig-zag variation in the black curve (from 3.5 to 
4.0 µs) reflects the same situation. Namely, the 
prediction made by the EKF run between updates 
tends to stay away from the data until it is pulled 
back by the update process at each observation 
time.  
   It is clear from the above discussion that the 
pure prediction has a systematically sharper fall-
off in pressure than the experimental data during 
the release-wave interval. As a result of applying 
data assimilation, the predicted pressure with 
EKF at the end of the simulation is about 12 kbar 
higher than the pure prediction. An additional 
simulation was made in which no more data 
points were used after the update at 3.4 µs (red 
dashed curve). This prediction for the rest of the 
simulation gradually merges to the blue dash-
dotted curve that represents the pure prediction 
for the entire interval.  
   Figure 3 shows the effects of data assimilation 
with the pressure data on all the state variables: 
density, velocity, and internal energy at the 
middle of the target plate; pressure is repeated 
here for reference purposes. Pressure is not 
considered as a state variable and is a given 
function of density and internal energy; i.e., 
equation of state. As a result, these two state 
variables are affected by the assimilation of 
pressure data in a similar way as pressure itself 
is, especially over the flat-top interval. Due to 
the lack of an explicit dependence of pressure on 
velocity, the velocity field is affected less by the 
data assimilation, inasmuch as the difference 

between the pure prediction (blue dash-dotted 
curve) and the EKF run (solid black curve) is 
smaller.  
   Even though pressure was measured and 
assimilated only at the middle of the target plate, 
the effects of data assimilation are definitely not 
limited to this point, as shown in Fig. 4. This 
figure represents the averaged effects of EKF 
over the whole material domain. The results thus 
confirm the main virtues of the EKF for the 
highly nonlinear physics of shock-wave 
dynamics: (i) information trade-off between 
observed variables and unobserved; and (ii) 
propagation of information by the governing 
equations, from observed to unobserved 
locations [2, 5, 6]. 
 
5.  Evolution of Uncertainties 
 
   As emphasized in Section 2, EKF 
performance can also be measured by the error 
covariance matrices. Figure 5 shows the global 
error with and without the EKF process. Due to 
the magnitude difference among the three state 
variables (cf. Fig. 6), tr(Pf) is entirely dominated 
by the variances of density. Until data become 
available at 2.0 µs, the pure prediction results 
(blue dash-dotted curve) and those with data 
assimilation (black solid curve) coincide. The 
initial sudden drop in tr(Pf) shows merely that 
the initial value of Pf was estimated too large by 
a factor of 3. After this initial adjustment of 
about 0.5 µs, the mean-square error increases 
slowly, with an approximately constant slope, 
due to the additive stochastic model error. 

   When the pressure data become available, the 
mean-square error drops again suddenly, but 
only in the EKF run (black curve). During the 
interval of data availability, between 2.0 µs and 
3.8 µs, the assimilation results have the same 
overall upward trend as the pure prediction 
results (blue curve), but run systematically lower 
and drop slightly each time when the pressure 
data becomes available. This shows that a single 
scalar observation can noticeably reduce the 
error in estimating the state of our system, with 
its total number of 222 discrete variables.  
   Figure 6 shows the variances for each 
individual state variable at the middle of the 
target plate as a function of time; these 
variances are simply the diagonal entities of Pf 
at the appropriate grid point. Taking the square 
root of the values in Fig. 6 essentially provides 
error bars for Fig. 3. Each state variable in Fig. 
6 carries a maximum variance near 2.0 µs for 
the pure prediction case, suggesting that the 
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Fig. 1.  A schematic diagram of the 1-D flyer plate experiment. 
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Fig. 2. Pressure evolution at the middle of the target plate with an observation error (w) of 0.1 
kbar and a normalized model error (q) of 0.001. Green curve: fitted to the experimental data 
points marked by green circles; blue dash-dotted curve: pure prediction without EKF; black solid 
curve: assimilated evolution with EKF; red dashed curve: the evolution that the black curve would 
have undergone if no data were available after 3.4 µs. 
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Fig. 3. Time evolution of all the state variables (density, velocity, and internal energy) and the 
pressure for the same simulation and at the same location as depicted in Fig. 2. Refer to Fig. 2 
for curve legends. 
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Fig. 4. The same as Fig. 3 except for spatially averaged time evolution over all material grid 
points. Blue dash-dotted curve: pure prediction without EKF; and black solid curve: assimilation 
with EKF. 
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Fig. 5. The trace of Pp (the sum of the variances) as a function of time. Blue dash-dotted curve: 
pure prediction without EKF; black solid curve: assimilated evolution with EKF; red dashed curve: 
the evolution that the black curve would have undergone if no data were available after 3.4 µs. 
The blue and black curves coincide with each other until the first data point at 1.9 µs. 
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Fig. 6. The variances of the three state variables at the middle of the target plate as a function of 
time. Refer to Fig. 5 for the legends of different curves. 
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