
1

LA-UR – 2003 –1278

Data Assimilation with an Extended Kalman Filter
for Impact-Produced Shock-Wave Dynamics

By

Jim Kao, Dawn Flicker and Rudy Henninger

Los Alamos National Laboratory

Sarah Frey

University of Arizona at Tucson

Michael Ghil1 and Kayo Ide

University of California at Los Angeles

Journal of Computational Physics, accepted

Revised Version

November 10, 2003

1 Also affiliated with Ecole Normale Supérieure, Paris, France.



2

ABSTRACT

Model assimilation of data strives to determine optimally the state of an evolving

physical system from a limited number of observations. The present study represents the

first attempt of applying the extended Kalman filter (EKF) method of data assimilation to

shock-wave dynamics induced by a high-speed impact. EKF solves the full nonlinear

state evolution and estimates its associated error-covariance matrix in time.  The state

variables obtained by the blending of past model evolution with currently available data,

along with their associated minimized errors (or uncertainties), are then used as initial

conditions for further prediction until the next time at which data becomes available.

In this study, a one-dimensional (1-D) finite-difference code is used along with data

measured from a 1-D flyer plate experiment. An ensemble simulation suggests that the

nonlinearity of the modeled system can be reasonably tracked by EKF. The results

demonstrate that the EKF assimilation of a limited amount of pressure data, measured at

the middle of the target plate alone, helps track the evolution of all the state variables.

The fidelity of EKF is further investigated with numerically generated synthetic data

from so-called "identical-twin experiments", in which the true state is known and various

measurement techniques and strategies can be made easily simulated. We find that the

EKF method can effectively assimilate the density fields, which are distributed sparsely

in time to mimic radiographic data, into the modeled system.
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1.  Introduction

Data assimilation has been used to estimate the state of a dynamic system by merging

sparse data into a numerical model of the system [5, 10]. While any dynamic system in

science and technology is potentially influenced by stochastic forcing, the complete state

of the system can presumably be predicted in a computer code according to the system’s

underlying deterministic equations, subject to numerical errors and uncertainties

associated with the initial condition and the time-independent model parameters.

Meanwhile, observations, which represent the true state but are subject to sampling and

measurement errors, may be available occasionally as a function of a subset of the system

variables. Based upon a prognostic model, as described above, and a limited number of

observations, data assimilation attempts to provide a more comprehensive system

analysis which may lead to a better prediction. This approach has proven particularly

fruitful recently in the atmospheric and oceanic sciences [5, 11].

The extended Kalman filter (EKF) method [5, 10, 11, 18, 21, 26] was designed to

perform data assimilation following the above prerequisites. There are two stages

involved in the EKF: prediction and update. In the prediction stage, one solves the full

nonlinear state evolution and, by using successive linearizations about the currently

estimated state, advances the error covariance matrix in time. The update stage merges

the model prediction and current observations, by giving each appropriate weights, to

provide an “analyzed” or “assimilated” state. These weights are obtained through

minimizing the trace of the error-covariance matrix (i.e., the mean-square errors) based
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on a probabilistic analysis. The EKF thus provides a consistent first-order approximation

to the optimal estimate of the nonlinear state at the observation time, as well as the errors

of this estimate. Therefore, it is a sub-optimal approach to the estimate of a nonlinear

system. In principle, there is no truly optimal nonlinear filter that is computable in finite

time [12]. One alternative to the EKF method described here is the ensemble Kalman

filter (EnKF) [2, 9, 17, 30] that was designed primarily to reduce the computational cost

associated with the calculation of the error covariance matrix.

Data assimilation, in general, serves two purposes: better prediction and better

understanding of the fundamental physics. If the underlying dynamics of a system is not

fully known, data assimilation may help develop a model of the system via parameter

identification [23, 28, 29]. Since this is the first study applying the EKF to shock-wave

related research, we explore all the above aspects, starting from the feasibility test. We

investigate the performance of EKF for simple flyer plate experiments in a one-

dimensional (1-D) set-up where most of its nonlinearity is fairly well understood [1, 33].

The numerical model we use in this study is the 1-D version of the MESA code (MESA-

1D) [7], which includes a sophisticated reconstruction of the material interface [32].

EKF is a nonlinear extension of the Kalman filter in 1960 [21, 22] that had originally

been developed for linear systems with a small number of model unknowns [10, 23]. Its

application to continuum-mechanics problems [5] requires substantial computer storage

and a large number of operations [25]. The EKF has been used, therefore, in the

atmospheric and oceanic sciences often for idealized problems [18, 26]. In applications to
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atmospheric, oceanic, and coupled models that are truly two- or three-dimensional (2-D

or 3-D), some simplifications or modifications from the original EKF algorithm,

including the EnKF method mentioned above, are necessary to reduce the computational

burdens [12, 29]. The current study, hence, serves also as a severe test in applying EKF

for a realistic problem represented by a 1-D configuration in shock dynamics.

The spatial and temporal distribution and the accuracy of observations are equally

important factors in the performance of data assimilation. The observations may be linear

or nonlinear, Eulerian or Lagrangian functions of the state variables. A convenient

methodology, termed as identical-twin experiments [5], generates synthetic data sets from

controlled numerical experiments to test the usefulness of the data assimilation

algorithms. As demonstrated in [19, 18], identical twin experiments are also a useful tool

for observing system design, prior to actual measurements.

This paper is organized as follows. In Section 2 we give a brief review of the EKF

method. Section 3 describes the MESA-1D code and the flyer plate experiments.

Numerical results of applying EKF to actual experimental data appear in Section 4.

Section 5 is devoted to “identical-twin experiments” where a density field that mimics

radiographic imaging is synthetically generated and used for data assimilation.

Concluding remarks appear in Section 6. A more complete description of the EKF

algorithm is given in Appendix A. Appendix B describes some numerical aspects of

implementing EKF in MESA-1D for flyer plate experiments.
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2. The Extended Kalman Filter (EKF)

A detailed formulation of the EKF can be found in [10], [11], [26], and [18]. A brief

summary of the EKF method is given in this section, while the basic equations are listed

in Appendix A. The notation follows [20], with some minor deviations motivated by the

present application.

The EKF first predicts the state variables xp according to the system’s deterministic

equations, as a usual practice, where x is an N-vector representing the state of the system

(i.e., N is the number of the prognostic variables times the number of grid cells). The

superscript ‘p’ stands for “predicted”. The EKF then predicts the error-covariance matrix

Pp, defined by:

     Pp ≡ E [( xp – xt ) ( xp – xt )T],         (2.1)

where E represents the expectation operator, xt represents the “true” state, and the

superscript ‘T’ labels the transpose of a vector, using a matrix Riccati equation. The

process described so far is straightforward and represents the EKF’s prediction stage. The

update stage is described below.

When observations become available, the EKF updates xp and Pp to xa and Pa,

respectively, where the superscript ‘a’ stands for “assimilated”. Least-square

minimization of tr(Pp), where tr is the trace of a matrix yields the Kalman gain matrix K,



7

which serves as a set of coefficient in weighting the so-called innovation vector, i.e. the

difference between the actual observations and their model-predicted values.

The resultant xa and Pa will be the initial conditions for the next cycle of prediction and

update. The repetition of the prediction and update steps in time represents the sequential

estimate of the system state and its uncertainties as obtained by the EKF.  The

performance of EKF can be measured by (1) evolution of tr(Pp,a)  that indicates the

estimated least-square errors; (2) evolution of selected components of Pp,a  that indicate

how well the corresponding state variables are estimated in the least-square sense; and (3)

comparison between the evolution of the observed and estimated state variables.

Both the system noise (or stochastic forcing) and solution errors due to numerical

procedures and physical drawbacks have to be included in the prediction equation of Pp

as given information. The solution errors may be determined by validation runs of the

model against existing data [16] or by ensemble runs of the model against an ultra-high-

resolution reference run [8]. In the current application, we combine both kinds of errors

into one single term as described in Appendix B.
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3. MESA-1D Code and Flyer Plate Experiment

The Eulerian conservation equations for mass (_), momentum (u), internal energy (e),

and the equation of state (EOS) in MESA-1D are expressed in the following using the

total derivative D/Dt:

                       D_/Dt = - _ ux                           (3.1)

                       _ Du/Dt = - Px                    (3.2)

                       _ De/Dt = - P ux                         (3.3)

                       P = p (_, e) + Q (_, _)          (3.4)

where the subscript x represents the partial derivatives with respect to the spatial

coordinate x, P is the total pressure which is the sum of the EOS pressure p and the

artificial viscosity Q, and _ is the total strain rate which is equal to ux. In this work a solid

phase Mie-Gruneisen EOS is used with the form of

                       p = pH + _ [_0 e – 0.5 pH (_/(1+_))] .                 (3.5)

The Hugoniot pressure pH is given by

                       pH = [_0 c0
2 _(1+_)]/[1- _(s-1)]2 .                       (3.6)

The artificial viscosity is defined as

                       Q = -CL _ c0 Δx _ + CQ _ Δx2 _2 .                               (3.7)

The parameters in Eqs. (3.5) to (3.7) are defined as follows: _ is the Grüneisen parameter,

_0 is the initial density, _ is the compression _/_0 – 1, c0 is the initial sound speed , Δx is

the cell length, s is the shock velocity constant, and CL and CQ are artificial viscosity



9

constants. MESA uses the third-order Van Leer’s flux-limiting scheme [31] for advection

in order to maintain steep gradients without introducing large spurious oscillations. The

material constitutive model for time-dependent deviatoric stresses is based on the

classical elastic-perfectly-plastic treatment. The use of a ductile fracture (spall) model [1]

is optional in the code.

The physical problem that we consider in this study is a 1-D flyer-plate experiment for

which MESA-1D was used in a previous study [15]. A schematic diagram of the flyer-

plate experiment is shown in Fig. 1a. The flyer plate with a velocity of 0.0645 cm _s-1

(645m s-1) and a thickness of 0.3 cm impacts the stationary target plate that is 6 times

thicker. This produces a shock that compresses the material to a Hugoniot pressure of

about 20 Gpa at the impact plane. The shock waves travel into both plates with a speed of

about 0.45 cm _s-1, estimated from the Hugoniot data. These waves eventually reach the

outer boundaries of the plates, where they reflect back into the plate interiors as

rarefaction waves. When they meet again at about 4.7 _s, tensile forces occur and may

cause spallation (ductile fracture) inside of the target plate [1].

The computational domain includes two vacuum regions surrounding the copper plates to

circumvent the potential problems due to boundary conditions of the plates. Our

numerical simulations were performed using the model parameters summarized in Table

1. Figure 1b shows the x-t diagram of the experiment, which illustrates the loci of the

shock-wave fronts, as obtained by the MESA-1D code for an 8 _s simulation time

without the spall treatment.
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4.  Pressure Data Assimilation

In this section, we assimilate the pressure data measured from a flyer plate experiment

into MESA-1D using the EKF method. For the current study, we have pressure data

collected at the middle of the target plate by a Manganin pressure gauge [4] between 2.0

to 3.8 _s (cf. Fig. 3). Therefore, most of the discussion regarding data assimilation with

EKF is devoted to this time interval. The essential numerical considerations in

implementing EKF into MESA-1D appear in Appendix B, including the linearization

procedure and specifications of model and observation errors.

In order to verify whether the shock-wave dynamics of the 1-D flyer plate experiment is

generally “tractable” by the MESA-1D code, we made an ensemble simulation with 100

realizations. This also helps shed light on the stability of the Jacobian calculations

described in Appendix B. Each of the 100 realizations corresponds to a model run with a

different stochastic forcing function represented by a different seeder of the random

number generator described in Appendix B.

Figure 2 shows the time evolution of the model variables at the middle of the target plate

for an 8 _s time frame from the ensemble simulation. We see, in general, a right-going

shock wave followed by a left-going rarefaction wave, agreeing with the estimated shock

speed of 0.45 cm _s-1, mentioned in Section 3. The simulated pressure ensemble agrees

with the pressure data (cf. Fig. 3). It is apparent that internal energy tends to be most
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sensitive to the change in stochastic forcing; its dynamic range, however, is consistent

with the kinetic energy inferred from the dynamic range of velocity evolution.

4.1. Evolution of Model Variables

Figure 3 shows the evolution of pressure with time at the middle of the target plate, as

obtained by several distinct approaches. The corresponding curves are color-coded and

identified in the figure caption. The pure prediction without any data assimilation (blue

dash-dotted curve) exhibits numerical ringing (the Gibbs phenomenon) along its flat top

portion, between 2.0 and 2.5 _s. The difference between this curve and the actual data

(green curve) is obvious, especially during the release-wave interval, where the pressure

starts to decrease with time. The result of assimilating the pressure data with the EKF

(solid black curve) agrees rather well with the data points in green. The result suggests

that, with the given observation and model errors, the data carries more weight in the

optimization process than the model. It even overcomes the numerical ringing during the

flat top interval.

Note in Fig. 3 that there are three distinct time intervals with no data available: (i) 2.25 to

2.5 _s, (ii) 2.7 to 2.9 _s, and (iii) 3.1 to 3.45 _s. During each of these intervals, the model

run with EKF is essentially making a prediction, based upon the updated information at

the beginning of the interval, until the next update. For the first two intervals, the model
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run with EKF does a credible prediction, as verified by comparing the prediction and the

data points near the end of the time intervals.

As for the last interval that data are not available, the model run with EKF does not lead

to a close matching of the next available data; instead, it coincides with the pure

prediction as a result of the very similar initial conditions between the two cases during

this interval. The sudden restoring feature at the end of this interval in the black curve

shows that the EKF has very high confidence in the data. The further zig-zag variation in

the black curve (from 3.5 to 4.0 _s) reflects the same situation. Namely, the prediction

made by the EKF run between updates tends to stay away from the data until it is pulled

back by the update process at each observation time.

It is clear from the above discussion that the pure prediction has a systematically sharper

fall-off in pressure than the experimental data during the release-wave interval. As a

result of applying data assimilation, the predicted pressure with EKF at the end of the

simulation is about 12 kbar higher than the pure prediction. An additional simulation was

made in which no more data points were used after the update at 3.4 _s (red dashed

curve). This prediction for the rest of the simulation gradually merges to the blue dash-

dotted curve that represents the pure prediction for the entire interval. However, the

better prediction provided by EKF can arguably be seen in Fig. 3 between the red and

blue curves during the last 0.5-_s time interval. If we compare the two at 3.6 _s, the red

curve better predicts the observation (in green) than the blue curve by about 50 Kbars.
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Figure 4 shows the effects of data assimilation with the pressure data on all the state

variables: density, velocity, and internal energy at the middle of the target plate; pressure

is repeated here for reference purposes. As stressed in Appendix B, pressure is not

considered as a state variable and is a given function of density and internal energy; i.e.,

equation of state (cf. Eq. (3.5) and (3.6)). As a result, these two state variables are

affected by the assimilation of pressure data in a similar way as pressure itself is,

especially over the flat-top interval. Due to the lack of an explicit dependence of pressure

on velocity, the velocity field is affected less by the data assimilation, inasmuch as the

difference between the pure prediction (blue dash-dotted curve) and the EKF run (solid

black curve) is smaller.

Even though pressure was measured and assimilated only at the middle of the target

plate, the effects of data assimilation are definitely not limited to this point, as shown in

Fig. 5. This figure represents the averaged effects of EKF over the whole material

domain except the interfaces. The results thus confirm the main virtues of the EKF for

the highly nonlinear physics of shock-wave dynamics: (i) information trade-off between

observed variables and unobserved; and (ii) propagation of information by the governing

equations, from observed to unobserved location.
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4.2.  Evolution of Uncertainties

As emphasized in Section 2, EKF performance can also be measured by the error

covariance matrices. Figure 6 shows the global error with and without the EKF process.

Due to the magnitude difference among the three state variables (cf. Figs. 7 and 8)),

tr(Pp) is entirely dominated by the variances of density. Until data become available at

2.0 _s, the pure prediction results (blue dash-dotted curve) and those with data

assimilation (black solid curve) coincide. The initial sudden drop in tr(Pp) shows merely

that the initial value of Pp was estimated too large by a factor of 3. After this initial

adjustment of about 0.5 _s, the mean-square error increases slowly, with an

approximately constant slope, due to the additive stochastic model error; see Eqs. (A.8)

and (A.10).

When the pressure data become available, the mean-square error drops again suddenly,

but only in the EKF run (black curve). During the interval of data availability, between

2.0 _s and 3.8 _s, the assimilation results have the same overall upward trend as the pure

prediction results (blue curve), but run systematically lower and drop slightly each time

when the pressure data becomes available. This shows that a single scalar observation

can noticeably reduce the error in estimating the state of our system, with its total

number of 3*NC=222 discrete variables.

At the end of the 4 _s simulation in Fig. 6, the RMS error, defined as [tr (Pp)/(# of grid

points)]0.5 is about 0.191 x 10-2 for the pure prediction case.  For the case with EKF, the
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RMS error is 0.180 x 10-2. For the case without the latest updates, the RMS error is 0.183

x 10-2. There are, respectively, about 6 and 4 % improvements in the RMS error. Since

density is the most dominant variable (cf. Fig. 7), these three RMS numbers may be

considered as having units of gm cm-3.

Figure 7 shows the variances for each individual state variable at the middle of the target

plate as a function of time; these variances are simply the diagonal entities of Pp at the

appropriate grid point. Taking the square root of the values in Fig. 7 essentially provides

error bars for Fig. 4. Each state variable in Fig. 7 carries a maximum variance near 2.0 µs

for the pure prediction case, suggesting that the shock arrival (cf. Fig. 4) must

significantly increase model errors in the system at hand. The data point of pressure near

1.9 µs effectively reduces the density variance from a maximum to nearly zero. A similar

effect is seen in the internal energy variance. Due to the dependencies of pressure on

density and internal energy, the variances of these two state variables at each up time are

characterized by distinct but small-amplitude fluctuations.

Figure 8 shows the variances for each state variable at 3.02 _s, at which time a pressure

observation is available, as a function of grid location. The summation of all the values

in Fig. 8 actually gives the tr (Pp) at 3.02 _s, as included in Fig. 6. The two peaks in

density variance, respectively located at grid points 32 and 52, correspond to the leading

and trailing edges of the shock. Even though the pressure data is located at grid point 41,

the effects of the EKF process reduce the errors at all other grid points and, most

noticeably, at these two naturally sensitive spots.
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4.3.   Sensitivity to Model and Observation Errors

To compute the gain matrix K as expressed by Eq. (A.7), the EKF accounts for both the

model error (Pp) and the observational error, denoted by Ro, in the update procedure (see

Section 2 and Appendix A). These two errors compete with each other as evident from

the scalar form of Eq. (A.7):

     K ∼ Pp / (Pp + Ro) = (1 + Ro / Pp)-1.        (4.1)

It is seen that K is basically the model error divided by the sum of itself and the

observation error. If Ro is relatively small with a fixed Pp, K will be relatively large; the

same is the case if Pp is large for a fixed Ro. The assimilated variables are then more

influenced by the observations than the predictions, cf. Eq. (A.4).

The EKF process does not always yield an optimized estimate that is as coincident with

the data points as possible; it is not a data fitting process. The resultant optimal estimate

is directly dependent on the model error Qp as well as the observation error Ro, cf. Eq.

(4.1). The case we demonstrated in Fig. 3 was based on the specific errors for the model

and the data, as described in Appendix B.

 If we increase the observation error from 0.1 kbar (as used in Fig. 3) to 1.0 kbar, the

EKF provides a quite different assimilation, as depicted in Fig. 9a. The optimal estimate

in this case considerably deviates from the data curve. The assimilation run (black curve)
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lies much more closely to the pure prediction (blue) than the data curve (green), due to

the smaller elements in the Kalman gain matrix K. The final difference in pressure at 4.0

µs between cases with and without data assimilation is about 7 Kbars in comparison with

12 Kbars in Fig. 3. The overall uncertainties in the case of Fig. 9a are accordingly larger,

due to a smaller K, see Eq. (A.5).

We now consider the sensitivity of assimilated results to model error Pp through the

change of model’s stochastic noise Qp according Eq. (A.2). Figures 9b and 9c show the

assimilation results with the same observation error as in Fig. 9a but with a model error

that is 2 and 10 times larger, respectively.  By focusing on the later part of the simulation,

a 2-times larger model error (Fig. 9b) helps bring the assimilated curve half-way closer to

the data curve, while a 10-times larger model error recovers the original match shown in

Fig. 3. As expected, these two cases would suffer, respectively, a 4-times and 100-times

model uncertainty, compared with the case in Fig. 3. The above sensitivity study

demonstrates that carefully assessing both the model and observation errors is crucial in

obtaining meaningful results with the EKF method.

5. Observing System Assessment with Identical-Twin Experiments

Data assimilation can be tested without the need for real data. The identical-twin

experiment is a numerical procedure where synthetic data can be generated by the model

to which data assimilation is applied, subject to a specified stochastic forcing term [5,
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11]. The data with assigned errors are then evaluated for their effectiveness in obtaining

optimal state estimates. As demonstrated in [19, 12], such kind of numerical experiments

can be a useful tool for designing an observing system prior to the actual measurements

in meteorology and oceanography. Identical-twin experiments with this specific purpose

were first carried out in planning the Global Atmospheric Research Program and were

also called observing system simulation experiments (OSSE) [5].

To generate our synthetic data from a so-called control run, we integrate Eq. (A.8) to

obtain xt with a given stochastic forcing qt. Its covariance matrix will be used as the Qp

term in Eq. (A.2) for advancing Pp. For more sophisticated measurements, the

observation function h in Eq. (A.4) may be complicated and extremely nonlinear.

Radiographic imaging in 2-D of a 3-D experimental configuration is a good example in

this regard [13, 14, 24]. For the current 1-D flyer plate experiments, the technology of

measuring density through radiographic imaging is available but has not been fully

investigated in the data assimilation context.

The radiographic data sets tend to cover the whole spatial extent of the materials but are

relatively sparse in time. In this section, we demonstrate the effects of this technique

using the EKF on synthetic data. For simplicity, we assume that radiography directly

provides density data for the grid cells inside the target and flyer plates. We will thus be

assimilating the entire density field into the code in the present experiment.
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Figure 10 shows the EKF performance with the synthetic density data from grid points 12

to 63 available every 0.5 _s (i.e., every 50 time steps; see Table 1). These 52 grid cells

are chosen for their being well within the material, as explained in Appendix B about the

interface between material and vacuum. The stochastic forcing used to generate xt in time

is based on the same random distribution functions as described in Appendix B. The

synthetic density data sets are constructed based on Eq. (A.10) with a random error

distribution within ±0.5 gm cm-3 (about 5 % of the ambient value of density). The graphs

in Fig. 10 show the spatially averaged model variables over the 52 grid points where data

were assumed to be present, for a simulation time of 8.0 _s; this time interval basically

covers a compression period as well as a tensile period  (see Section 3).

Figure 10 shows that assimilation of density field leads to both this field and the pressure

field (black curves) following very closely the synthetic data (red dashed curves). The

stochastic forcing generates some mass inside the 52 material grid cells during the

compression period and leads to some mass loss during the tensile period, when

comparing the pure prediction (blue dash-dotted curve) and the stochastically forced run

(red dashed curve) in the density panel of Fig.10. There are, in fact, no net changes of

mass and pressure between these two runs, which shows that the stochastic forcing has

been carefully implemented. Both velocity and internal energy, however, show decreased

magnitudes in a time-integrated sense for the stochastically forced run. The effect of the

EKF assimilation on the velocity field seems to over-correct it somewhat, while the effect

on internal energy is more uniformly positive.
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Figure 11 plots the global error in terms of tr(Pp) for the case of synthetic-density

assimilation. Because nearly the whole density field is assimilated, and density is the

dominant variable in terms of dimensional size (recall Section 4.2), the global error is

close to zero at the update times. During the time intervals without data, the growth of the

error is characterized by two stages. The first stage is steep and dominated by the

imposed stochastic forcing Qp, while the second stage is much less steep and due to the

combined effect of Qp and the system’s deterministic error growth, represented by the

blue dash-dotted curve.

The red dashed curves represent the growth of the error if the data at 1.5 (or 2.5 or 3.5) _s

and later were not available. These curves illustrate the continued error evolution of the

second stage, as just explained. The blue dashed curve represents the case of only one

data set being available, at 3.5 µs. Since taking radiographic data is an expensive process,

the present OSSEs are useful in determining the best timing of taking such data, so they

can be most cost-effective in terms of the final errors (or uncertainties). The results

shown in Fig. 11 suggest that, if limited to a small number of radiographic data takings, it

is more beneficial to take the data at a later time.

.

6. Concluding Remarks

This paper described applications of data assimilation to a simple, but realistic 1-D

hydrodynamic model of shock behavior induced by a high-speed impact. Sequential
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estimation was introduced for small-dimensional systems, such as rocket navigation, in

the early 1960s [10, 21, 22, 23]. It has become wide-spread in fluid-dynamical problems

posed by very large atmospheric and oceanic models with a severely limited amount of

data over the last two decades [5, 11, 12, 20, 25]. The extended Kalman filter (EKF)

method [11, 21, 18, 26] was employed in the current study for assimilating data into the

MESA-1D code [7]. EKF was designed to optimize predictions of, as well as reduce

uncertainties in, the modeled state variables, provided that the errors of observations and

model performance are known.

The EKF algorithm solves the full nonlinear state evolution and its associated error-

covariance matrix in time. It provides a consistent first-order approximation to the

optimal estimate of the state and of the time-dependent model uncertainties, both when

data are available and when they are not.

A limited amount of experimental data was available for this study from a 1-D flyer plate

experiment (Fig. 1). Before the actual implementation of EKF, we conducted an

ensemble simulation of 100 realizations to explore the potential effect of model

uncertainties. These simulations (Fig. 2) showed that the potential effects of random

uncertainties are largest in the system’s internal energy. The EKF results, in general,

demonstrate that pressure data at the middle of the target plate alone helps track the

evolution of all the state variables (Figs. 3 to 8). After the model update at observation

time, the “assimilated” state variables and their associated minimized errors are used as

initial conditions for a fresh start of model prediction till the next data time, or, if data is
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no longer available, till any desired future time. For shock-wave related research or

applications, the EKF thus provides important additional information where experimental

data are missing, in part or altogether.

When available, data sets should not be used only for validating current model

performance, bur also to predict certain scenarios for which it is not possible at present to

obtain any data. This is especially true for risk assessments or vulnerability analyses.

Good examples include future climate change and nuclear weapon stockpile stewardship.

EKF was further used for the purpose of observing-system design in our 1-D shock-wave

context. To do so, we generated synthetic data numerically from identical-twin

experiments. In such experiments, the “true” state is obtained from a “control run” of the

stochastically disturbed deterministic model, which can then provide the simulation of a

desired measurement pattern. We found that a small number of density field updates,

such as might be provided by radiographic data sets, can effectively track the solution

through a large reduction of model errors.

To the best of our knowledge, there has been no previous attempt to use data assimilation

in high-speed impact studies or solid mechanics modeling. We have shown here how this

approach can expand and refine our knowledge in these fields using the limited

laboratory data available. Using the same methodology, we expect to use the EKF for the

optimal estimation of physical parameters used in the deterministic part of the model [27,

12]. We plan in the near future to do systematic parameter estimation, rather than the
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usual trial-and-error “tuning” of parameters. This will hopefully further enhance a

model’s predictive capability. We are, in particular, interested in the fracture regime of

the physical problem addressed in the paper. Extra data associated with fracture,

including velocity detected by VISAR interferometer [3] and radiographic images [24],

will be used with the EKF method.
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APPENDIX A

General Extended Kalman Filter (EKF) Algorithm

For a complete derivation of the EKF algorithm, Readers are referred to [7, 8, 17]. In this

appendix we merely list the equations, as used in the present study. Specific numerical
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issues of implementation in the MESA-1D code are addressed in Appendix B. The

prediction stage of the EKF method is as follows:

      Dxp  = m(xp) Dt  ,                                                                  (A.1) 

      dPp = [Mp Pp + Pp (Mp)T +  Qp] dt  ,                                      (A.2)

where D/Dt is the total derivative, m(xp) represents the governing deterministic

processes, and the Jacobian matrix Mp in the linear system of ordinary differential

equations (ODEs) of Eq. (A.2) is defined as:

       Mp ≡ (∂mk /∂xl)x=x
p   .                                                              (A.3)

Equation (A.3) represents the linearized transition matrix and mk and xl  are the kth and lth

components of the deterministic processes m and state variables x, respectively. The

matrix Qp in Eq. (A.2) is the estimated system noise covariance for the prediction of Pp;

see Eq. (A.9) below.

 When observations are available, the EKF updates xp to xa and Pp to Pa by:

       xa  = xp+ K [yo – h (xp)],                                                      (A.4)

          Pa  = (I – KH) Pp,                                                              (A.5)
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where yo and h, respectively, represent the observations and the observation functions,

explained by Eqs. (A.11) to (A.13) below, K is the Kalman gain matrix described by Eq.

(A.7), Pa is the error-covariance matrix defined by Pa ≡ E [( xa – xt ) ( xa – xt )T], I is the

identity matrix, and H is the Jacobian of h, which is defined by:

           H ≡ (∂hk /∂xl)x=x
p   .                                                            (A.6)

Equation (A.6) represents the linearized observation matrix, where hk and xl  are the kth

and lth components of h and x, respectively. The Kalman gain matrix K in Eqs. (A.4) and

(A.5) is obtained by minimizing tr(Pa); the result of this minimization [7, 8] is

            K = Pp HT (H Pp HT + Ro)-1                                             (A.7)

where Ro is the covariance matrix of the observation error; see Eqs. (A.11) to (A.13)

below.

It is worth to mention that Eq. (A.4) in its scalar form is similar to the “nudging” method.

However, as the observation is not exactly a model’s state variable, the left-hand-side and

the first term in the right-hand-side in Eq. (A.4) have to be in the form of h(xa) and h(xp),

respectively. In the current study, h(xa) will be the assimilated pressure, h(xp) will be the

modeled pressure, and yo will be the observed pressure. The state variables can only be

indirectly altered by assimilated pressure through the model dynamics. We made a simple
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test of nudging with K set to be 1. The performance is not even comparable with that by

EKF.

The prediction stage described by Eqs. (A.1) to (A.3) and the update stage given by Eqs.

(A.4) to (A.7) together constitute the EKF algorithm for estimating the ‘true’ state of the

system, governed by a nonlinear stochastic differential equation,

        Dxt  = m(xt) Dt  + dqt ;                                                            (A.8)

in Eq. (A.8), the stochastic forcing dqt is assumed to represents unknown model errors

(such as subgrid-scale processes) and is given by an N-dimensional Wiener process,

        qt ~  N (0N, Qt),                                                                     (A.9)

with zero mean and a covariance matrix Q defined as:

         Q _ E [q qT];                                                                        (A.10)

see the last paragraph in Appendix B for the actual prescription of dqt used in the model.

While the “true” state xt evolves according to Eqs. (A.8) and (A.9), several observations

yo regarding this system become available and yo is represented by:
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          yo = yt + wo,                                                                          (A.11)

here yo is an M-vector of observations contaminated by white noise wo that represents

observational errors, which occur in measuring yt, and are assumed to have zero mean

and unknown covariance matrix Ro:

          wo ~ N (0M, Ro),                                                                    (A.12)

with R _ E [w wT]. The (unknown) “true” observations yt are connected to the true state

xt by

           yt = h (xt),                                                                            (A.13)

where h is an M-vector of observation functions that, linearly or nonlinearly, depend on

the state variables x.

In summary, for an N-vector of state variables x and an M-vector of observations yo,

where typically M << N, Pp and Pa are N x N error-covariance matrices of the state

variables, Qp is an N x N covariance matrix of model errors (or unresolved stochastic

forcing), Mp is an N x N linearized transition matrix, H is an M x N linearized

observation matrix, K is an N x M Kalman gain matrix, and Ro is an M x M covariance

matrix of observational errors.



28

APPENDIX B

Numerical Aspects of Implementing EKF in MESA 1-D

This section describes a perturbation method for the calculation of the Jacobian matrix

given in Eq. (A.3), which represents the linearization process within EKF. Prior to our

work, the MESA-1D code has been used for sensitivity analysis with respect to the model

parameters listed in Table 1. To apply the differential sensitivity approach to such an

analysis, the automatic differentiation computer program called ADFOR [5] was

successfully tested in MESA-1D [12]. In principle, ADFOR can be used for the

calculation of the Jacobian matrices Mp; see Eq. (A.3) in the Appendix A. However,

since the N-vector of deterministic functions m in Eq. (A.1) is not given analytically in

closed mathematical form, difficulties arise in using an automatic differentiation program

for the Jacobian calculations.

Instead, we use a straightforward perturbation method in which m(x)n is first defined as

m(x)n ≡ (xn+1-xn)/_t,                       (B.1)

where superscript ‘n’ represents the time step and _t is the size of the time step (see Table

1). We then perturb each element of xn with the machine precision parameter ε =10-7 to

obtain m(x+ε)n. Finally, Eq. (A.3) can be simply represented by
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 Mp ≡{ [m(x+ε)- m(x)]k / ε}x=x
p.        (B.2)

This method essentially requires (N+1) simulations, where N is the total number of

unknowns. While only an approximation, it is actually not more computationally

intensive than the automatic differentiation and requires far less debugging.

It turns out that this perturbation approach works very effectively except at the interfaces

between the copper plates and the vacuums (i.e., at the material boundaries), where large

values of Jacobian, calculated from Eq. (B.2), may cause instabilities in the integration of

Eq. (A.2). While such instabilities are undesirable, the interface is indeed a physically

and numerically unstable region in most of Eulerian numerical codes. To avoid this

problem, we simply skip the interfaces as well as the attached vacuum regions (to avoid

round-off errors in the latter case) in the integration of Eq. (A.2). Namely, no EKF is

performed for the grid cells at the two ends of the computational domain, which represent

the vacuums and the interfaces.

When the observation functions h in Eq. (A.4) are nonlinear functions of x, that are given

only numerically, and not analytically, the observation Jacobians H (see Eq. (A.6)) can

be determined the same way as described above for Mp. The pressure data used for the

current assimilation is a function of density and internal energy through the equation of

state; Eqs. (3.5) and (3.6). Therefore, analytical expressions are available for H and there

is no need for a numerical approximation.
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In atmospheric and oceanic applications, an initial Pp is estimated in order to integrate

Eq. (A.2). For modeling a laboratory experiment, as in the current study, the initial Pp can

be set to be zero. The matrix Qp in Eq. (A.2) is constructed based on Eq. (A.10). We

assume that q in Eq. (A.10) represents the combination of the system and solution errors

and is expressed as a random distribution function on grid cells, with magnitudes between

±10-3 x Φ, where Φ represents the reference values of each state variable. In other words,

the linear changes of each state variable due to dq alone in Eq. (A.8) would be within

±100 % of Φ after 1000 time-steps of integration. In the current case, Φ is set to be 10.0

gm cm-3, 10-1 cm _s-1, and 10-3 Mbar.cc.gm-1, respectively, for density, velocity, and

internal energy. Finally, the observation error of the pressure data measured by the

Manganin pressure gauge is assumed to be 10-1 kbar (cf. Section 4.3 for its sensitivity

tests).
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Figure Legends

Fig. 1. (a) A schematic diagram of the 1-D flyer plate experiment and (b) the space-time

diagram of the simulated shock represented by pressure from the MESA-1D code

Fig. 2. Model variable evolution in100 runs with different stochastic forcing function

realizations. Each forcing function realization corresponds to a different seeding of the

random distribution described in Appendix B. The four panels correspond to density,
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velocity, internal energy, and pressure; the same ordering of the panels is maintained in

all similar figures below.

Fig. 3. Pressure evolution at the middle of the target plate with an observation error (w)

of 0.1 kbar and a normalized model error (q) of 0.001 (see Appendix B). Green curve:

fitted to the experimental data points marked by green circles; blue dash-dotted curve:

pure prediction without EKF; black solid curve: assimilated evolution with EKF; red

dashed curve: the evolution that the black curve would have undergone if no data were

available after 3.4 µs.

Fig. 4. Time evolution of all the state variables (density, velocity, and internal energy)

and the pressure for the same simulation and at the same location as depicted in Fig. 3.

Refer to Fig. 3 for curve legends.

Fig. 5. The same as Fig. 4 except for spatially averaged time evolution over all material

grid points. Blue dash-dotted curve: pure prediction without EKF; and black solid curve:

assimilation with EKF.

Fig. 6. The trace of Pp (the sum of the variances) as a function of time. Blue dash-dotted

curve: pure prediction without EKF; black solid curve: assimilated evolution with EKF;

red dashed curve: the evolution that the black curve would have undergone if no data

were available after 3.4 µs. The blue and black curves coincide with each other until the

first data point at 1.9 µs.
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Fig. 7. The variances of the three state variables at the middle of the target plate as a

function of time. Refer to Fig. 6 for the legends of different curves.

Fig. 8. The variances of the three state variables at the data (or update) time of 3.02 µs as

a function of grid location. Blue dash-dotted curve: pure prediction without EKF; and

black solid curve: assimilation result with EKF just after the update.

Fig. 9. The same as Fig. 3 except with (a) 10 times larger of observation errors; (b) 10

times larger of observation errors and 2 times larger of model errors; and (c) 10 times

larger of observation errors and 10 times larger of model errors.

Fig. 10. Time evolution for all the state variables and the pressure, spatially averged over

material grid points when assimilating synthetic density fields. Blue dash-dotted curve:

pure prediction without EKF; black solid curve: assimilation with EKF; and red dashed

curve: synthetic data from the “control run”.

Fig. 11.  The trace of Pp as a function of time in the identical-twin experiment. Blue dash-

dotted curve: pure prediction without EKF; and black solid curve: assimilated evolution

with EKF. The red dashed curves represent the evolution that the black curve would have

undergone if no density data were available after 1.49 or 2.49 or 3.49 µs, respectively; the

blue dashed curve represents the case in which there is only one data set available, at 3.5

µs.


