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Global warmingGlobal warming  andand
its socio-its socio-economic economic impactsimpacts

Temperatures rise:
• What about impacts?
• How to adapt?

Source : IPCC (2007),
AR4, WGI, SPM

The answer, my friend,
is blowing in the wind,
i.e., it depends on the
accuracy and reliability
of the forecast …



GHGs GHGs riserise
It’s gotta do with us, at

least a bit, ain’t it?

But just how much?

IPCC (2007)



Unfortunately, thingsUnfortunately, things
arenaren’’tt  all all that easy!that easy!

Ghil, M., 2002: Natural climate variability, 
in Encyclopedia of Global Environmental 
Change, T. Munn  (Ed.), Vol. 1, Wiley

What to do?

Try to achieve better
interpretation of, and
agreement between,
models …



So whatSo what’’s it s it gonna gonna be like, by 2100?be like, by 2100?



Earth System Science Overview, NASA Advisory Council, 1986



Composite spectrum of climate variability
Standard treatement of frequency bands:
   1. High frequencies – white (or ‘‘colored’’) noise
   2. Low frequencies – slow (‘‘adiabatic’’) evolution of parameters

From Ghil (2001, EGEC), after Mitchell* (1976)
* ‘‘No known source of deterministic internal variability’’



• Temporal
 stationary, (quasi-)equilibrium
 transient, climate variability

• Space
 0-D (dimension 0)
 1-D

• vertical
• latitudinal

 2-D
• horizontal
• meridional plane

 3-D, GCMs (General Circulation Model)
• horizontal
• meridional plane

 Simple and intermediate 2-D & 3-D models

• Coupling
 Partial

• unidirectional
• asynchronous, hybrid

 Full

HierarchyHierarchy:: from the simplest to the most elaborate,
       iterative comparison with the observational data

Climate models (atmospheric & coupled) : A classification

Radiative-Convective Model(RCM)

Energy Balance Model (EBM)

Ro

Ri



Linear inverse model (LIM)

• We aim to use data in order to estimate the two matrices, B
and Q, of the stochastic linear model:

dX = BX · dt + dξ(t), (1)

where B is the (constant and stable) dynamics matrix, and Q is
the lag-zero covariance of the vector white-noise process dξ(t).
• More precisely, the two matrices B and Q are related by a
fluctuation-dissipation relation:

BC(0) + C(0)Bt + Q = 0, (2)

where C(τ) = E{X(t + τ)X(t)} is the lag-covariance matrix of
the process X(t), and (·)t indicates the transpose.
• One then proceeds to estimate the Green’s function
G(τ) = exp(τB) at a given lag τ0 from the sample C(τ) by

G(τ0) = C(τ0)C−1(0).
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Nonlinear stochastic model (MTV)–I

• Let z be a vector decomposed into a slow (“climate") and a
fast (“weather") vector of variables, z = (x, y).
We model x deterministically and y stochastically, via the
following quadratic nonlinear dynamics

dx
dt

= L11x + L12y + B1
11(x, x) + B1

12(x, y) + B1
22(y, y),

dy
dt

= L21x + L22y + B2
11(x, x) + B2

12(x, y) + B2
22(y, y).

• In stochastic modeling, the explicit nonlinear self-interaction
for the variable y, i.e. B2

22(y, y), is represented by a linear
stochastic operator:

B2
22(y, y) ≈ −Γ

ε
y +

σ√
ε

Ẇ(t),

where Γ and σ are matrices and Ẇ(t) is a vector-valued
white-noise.

Michael Ghil ghil@lmd.ens.fr



Nonlinear stochastic model (MTV)–II

• The parameter ε measures the ratio of the correlation time of
the weather and the climate variables, respectively,
and ε � 1 corresponds to this ratio being very small.
• Using the scaling t → εt , we derive the stochastic climate
model:

dy
dt

=
1
ε
(L11x + L12y + B1

11(x, x) + B1
12(x, y)),

dy
dt

=
1
ε
(L21x + L22y + B2

11(x, x) + B2
12(x, y))− Γ

ε2 y +
σ

ε
Ẇ(t).

• In practice, the climate variables are determined by a variety
of procedures, including leading-order empirical orthogonal
functions (EOFs), zonal averaging in space, low-pass and
high-pass time filtering, or a combination of these procedures.
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MotivationMotivation
• Sometimes we have data but no models.
• Linear inverse models (LIM) are good least-square fits to data, but

don’t capture all the processes of interest.
• Difficult to separate between the slow and fast dynamics (MTV).
• We want models that are as simple as possible, but not any simpler.

Criteria for a good data-derived model

•    Fit the data, as well or better than LIM.
•    Capture interesting dynamics: regimes, nonlinear oscillations.
•    Intermediate-order deterministic dynamics.
•    Good noise estimates.



Key ideas
• Nonlinear dynamics:

• Discretized, quadratic:

• Multi-level modeling of red noise:



Nomenclature
Response variables:

Predictor  variables:

• Each               is normally distributed about 

• Each              is known exactly. Parameter set {ap}:

– known dependence
    of f on {x(n)} and {ap}.

REGRESSION:     Find 



LIM extension #1
• Do a least-square fit to a nonlinear function of the data:

J response  variables:

Predictor variables (example – quadratic polynomial 
of J original predictors):

Note: Need to find many more regression coefficients than
for LIM; in the example above P = J + J(J+1)/2 + 1 = O(J2).



Regularization

• Regularization involves rotated predictor variables:
   the orthogonal transformation looks for an “optimal”
   linear combination of variables.

• “Optimal” = (i) rotated predictors are nearly uncorrelated; and
                     (ii) they are maximally correlated with the response.

• Canned packages available.

• Caveat: If the number P of regression parameters is
   comparable to (i.e., it is not much smaller  than) the
   number of data points, then the least-squares problem may
   become ill-posed and lead to unstable results (overfitting) ==>
   One needs to transform the predictor variables to regularize
   the  regression procedure.



LIM extension #2

Main level, l = 0:

Level l  = 1:

… and so on …

Level L:

• ΔrL – Gaussian random deviate with appropriate variance 

• If we suppress the dependence on x in levels l  = 1, 2,… L,
   then the model above is formally identical to an ARMA model.

• Motivation: Serial correlations in the residual.



Empirical Orthogonal Functions (EOFs)
• We want models that are as simple as possible, but not any simpler: use

leading empirical orthogonal functions for data compression and capture
as much as possible of the useful (predictable) variance.

• Decompose a spatio-temporal data set D(t,s)(t = 1,…,N; s = 1…,M)
by using principal components (PCs) – xi(t) and
empirical orthogonal functions (EOFs) – ei(s):  diagonalize the
M x M spatial covariance matrix C of the field of interest.

• EOFs are optimal patterns to capture most of the variance.
• Assumption of robust EOFs.
• EOFs are statistical features, but may describe some dynamical (physical)

mode(s).



Empirical mode reduction (EMR)–I

• Multiple predictors: Construct the reduced model
   using J leading PCs of the field(s) of interest.

• Response variables: one-step time differences of predictors;
   step = sampling interval = Δt.

• Each response variable is fitted by an independent
   multi-level model:
   The main level l = 0 is polynomial  in the predictors;
   all the other levels are linear.



Empirical mode reduct’n (EMR) – II
• The number L of levels is such that each of the
  last-level residuals (for each channel corresponding
  to a given response variable) is “white” in time.

• Spatial (cross-channel) correlations of the last-level
   residuals are retained in subsequent
   regression-model simulations.

• The number J of PCs is chosen so as to optimize the 
    model’s performance.

• Regularization is used at the main (nonlinear) level 
  of each channel.



Illustrative example: Triple well

• V (x1,x2) is not polynomial!

• Our polynomial regression
    model produces a time
    series whose statistics
    are nearly identical to
    those of the full model!!

• Optimal order is m = 3;
   regularization required
   for polynomial models of
   order m ≥ 5.



NH LFV in QG3 Model – I
The QG3 model (Marshall and Molteni, JAS, 1993):

• Global QG, T21, 3 levels, with topography; 
   perpetual-winter forcing; ~1500 degrees of freedom.

• Reasonably realistic NH climate and LFV:
   (i) multiple planetary-flow regimes; and
   (ii) low-frequency oscillations
   (submonthly-to-intraseasonal).

• Extensively studied: A popular “numerical-laboratory” tool
   to test various ideas and techniques for NH LFV.



NH LFV in QG3 Model – II
Output: daily streamfunction (Ψ) fields  (≈ 105 days)

Regression model:

• 15 variables, 3 levels (L = 3), quadratic at the main level

• Variables: Leading PCs of the middle-level Ψ

• No. of degrees of freedom = 45 (a factor of 40 less than
    in the QG3 model)

• Number of regression coefficients P =
   (15+1+15•16/2+30+45)•15 = 3165 (<< 105)

• Regularization via PLS applied at the main level.



NH LFV in QG3 Model – III



NH LFV in QG3 Model – IV

The correlation between the QG3 map and the EMR
model’s map exceeds 0.9 for each cluster centroid.



NH LFV in QG3 Model – V

• Multi-channel SSA (M-SSA)
  identifies 2 oscillatory
  signals, with periods of
  37 and 20 days.

• Composite maps of these
  oscillations are computed
  by identifying 8 phase
 categories, according to M-SSA reconstruction.



NH LFV in QG3 Model – VI
Composite 37-day cycle:

QG3 and EMR results are virtually identical.



NH LFV in QG3 Model – VII
Regimes vs. Oscillations:

• Fraction of regime days as a function of
  oscillation phase.

• Phase speed in the (RC vs. ∆RC) plane –
  both RC and ∆RC are normalized so that
  a linear, sinusoidal oscillation
  would have a constant phase speed.



NH LFV in QG3 Model – VIII
Regimes vs. Oscillations:

• Fraction of
  regime days:
  NAO– (squares),
   NAO+ (circles),
   AO+ (diamonds);
   AO– (triangles).

• Phase speed



NH LFV in QG3 Model – IX

• Regimes AO+, NAO– and NAO+ are associated with
   anomalous slow-down of the 37-day oscillation’s
   trajectory ⇒  nonlinear mechanism.

• AO– is a stand-alone regime, not associated
   with the 37- or 20-day oscillations.

Regimes vs. Oscillations:



NH LFV in QG3 Model – X

Quasi-stationary states
of the EMR model’s
deterministic
component.

Tendency threshold 
a) β = 10–6; and 
b) β = 10–5.



NH LFV in QG3 Model – XI

37-day eigenmode
of the regression
model linearized 
about climatology*

* Very similar to the composite 37-day oscillation.



NH LFV in QG3 Model – XII

Panels (a)–(d): noise amplitude ε = 0.2, 0.4, 0.6, 1.0.



Conclusions on QG3 Model
• Our ERM is based on 15 EOFs of the QG3 model and has
  L = 3 regression levels, i.e., a total of 45 predictors (*).

• The dynamical analysis of the reduced model
   identifies AO–  as the model’s unique steady state.

• The 37-day mode is associated, in the reduced model,
   with the least-damped linear eigenmode.

(*) An ERM model with 4*3 = 12 variables only does not work!

• The ERM approximates the QG3 model’s major
   statistical features (PDFs, spectra, regimes,
   transition matrices, etc.) strikingly well.

• The additive noise interacts with the nonlinear dynamics to
   yield the full ERM’s (and QG3’s) phase-space PDF.



NH LFV – Observed Heights

• 44 years of daily 
700-mb-height winter data

• 12-variable, 2-level model
works OK, but dynamical
operator has unstable
directions: “sanity checks”
required.



1997-98 El Niño Animation 

Anomaly   =   (Current observation – Corresponding climatological value)
Base period for the climatology is 1950–1979

Courtesy of NOAA-CIRES Climate Diagnostics Center 
http://www.cdc.noaa.gov/map/clim/sst_olr/old_sst/sst_9798_anim.shtml



ENSO – I

Data:

• Monthly SSTs: 1950–2004,
   30 S–60 N, 5x5 grid 
   (Kaplan et al., 1998)

• 1976–1977 shift removed

• Histogram of SST data is skewed (warm events are larger, while
   cold events are more frequent): Nonlinearity important?



ENSO – II
Regression model:

• J = 20 variables (EOFs of SST)
• L = 2 levels

• Seasonal variations included
   in the linear part of the main
   (quadratic) level.

• Competitive skill: Currently
   a member of a multi-model
   prediction scheme of the IRI,
   see: http://iri.columbia.edu/climate/ENSO/currentinfo/SST_table.html.



ENSO – III

• Observed

• Quadratic model 
 (100-member ensemble)

• Linear model
 (100-member ensemble)

The quadratic model has a slightly smaller RMS error
in its extreme-event forecasts (not shown)

PDF – skewed vs. Gaussian



ENSO – IV

Spectra:

• SSA

• Wavelet

ENSO’s leading oscillatory modes, QQ and QB, are reproduced
by the model,  thus leading to a skillful forecast.

Data Model



ENSO – V
“Spring barrier”:

• SSTs for June are
  more difficult to predict.

• A feature of virtually
  all ENSO forecast
  schemes.

• SST anomalies are weaker in late winter through
   summer (why?), and signal-to-noise ratio is low.

Hindcast skill vs. target month



ENSO – VI
• Stability analysis, month-by-
  month, of the linearized
  regression model identifies
  weakly damped QQ mode
  (with a period of 48–60 mo),
  as well as strongly damped
  QB mode.

• QQ mode is least damped
   in December, while it is not 
   identifiable at all in summer!



ENSO – VII
Floquet analysis 
for seasonal cycle (T = 12 mo):

QQ mode:
period = 52 months, damping: 11 months.

Floquet modes are related
to the eigenvectors of the
monodromy matrix M.



ENSO – VIII

V – optimal initial vectors
U – final pattern at lead τ

ENSO development
and non-normal growth of
small perturbations
(Penland & Sardeshmukh, 1995;

Thompson & Battisti, 2000)

• Maximum growth:
(b) start in Feb., (c) τ = 10  months



Conclusions on ENSO model

• The quadratic, 2-level EMR model has competitive forecast skill.

• Observed statistical features can be related to the EMR
   model’s dynamical operator.

•  EMR model captures well the “linear,” as well as the
   “nonlinear”  phenomenology of ENSO.

• SST-only model: other variables? (A. Clarke)

• Two levels really matter in modeling “noise.”



Van Allen Radiation BeltsVan Allen Radiation Belts

 



EMR for Radiation Belts EMR for Radiation Belts –– I I
     Radial diffusion code (Y.  Shprits) –

estimating phase space density f and
electron lifetime τL:

Different lifetime
parameterizations for
plasmasphere – out/in: τLo =ζ
/Kp(t); τLi=const.

• Test EMR on the model dataset for which we know the origin (“truth”) and learn
   something before applying it to real data.
• Obtain long time integration of the PDE model forced by historic Kp data to obtain
  data set for analysis.
• Calculate PCs of log(fluxes) and fit EMR.
• Obtain simulated data from the integration of reduced model and compare
   with the original dataset.
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EMR for Radiation Belts – II

24000x26 dataset (3-hr resolution)
- Six leading PCs (account for 90%
 of the  variance) ~ ENSO
- Best EMR model is linear with 3 levels
- 6 spatial degrees of freedom
  (instead of 26).

- Random realization from continuous
  integration of EMR model forced by  Kp. 
- EMR model is constant in time
- stochastic component, 
- deterministic part of EMR model has 
  unstable eigenmodes. 

Data: Model:



Concluding Remarks – I
• The generalized least-squares approach is well suited to
  derive nonlinear, reduced models (EMR models) of
  geophysical data sets; regularization techniques such as
  PCR and PLS are important ingredients to make it work.

• The multi-level structure is convenient to implement and
   provides a framework for dynamical interpretation
   in terms of the “eddy–mean flow” feedback (not shown).

• Easy add-ons, such as seasonal cycle (for ENSO, etc.).

• The dynamic analysis of EMR models provides conceptual
   insight into the mechanisms of the observed statistics.



Concluding Remarks – II

Possible pitfalls:

• The EMR models are maps: need to have an idea about
   (time & space) scales in the system and sample accordingly.

• Our EMRs are parametric: functional form is pre-specified,
   but it can be optimized within a given class of models.

• Choice of predictors is subjective, to some extent, but their
   number can be optimized.

• Quadratic invariants are not preserved (or guaranteed) –
   spurious nonlinear instabilities may arise.
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