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Global warming and
its socio-economic impacts

MuLti-MopEeL AvERAGES AND AsSSESSED RANGES FOR SURFACE WARMING
1 1 1 l 1

Temperatures rise: 1
» What about impacts? [

Year 2000 Constant

e How to adapt? | g

The answer, my friend,
IS blowing in the wind,
I.e., It depends on the
accuracy and reliability )
of the forecast ... i e
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Figure SPM.5. Solid lines are multi-model giobal avarages of surface warming (ralative to 1980-1999) for the scananios A2, A1B and B1,

SO , r Ce " I P ‘ ‘ ( 2 O O 7 ) shown as continuations of the 20th century simuiations. Shading denotes the +1 standard deviation range of individual model annual
" )

avarages. The orange line is for the experiment where concentrations were held constant at year 2000 values. The grey bars at night
indlicate the best astimate (solid line within each bar) and the likely range assessed for the six SRES marker scenarios. The assassment of

A R 4 WG / S P M the best astimate and likely ranges in the gray bars includas the AOGCMs in the left part of the figure, as well as resuits from a hierarchy
J J

of indapandent models and obsearvational constraints. {Figuras 10.4 and 10.29)
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Unfortunately, things
aren’t all that easy!

Try to achieve better

interpretation of, and

agreement between,
models ...

Ghil, M., 2002: Natural climate variability,
in Encyclopedia of Global Environmental
Change, T. Munn (Ed.), Vol. 1, Wiley

Natural variability introduces additional complexity into
the anthropogenic climate change problem

The most common interpretation of observations and
GCM simulations of climate change is still in terms
of a scalar, linear Ordinary Differential Equation (ODE)

. k= Z k. — feedbacks (+ve and -ve)
T
= —kT = .- i
c " +0 0 Z Q; —sources & sinks
0,=0,0
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Hence, we need to consider instead a system of nonlinear

Partial Differential Equations (PDEs), with parameters

and multiplicative, as well as additive forcing
(deterministic + stochastic)

ax =N(X,t,u,p)
dt



Table SPM.2. Recant trands, sasseasment of human influence on the trend and projections for extreme weasther events for which thers
is an obsened lste-20th century trend. {Tables 3.7, 3.8, 9.4; Sections 3.8, 5.5, 9.7, 11.2-11.9}

Phenomenon? and
direction of trend

Warmer and fewer cold
days and nights over Likalyd Virtually certaind
most land areas

Warmer and more frequent
hot days and nights over Liely fnightsp@ Virtually certaind
moet land areas

Warm spella/heat waves,

Frequency increasse over More lkely than not' Very likely
moet land areas

Heavy precipitation events.

Frequency (or proportion of
total rainfall from heavy falls) Liely More lkely than not!
incraaseas ovar mast areas

Area affectad by Likedy in mary
droughts increasse regions since 1970s More likely than not

Intensa tropical cydons Likely in some
activity increases regions since 1970 More likely than notf

Increased incidence of
extrame high s=a level Likely Move likely than not'h
(excludas tsunamis)?




F. Bretherton's "horrendogram” of Earth System Science

CONCEPTUAL MODEL of Earth System process operating on timescales of decades to centuries
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Composite spectrum of climate variability

Standard treatement of frequency bands:
1. High frequencies — white (or “‘colored’’) noise
2. Low frequencies — slow (“‘adiabatic’’) evolution of parameters
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From Ghil (2001, EGEC), after Mitchell* (1976)
* “No known source of deterministic internal variability”




Climate models (atmospheric & coupled) : A classification

o« Temporal

e Space
= 0-D (dimension 0 .
= 1-D : ) | = Radiative-Convective Model(RCM)

- vertical - Energy Balance Model (EBM)
- latitudinal

= 2-D
* horizontal
* meridional plane
= 3-D, GCMs (General Circulation Model)
* horizontal
- meridional plane
= Simple and intermediate 2-D & 3-D models

e Coupling
= Partial
- unidirectional
- asynchronous, hybrid
= Full

Hierarchy: from the simplest to the most elaborate,
iterative comparison with the observational data




Linear inverse model (LIM)

e \We aim to use data in order to estimate the two matrices, B
and Q, of the stochastic linear model:

dX = BX - dt + d&(t), 1)

where B is the (constant and stable) dynamics matrix, and Q is
the lag-zero covariance of the vector white-noise process d{(t).
e More precisely, the two matrices B and Q are related by a
fluctuation-dissipation relation:

BC(0) + C(0)B'+Q =0, 2)

where C(7) = E{X(t 4+ 7)X(t)} is the lag-covariance matrix of
the process X(t), and (-)! indicates the transpose.

e One then proceeds to estimate the Green’s function

G(7) = exp(7B) at a given lag 7 from the sample C(7) by

G(70) = C(70)C(0).




Nonlinear stochastic model (MTV)-I

e Let z be a vector decomposed into a slow (“climate") and a
fast (“weather") vector of variables, z = (x,y).

We model x deterministically and y stochastically, via the
following quadratic nonlinear dynamics

dx
- L1aX + Ligy + B33 (X, X) + Bio(X,y) + B3,(Y, Y),

d
G = Laox+Loay + BA(xX) + BR(x,¥) + BE(y.Y):

e In stochastic modeling, the explicit nonlinear self-interaction
for the variable y, i.e. B3,(y,Yy), is represented by a linear
stochastic operator:
B2,(y,Y) ~ — oy + ~ZW(1),
e e
where I and o are matrices and W(t) is a vector-valued
white-noise.

Michael Ghil ghil@Imd.ens.fr



Nonlinear stochastic model (MTV)-II

e The parameter ¢ measures the ratio of the correlation time of
the weather and the climate variables, respectively,

and ¢ < 1 corresponds to this ratio being very small.

e Using the scaling t — t, we derive the stochastic climate

model:
dy 1
Gt = (bt Ly + BL(x,x) + BL(x.y),
dy 1 o
d%/ = Z(Larx + Lagy + BI1 (X, X) + Ba(x,¥)) = S5y + ZW(t).

e In practice, the climate variables are determined by a variety
of procedures, including leading-order empirical orthogonal
functions (EOFs), zonal averaging in space, low-pass and
high-pass time filtering, or a combination of these procedures.

Michael Ghil ghil@Imd.ens.fr
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Motivation

Sometimes we have data but no models.

Linear inverse models (LIM) are good least-square fits to data, but
don’t capture all the processes of interest.

Difficult to separate between the slow and fast dynamics (MTV).
We want models that are as simple as possible, but not any simpler.

Criteria for a good data-derived model

Fit the data, as well or better than LIM.

Capture interesting dynamics: regimes, nonlinear oscillations.
Intermediate-order deterministic dynamics.

Good noise estimates.




Key ideas

IR vacn el X — Lx + N(Xx).
* Discretized, quadratic:

dx, = (x'Ax +b"x + ) dt + dr'”;

 Multi-level modeling of red noise:
dx, = (x'Ax +b"x + Y adr + " dr,

= b\"[x, "] dt + Y dt,

0 2
b7 x, v, ¥V dr + £ dt,




Nomenclature

Response variables:

{y(™} (1 <n < N)

Predictor variables:

{z(M} (1 <n < N)

* Each y(”) is normally distributed about

* Each is known exactly. Parameter set {a,}:

— known dependence
of fon {xW} and {a,}.

HEIHNS VAT o, } (1 < p < P)




LIM extension #1

* Do a least-square fit to a nonlinear function of the data:

J response variables:

Predictor variables (example — quadratic polynomial
of J original predictors):

Note: Need to find many more regression coefficients than
for LIM; in the example above P = J + J(J+1)/2 + 1 = O(J?).




Regularization
* Caveat. If the number P of regression parameters is
comparable to (i.e., it is not much smaller than) the
number of data points, then the least-squares problem may
become ill-posed and lead to unstable results (overfitting) ==>
One needs to transform the predictor variables to regularize
the regression procedure.

* Regularization involves rotated predictor variables:
the orthogonal transformation looks for an “optimal”
linear combination of variables.

* “Optimal” = (i) rotated predictors are nearly uncorrelated; and
(i) they are maximally correlated with the response.

* Canned packages available.




LIM extension #2

®* Motivation: Serial correlations in the residual.

Main level, /= 0: (:cn_l_l — xn)/At — Q. or" + "0

Level / =1: (rg_l_l —rg)/ At =ag 172" + a,5 170 + 71
...andsoon ...
Level L: — 77 1 = Atlay 2"+ ... ]+ Arp,
* Ar, — Gaussian random deviate with appropriate variance

* |f we suppress the dependence on xinlevels/ =1, 2,... L,
then the model above is formally identical to an ARMA model.




Empirical Orthogonal Functions (EOFs)

We want models that are as simple as possible, but not any simpler: use
leading empirical orthogonal functions for data compression and capture

as much as possible of the useful (predictable) variance.
Decompose a spatio-temporal data set D(t,s)(t=1,...,N; s=1...,M)
by using principal components (PCs) — x,(t) and

empirical orthogonal functions (EOFs) — e,(s): diagonalize the
M x M spatial covariance matrix C of the field of interest.

C +(D— <D =) (D— <D >
C/\g — /\,'(T‘;. Tr; = (D— < D '_‘_‘.:‘-:)(Ti
EOFs are optimal patterns to capture most of the variance.

Assumption of robust EOFs.

EOFs are statistical features, but may describe some dynamical (physical)
mode(s).




Empirical mode reduction (EMR)-|

* Multiple predictors: Construct the reduced model
using J leading PCs of the field(s) of interest.

* Response variables: one-step time differences of predictors;
step = sampling interval = At.

* Each response variable is fitted by an independent

multi-level model:
The main level /= 0 is polynomial in the predictors;
all the other levels are linear.




Empirical mode reduct’'n (EMR) — Il

* The number L of levels is such that each of the
last-level residuals (for each channel corresponding
to a given response variable) is “white” in time.

* Spatial (cross-channel) correlations of the last-level
residuals are retained in subsequent
regression-model simulations.

* The number J of PCs is chosen so as to optimize the
model’s performance.

* Regularization is used at the main (nonlinear) level
of each channel.




lllustrative example: Triple well

dx(t) = —VV(x)dt + o db
* V (x4,X;) is not polynomial ,

V(x,.x,)
&
LY

* Our polynomial regression

i

(a)
model produces a time - ///
l

0.

: oy s 7))

series whose statistics NN //
C . \\Eiiéiéili

are nearly Identlcal to 0 0.2 04 06 08

those of the full model!!

* Optimal orderis m = 3;
regularization required
for polynomial models of
order m = 5.




NH LFV in QG3 Model — |

The QG3 model (Marshall and Molteni, JAS, 1993):

* Global QG, T21, 3 levels, with topography;
perpetual-winter forcing; ~1500 degrees of freedom.

* Reasonably realistic NH climate and LFV:
(i) multiple planetary-flow regimes; and
(ii) low-frequency oscillations
(submonthly-to-intraseasonal).

* Extensively studied: A popular “numerical-laboratory” tool

to test various ideas and techniques for NH LFV.




NH LFV in QG3 Model — Il

Output: daily streamfunction (V) fields (= 10° days)

Regression model.

* 15 variables, 3 levels (L = 3), quadratic at the main level

* Variables: Leading PCs of the middle-level ¥

* No. of degrees of freedom = 45 (a factor of 40 less than
in the QG3 model)

* Number of regression coefficients P =
(15+1+15+16/2+30+45)*15 = 3165 (<< 109)

* Regularization via PLS applied at the main level.
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NH LFV in QG3 Model — |V

The correlation between the QG3 map and the EMR
model’s map exceeds 0.9 for each cluster centroid.




NH LFV in QG3 Model -V

Oscillatory pair

* Multi-channel SSA (M-SSA)
identifies 2 oscillatory
signals, with periods of

37 and 20 days.

* Composite maps of these ~+~ Reduced model

- & - QG3 model

-1 1 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

oscillations are computed Froqueney (cyierday)
by identifying 8 phase
categories, according to M-SSA reconstruction.




NH LFV in QG3 Model — VI

Composite 37-day cycle:

QG3 and EMR results are virtually identical.




NH LFV in QG3 Model — VI

Regimes vs. Oscillations:

= as a function of
oscillation phase.

. in the (RC vs. ARC) plane —
both RC and ARC are normalized so that
a linear, sinusoidal oscillation
would have a constant phase speed.




NH LFV in QG3 Model — VIII

Regimes vs. Oscillations:

* Fraction of
regime days:
NAO- (squares),

NAO* (circles),
AO+ (d |am0nd8)a Phases Phases

Fraction of Regime Days
Fraction of Regime Days

—e— Speed —e— Speed
= = =Error Bars . = = =Error Bars

* Phase speed




NH LFV in QG3 Model — IX

Regimes vs. Oscillations:

* Regimes AO*, NAO- and NAO™* are associated with
anomalous slow-down of the 37-day oscillation’s
trajectory = nonlinear mechanism.

* AO- is a stand-alone regime, not associated
with the 37- or 20-day oscillations.




NH LFV in QG3 Model — X

Quasi-stationary states
of the EMR model’s
deterministic
component.

Tendency threshold
a) B=10%; and
b) B =10-°.




NH LFV in QG3 Model — XI

37-day eigenmode
of the regression
model linearized
about climatology™

* Very similar to the composite 37-day oscillation.




NH LFV in QG3 Model — XI|

Panels (a)—(d): noise amplitude € = 0.2, 0.4, 0.6, 1.0.




Conclusions on QG3 Model

* Our ERM is based on 15 EOFs of the QG3 model and has
L = 3 regression levels, i.e., a total of 45 predictors (*).

« The ERM approximates the QG3 model’s major
statistical features (PDFs, spectra, regimes,
transition matrices, etc.) strikingly well.

» The dynamical analysis of the reduced model
identifies AO- as the model’s unique steady state.

* The 37-day mode is associated, in the reduced model,
with the least-damped linear eigenmode.

» The additive noise interacts with the nonlinear dynamics to
yield the full ERM’s (and QG3'’s) phase-space PDF.

*) An ERM model with 4*3 = 12 variables only does not work!




NH LFV — Observed Heights

* 44 years of daily
700-mb-height winter data

* 12-variable, 2-level model
works OK, but dynamical
operator has unstable
directions: “sanity checks”
required.




Spatio-temporal evolution of ENSO episode

1997-98 El Nino Animation

SST ANOMAILIES °C
JAalN 905, 1997

Laps

-5 —4 -3 —2 -1 o 1 2 3 e (=

Anomaly = (Current observation — Corresponding climatological value)
Base period for the climatology is 1950-1979

NOAA-CIRES

http://www.cdc.noaa.gov/map/clim/sst_olr/old_sst/sst 9798 anim.shtml
Courtesy of NOAA-CIRES Climate Diagnostics Center




Data:

* Monthly SSTs: 1950-2004,
30 S—60 N, 5x5 grid
(Kaplan et al., 1998)

e 1976—-1977 shift removed

-2
1950 1960 1970 1980 1990 2000 2010
Year

* Histogram of SST data is skewed (warm events are larger, while
cold events are more frequent): Nonlinearity important?




ENSO — I

Regression model:

e J =20 variables (EOFs of SST)
L =2levels

e Seasonal variations included
in the linear part of the main
(quadratic) level.

* Competitive skill: Currently | Q
a member of a multi-model PeepeE B 0w
prediction scheme of the IR,
see: http://iri.columbia.edu/climate/ENSO/currentinfo/SST _table.html.

~e




ENSO — Il

PDF — skewed vs. Gaussian

Histogram Variance

* Observed | 2 \/
0

2 4 6 8 10 1

* Quadratic model
(100-member ensemble)

o

2 4 6 8 10 1

* Linear model | s ]

(100-member ensemble) 0 0
2 4 M%nth8 10 12

The quadratic model has a slightly smaller RMS error
in its extreme-event forecasts (not shown)




ENSO - IV

Spectra:

* SSA

_2
10
0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
Freq (cycle/month) Freq (cycle/month)

Wavelet

 \Wavelet

0
1960 1970 1980 1990 2000 10 20 30 40 50
Epoch (years) Epoch (years)

ENSOQO'’s leading oscillatory modes, , are reproduced
by the model, thus leading to a skillful forecast.




ENSO -V

“‘Spring barrier’: Hindcast skill vs. target month

—o— Linear-3month

« SSTs for June are ‘ T e omonth
: —Q —0— Quadr-6month
more difficult to predict.

* A feature of virtually
all ENSO forecast
schemes.

\ /

»— = ¢ | | 1 I

6 7 8 9 10 11
Calendar month

* SST anomalies are weaker in late winter through
summer (why?), and signal-to-noise ratio is low.




« Stability analysis, month-by-
month, of the linearized

regression model identifies 5 ;g;\
weakly damped QQ mode N L L

Decay time (month™)

(with a period of 48—60 mo), I |
as well as strongly damped
QB mode. e

=) ‘,g(:,rn C) T S
S e Y U §°

* QQ mode is least damped
In December, while it is not
identifiable at all in summer!




ENSO - VI

Floquet analysis
for seasonal cycle (T = 12 mo):

x = L(t)x

[ ]
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QQ mode:

period = 52 months, damping: 11 months.



ENSO — VI

ENSO development * Maximum growth:
and non-normal growth of (b) start in Feb., (c) 7= 10 months
small perturbations

(Penland & Sardeshmukh, 1995;

3
/

|

_17
( {
1.63

gw

Thompson & Battisti, 2000) it

®(r)=U-S-V'

V — optimal initial vectors
U — final pattern at lead ©




Conclusions on ENSO model

* The quadratic, 2-level EMR model has competitive forecast skill.

* Two levels really matter in modeling “noise.”

« EMR model captures well the “linear,” as well as the
“nonlinear” phenomenology of ENSO.

* Observed statistical features can be related to the EMR
model’s dynamical operator.

* SST-only model: other variables? (A. Clarke)
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EMR for Radiation Belts — |

Radial diffusion code (Y. Shprits) —

estimating phase space density fand
electron lifetime 1 :

ai — J? i[l) L2 ai} — f
_ LL . ; c
ot oL OL | T .peciie Different lifetime
parameterizations for
D,, (L, Kp(£)) = 10°%2325 [10 gy 1 46 6 plasmasphere — out/in: 1, , =

IK,(t); T ;=const.
J =8222.6-exp(—7.068E), L =7

» Test EMR on the model dataset for which we know the origin (“truth”) and learn
something before applying it to real data.

» Obtain long time integration of the PDE model forced by historic Kp data to obtain
data set for analysis.

 Calculate PCs of log(fluxes) and fit EMR.

» Obtain simulated data from the integration of reduced model and compare
with the original dataset.




EMR for Radiation Belts - i
Model:

24000x26 dataset (3-hr resolution) - Random realization from

- Six leading PCs (account for 90%

of the variance) ~ ENSO - EMR model is constant in time
- Best EMR model is linear with 3 levels - stochastic component,

- 6 spatial degrees of freedom - deterministic part of EMR model has

(instead of 26). unstable eigenmodes.




Concluding Remarks — |

* The generalized least-squares approach is well suited to
derive nonlinear, reduced models (EMR models) of
geophysical data sets; regularization techniques such as
PCR and PLS are important ingredients to make it work.

* The multi-level structure is convenient to implement and
provides a framework for dynamical interpretation
in terms of the “eddy—mean flow” feedback (not shown).

* Easy add-ons, such as seasonal cycle (for ENSO, etc.).

* The dynamic analysis of EMR models provides conceptual
insight into the mechanisms of the observed statistics.




Concluding Remarks — Il

Possible pitfalls:

* The EMR models are maps: need to have an idea about
(time & space) scales in the system and sample accordingly.

* Our EMRs are parametric: functional form is pre-specified,
but it can be optimized within a given class of models.

* Choice of predictors is subjective, to some extent, but their
number can be optimized.

* Quadratic invariants are not preserved (or guaranteed) —
spurious nonlinear instabilities may arise.
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