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•  Sometimes we have data but no models: empirical approach.
•  We want models that are as simple as possible, but not any simpler.

Criteria for a good data-derived model 

   Capture interesting dynamics: regimes, nonlinear oscillations.
•   Intermediate-order deterministic dynamics easy to analyze anallitycaly. 
•     Good noise estimates. 
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• Linear inverse models (LIM) are good least-square fits to data, but donʼt 
capture all the (nonlinear) processes of interest.

Linear Inverse Models (LIM) 
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• MTV model coefficients are predicted by the theory. 
• Relies on scale separation between  the resolved (slow) and unresolved (fast) modes   
• Their estimation requires very long libraries of the full model’s evolution. 
• Difficult to separate between the slow and fast dynamics (MTV).

Nonlinear reduced models (MTV) 



Key ideas 
•  Nonlinear dynamics: 

•  Discretized, quadratic: 

•  Multi-level modeling of red noise: 



Nomenclature 
Response variables: 

Predictor  variables: 

•  Each               is normally distributed about  

•  Each              is known exactly. Parameter set {ap}: 

– known dependence  
    of f on {x(n)} and {ap}. 

REGRESSION:     Find  



LIM extension #1 
•  Do a least-square fit to a nonlinear function of the data: 

J response  variables: 

Predictor variables (example – quadratic polynomial  
of J original predictors): 

Note: Need to find many more regression coefficients than  
for LIM; in the example above P = J + J(J+1)/2 + 1 = O(J2). 



Regularization 

•  Regularization involves rotated predictor variables: 
   the orthogonal transformation looks for an “optimal”  
   linear combination of variables. 

•  “Optimal” = (i) rotated predictors are nearly uncorrelated; and 
                     (ii) they are maximally correlated with the response. 

•  Canned packages available. 

•  Caveat: If the number P of regression parameters is  
   comparable to (i.e., it is not much smaller  than) the  
   number of data points, then the least-squares problem may    
   become ill-posed and lead to unstable results (overfitting) ==> 
   One needs to transform the predictor variables to regularize  
   the  regression procedure. 



LIM extension #2 

Main level, l = 0: 

Level l  = 1: 

… and so on … 

Level L: 

•  rL – Gaussian random deviate with appropriate variance  

•  If we suppress the dependence on x in levels l  = 1, 2,… L,  
   then the model above is formally identical to an ARMA model. 

•  Motivation: Serial correlations in the residual. 



Empirical Orthogonal Functions (EOFs) 
•  We want models that are as simple as possible, but not any simpler: use 

leading empirical orthogonal functions for data compression and capture  
 as much as possible of the useful (predictable) variance.  

•  Decompose a spatio-temporal data set D(t,s)(t = 1,…,N; s = 1…,M)  
 by using principal components (PCs) – xi(t) and  
 empirical orthogonal functions (EOFs) – ei(s):  diagonalize the  
 M x M spatial covariance matrix C of the field of interest.  

•  EOFs are optimal patterns to capture most of the variance.  
•  Assumption of robust EOFs.  
•  EOFs are statistical features, but may describe some dynamical (physical) 

mode(s).  



Empirical mode reduction (EMR)–I 

•  Multiple predictors: Construct the reduced model 
   using J leading PCs of the field(s) of interest. 

•  Response variables: one-step time differences of predictors;    
   step = sampling interval = t. 

•  Each response variable is fitted by an independent   
   multi-level model:  
   The main level l = 0 is polynomial  in the predictors;  
   all the other levels are linear. 



Empirical mode reduct’n (EMR) – II 
•  The number L of levels is such that each of the 
  last-level residuals (for each channel corresponding 
  to a given response variable) is “white” in time. 

•  Spatial (cross-channel) correlations of the last-level 
   residuals are retained in subsequent  
   regression-model simulations. 

•  The number J of PCs is chosen so as to optimize the  
    model’s performance. 

•  Regularization is used at the main (nonlinear) level  
  of each channel. 



ENSO – I 
Data: 

•  Monthly SSTs: 1950–2004, 
   30 S–60 N, 5x5 grid  
   (Kaplan et al., 1998) 

•  1976–1977 shift removed 

•  Histogram of SST data is skewed (warm events are larger, while 
   cold events are more frequent): Nonlinearity important? 



ENSO – II 
Regression model: 

•  J = 20 variables (EOFs of SST) 
•  L = 2 levels 
•  Seasonal variations included  
   in the linear part of the main  
   (quadratic) level. 

•  Competitive skill: Currently 
   a member of a multi-model 
   prediction scheme of the IRI,  
   see: http://iri.columbia.edu/climate/ENSO/currentinfo/SST_table.html. 

The quadratic model has a 
slightly smaller RMS error in its 
extreme-event forecasts 



ENSO – III 

V – optimal initial vectors 
U – final pattern at lead  

ENSO development 
and non-normal growth of 
small perturbations 

(Penland & Sardeshmukh, 1995; 

Thompson & Battisti, 2000);  
Floquet analysis : 

•  Maximum growth: 
(b) start in Feb., (c) = 10  
months 



NH LFV in QG3 Model – I 
The QG3 model (Marshall and Molteni, JAS, 1993): 

•  Global QG, T21, 3 levels, with topography;  
   perpetual-winter forcing; ~1500 degrees of freedom. 

•  Reasonably realistic NH climate and LFV: 
   (i) multiple planetary-flow regimes; and  
   (ii) low-frequency oscillations  
   (submonthly-to-intraseasonal). 

•  Extensively studied: A popular “numerical-laboratory” tool 
   to test various ideas and techniques for NH LFV. 



NH LFV in QG3 Model – II 
Output: daily streamfunction () fields  ( 105 days) 

Regression model: 

•  15 variables, 3 levels (L = 3), quadratic at the main level 

•  Variables: Leading PCs of the middle-level  

•  No. of degrees of freedom = 45 (a factor of 40 less than 
    in the QG3 model) 

•  Number of regression coefficients P = 
   (15+1+15•16/2+30+45)•15 = 3165 (<< 105) 

•  Regularization via PLS applied at the main level. 



NH LFV in QG3 Model – III 
•  Our EMR is based 
on 15 EOFs of the 
QG3 model and has  
  L = 3 regression 
levels, i.e., a total of 
45 predictors (*).  

•  The EMR 
approximates the 
QG3 model’s major 
statistical features 
(PDFs, spectra, 
regimes, transition 
matrices, etc.) 
strikingly well.  



NH LFV in QG3 Model – II 
Quasi-stationary states 
of the EMR model’s 
deterministic component 

explain dynamics!   

Tendency threshold  
a)   = 10–6; and  
b)   = 10–5. 

• AO–  is the model’s unique steady 
state. 

•  Regimes AO+, NAO– and NAO+ are 
associated with anomalous slow-
down of the 37-day oscillation’s 
trajectory   nonlinear mechanism. 

• The 37-day mode is associated, in 
the reduced model with the least-

damped linear eigenmode.  



NH LFV in QG3 Model – III 

Panels (a)–(d): noise amplitude  = 0.2, 0.4, 0.6, 1.0.

• The additive noise interacts with the nonlinear dynamics to  yield 
the full EMR’s (and QG3’s) phase-space PDF.  



NH LFV – Observed Heights 

•  44 years of daily  
700-mb-height winter data 

•  12-variable, 2-level model 
works OK, but dynamical 
operator has unstable 
directions: “sanity checks” 
required. 



Mean phase space tendencies 
•  2-D  mean tendencies <(dxj,dxk)>=F(xj,xk) in a given plane of 
the EOF pair (j, k) have been used to identify distinctive 
signatures of nonlinear processes in both the intermediate 
QG3 model (Selten and Branstator, 2004; Franzke et al. 2007) 
and more detailed GCMs (Branstator and Berner, 2005). 

•  Relative contributions of ”resolved” and ”unresolved” modes 
(EOFs) that may lead to observed deviations from Gaussianity; it 
has been argued that contribution of  ”unresolved” modes is 
important.     

• We can estimate mean tendencies from the output of QG3 and 
EMR simulations.   

•  Explicit quadratic form of F(xj,xk) from EMR allows to study 
nonlinear  contributions of ”resolved” and ”unresolved” modes. 



Mean phase-space tendencies 

•   Very good agreement between EMR and QG3!  

• Linear features for EOF pairs (1-3), (2-3) only: 
antisymmetric for reflections through the origin; constant 
speed along ellipsoids (Branstator and Berner, 2005).  

QG3 tendencies EMR tendencies 



“Resolved” vs. “Unresolved”? 

•  It depends on assumptions about ”signal” and ”noise”. We 
consider EOFs xi (i ≤ 4) as ”resolved”  because: 
- these EOFs have the most pronounced deviations from the 
Gaussianity in terms of skewness and kurtosis.  
- they determine the most interesting dynamical aspects of LFV; 
linear (intraseasonal oscillations) as well as nonlinear  (regimes) 
(Kondrashov et al. 2004, 2006).   



EMR Tendencies budget 

For a given xi (i≤4), we split nonlinear interaction xjxk  as   
”resolved” (set Ω of (j,k); j,k ≤4):  

  TR = Nijk xj,xk - Ri, 

  Ri = < Nijk xj,xk > 
and ”unresolved” for (j,k) ∉ Ω:   

  TU =Nijk xj,xk + Ri + Fi    
Since Fi   ensures < dxi > = 0: Fi = - < Nijk xj,xk > ∀ j,k 
we have <TR > = 0, <TU > = 0, and <TR +TU  > = 0! 

� 

Δxi
(n ) = (Nijk x j

(n )xk
(n ) + Lij x j

(n ) + Fi)Δt + ri
(n )Δt



EMR Nonlinear Tendencies 

•  Pronounced nonlinear 
double swirls for EOF 
pairs  (1-2), (1-4), (2-4) 
and (3-4).  

• The nonlinear ”double-swirl” 
feature is mostly due to the 
”resolved” nonlinear interactions, 
while the effects of the  
”unresolved” modes are small!!  



Concluding Remarks – I 
•  The generalized least-squares approach is well suited to  
  derive nonlinear, reduced models (EMR models) of  
  geophysical data sets; regularization techniques such as  
  PCR and PLS are important ingredients to make it work.  

•  Easy add-ons, such as seasonal cycle (for ENSO, etc.). 

•  The dynamic analysis of EMR models provides conceptual 
   insight into the mechanisms of the observed statistics. 



Concluding Remarks – II 

Possible pitfalls: 

•  The EMR models are maps: need to have an idea about 
   (time & space) scales in the system and sample accordingly. 

•  Our EMRs are parametric: functional form is pre-specified,  
   but it can be optimized within a given class of models. 

•  Choice of predictors is subjective, to some extent, but their     
   number can be optimized. 

•  Quadratic invariants are not preserved (or guaranteed) –  
   spurious nonlinear instabilities may arise. 
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