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A B S T R A C T

There is a gap between single-species model predictions, and empirical studies, regarding the effect of

habitat fragmentation per se, i.e., a process involving the breaking apart of habitat without loss of habitat.

Empirical works indicate that fragmentation can have positive as well as negative effects, whereas,

traditionally, single-species models predict a negative effect of fragmentation. Within the class of

reaction-diffusion models, studies almost unanimously predict such a detrimental effect. In this paper,

considering a single-species reaction-diffusion model with a removal – or similarly harvesting – term, in

two dimensions, we find both positive and negative effects of fragmentation of the reserves, i.e., the

protected regions where no removal occurs. Fragmented reserves lead to higher population sizes for

time-constant removal terms. On the other hand, when the removal term is proportional to the

population density, higher population sizes are obtained on aggregated reserves, but maximum yields

are attained on fragmented configurations, and for intermediate harvesting intensities.

� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

The analysis of the effects of environmental fragmentation and
variability on population densities and biodiversity has stimulated
the development of many spatially explicit population models. In
the modeling literature, positive effects of environmental variability
have been recorded (see e.g. Bolker, 2003; Berestycki et al., 2005a,b).
On the other hand Fahrig (2003), in a thorough bibliography
analysis, pointed out that most single-species modeling approaches
lead to comparable conclusions regarding the detrimental effects of
fragmentation per se, i.e., a process involving the breaking apart of
habitat without loss of habitat. She noted that unlike the effects of
habitat loss (see Saunders et al., 1991, for a discussion of the
consequences of fragmentation with habitat loss), and in contrast to
current theory, empirical studies suggest that the effects of
fragmentation per se are at least as likely positive as negative.
The aim of this note is to make steps towards a reconciliation
between the theory and empirical works on the effects of
fragmentation, within the framework of reaction-diffusion models.

Reaction-diffusion models (hereafter RD models), although they
sometimes bear on simplistic assumptions such as infinite velocity
assumption and completely random motion of animals (Holmes,
1993), are not in disagreement with certain dispersal properties of
populations observed in natural as well as experimental ecological
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systems, at least qualitatively (see Shigesada and Kawasaki, 1997;
Turchin, 1998; Murray, 2002; Okubo and Levin, 2002). Furthermore,
these models often provide a good framework for rigorous
investigation of theoretical questions and derivation of qualitative
as well as numerical results on population dynamics. In that respect,
the effects of environmental fragmentation have been addressed in
many theoretical studies based on such models over the last decades.

Within the class of RD models with heterogenous coefficients,
numerous recent works have emphasized the detrimental effect of
environmental fragmentation per se on species persistence and
spreading, in agreement with the other theoretical tendencies
noted by Fahrig. In all these RD models, the population growth rate
function at a location x, rðxÞ, was not constant, taking higher values
in favorable regions than in unfavorable ones. Depending on the
spatial arrangements of these regions, the modeled populations
were shown to tend to extinction or survive, and to disperse at
different speeds. In the particular case of one-dimensional binary
environments (i.e., for r taking values in a set constituted of two
values), Cantrell and Cosner (1989, 2003) and Shigesada and
Kawasaki (1997) have established that concentrating all the
habitat in a single patch improved persistence. Berestycki et al.
(2005a,b) generalized these analytical results to the N-dimensional
case, with more general growth rate functions. More recently
Roques and Stoica (2007) carried out more precise results
regarding the negative correlation between persistence and
fragmentation. Habitat fragmentation has also been shown, first
numerically (Kinezaki et al., 2003), and then analytically (El Smaili
et al., 2009) to negatively affect population spreading speed.
ction-diffusion support the duality of fragmentation effect? Ecol.
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Nevertheless, to our knowledge, there do not exist detailed
demonstration of positive effects related to fragmentation derived
from RD models in two space-dimensions, although in a related
work, Neubert (2003) shows positive effects of reserve fragmenta-
tion from RD models with harvesting terms, in the sense that
fragmented reserves sometimes maximize the yield. However, in
his work, which is carried out in a one-dimensional space, no
explicit conservation of the area of the reserve is assumed.

In this paper, we study single-species RD models in two-space
dimensions with a spatially homogeneous growth term, and
spatially heterogeneous removal terms �Y which can be, for
instance, interpreted as harvesting terms. The regions where Y �0
hence correspond to protected regions or similarly reserves. In our
models, Y ¼ Yðx;uÞ depends on the location x, and can depend on
the population density u at this location. Typically, when Y does not
depend on the population density, it corresponds to a constant-

yield harvesting strategy. In this case, a constant number of
individuals are removed per unit of time. This is the case when a
quota is set on the harvesters (Robinson and Redford, 1991;
Robinson and Bodmer, 1999; Stephens et al., 2002). Even in the
absence of such imposed quotas, harvesters often increase their
effort to maintain a constant yield. A good example is provided by
the high-trophic level fishes catches data in the North Atlantic
reviewed by Christensen et al. (2003), which describe a decline of
the biomass of one half from 1950 to 1990, while the catch remains
the same. The function Y can also be taken to be proportional to the
density u, corresponding to a proportional harvesting strategy.
Then, locally, a constant proportion of the population is removed
per unit of time, corresponding to a constant effort of the
harvesters. These two harvesting strategies have been investigated
by the authors (Roques and Chekroun, 2007), in inhomogeneous
environments. It was shown, through analytical and numerical
analysis, that aggregated habitat configurations gave better
chances of population persistence, respecting the tendency found
in the modeling literature; see also Oruganti et al. (2002) for other
mathematical results on these models.

We conduce here a different analysis. Not only we investigate
the effects of the spatial arrangement of the harvesting term rather
than those of the growth function, but we also focus on other
quantities than simple persistence. Considering protected regions
with a fixed total area but with gradually fragmented shapes, we
analyze the intertwined effects of fragmentation and harvesting
intensity on both the population size and the quantity of harvested
individuals. To do that we use the stochastic model of landscape
generation of Roques and Stoica (2007), that is in complete
agreement with the concept of fragmentation per se, and we show
that fragmentation of protected regions can in fact be beneficial to
the modeled population and to the harvesters. These results
demonstrate that two-dimensional RD models with harvesting
terms can support a dual effect of fragmentation per se, positive as
well as negative.

Typically, it is shown, for instance, that fragmented reserves
lead to higher population sizes for time-constant removal terms.
On the other hand, when the removal term is proportional to the
population density, higher population sizes are obtained on
aggregated reserves, but maximum yields are attained on
fragmented configurations, and for intermediate harvesting
intensities.

2. Materials and methods

2.1. The model

The idea of modeling population dynamics with reaction-
diffusion models has begun to develop at the beginning of the 20th
century, with random walk theories of organisms, introduced by
Please cite this article in press as: Roques, L., Chekroun, M.D., Does rea
Complex. (2009), doi:10.1016/j.ecocom.2009.07.003
Pearson and Blakeman (1906). Then, Fisher (1937) and Kolmo-
gorov et al. (1937) used a reaction-diffusion equation with
homogeneous coefficients as a model for population genetics.
Later, Skellam (1951) examined this type of model, and he
succeeded to propose quantitative explanations of observations for
the spread of muskrats throughout Europe at the beginning of 20th
Century. Since then, these models have been widely used to
explain spatial propagation or spreading of biological species
(bacteria, epidemiological agents, insects, fishes, mammal, plants,
etc., see the books Shigesada and Kawasaki, 1997; Turchin, 1998;
Murray, 2002; Okubo and Levin, 2002, for review).

Ignoring age or stage structures as well as delay mechanisms or
Allee effects, the classical Fisher–Kolmogorov model, in two space-
dimensions, can be written as follows:

@u

@t
� Dr2u ¼ ru 1� u

K

� �
; t>0; x2V�R2; (1)

where u ¼ uðt;xÞ corresponds to the population density at time t

and position x ¼ ðx1; x2Þ. The left-hand side of (1) corresponds to
the diffusion equation, and simply describes the redistribution of
organisms following uncorrelated random walks where r2 stands
for the spatial dispersion operator r2u ¼ @2

u=@x2
1 þ @2

u=@x2
2. The

diffusion coefficient D measures the individuals rate of movement,
r>0 is the intrinsic growth rate of the population and K >0
corresponds to the environment carrying capacity.

The domain V is considered bounded, and we assume reflecting
boundary conditions:

@u

@n
ðt;xÞ ¼ 0 for x2@V;

where @V is the domain’s boundary and n ¼ nðxÞ corresponds to
the outward normal to this boundary. Thus, some part of the
boundary can be considered as an absolute barrier that the
individuals do not cross, like coasts, and other parts of the
boundary can be seen as regions where as much individuals exit
the domain as individuals enter the domain.

At this stage no environmental fragmentation is present in this
class of models. To introduce it, we adopt a perturbative approach
which consists in subtracting a spatially dependent term to the
right-hand side of Eq. (1):

@u

@t
� Dr2u ¼ ru 1� u

K

� �
� Yðx;uÞ; t>0; x2V�R2: (2)

It could seem artificial to keep constant the parameters r;D and K

whereas the removal term Y is spatially dependent. The ecological
interpretation of such a framework is no more than the
consideration of heterogeneously distributed harvesting in homo-
geneous media, a classical set-up in fisheries for instance. In fact,
even in the case of a population living in a heterogeneous
environment, the objective of such assumptions is to separate the
effects in order to facilitate the ecological interpretations; and
keeping constant the biological parameters can be thought as to
consider the effects of spatially dependent perturbations on an
averaged model of growth (1), where the parameters are averaged
in space and time. Advanced mathematical theory of averaging for
partial differential equations can then be used to support this
strategy and to make robust conclusions derived by such approach,
at least in the case of small amplitude of oscillating parameters
rðt;xÞ;Dðt;xÞ and Kðt;xÞ (see e.g. Hale and Verduyn Lunel, 1990;
Chekroun and Roques, 2006).

In the forthcoming computations, we assume that harvesting
starts on a previously not harvested population, which has reached
its stable positive steady state. In other words, the environment is
assumed to have reached its carrying capacity at t ¼ 0, the time at
which harvesting is started, with uð0;xÞ ¼ K , where u is the
solution of (2). This assumption is a natural one for studying the
ction-diffusion support the duality of fragmentation effect? Ecol.
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destabilizing effects due to removal terms. Our model (2) being
introduced and discussed, the analysis of environmental effects
brought by the removal term Y is addressed according two
harvesting strategies that we present now.

2.2. Harvesting strategies

The first type corresponds to a ‘‘quasi’’-constant-yield harvest-
ing, with a removal term

Yðx;uÞ ¼ d � xðxÞreðuÞ: (3)

This model is close to but different from the so-called threshold
harvesting model found in ordinary differential equations (ODEs)
models of harvesting (see Roques and Chekroun, 2007).

In (3), xðxÞ is a function taking the value 1 if x belongs to a
harvested region, and the value 0 if x belongs to a protected region.
It constitutes therefore what we call the harvesting field, with d a
positive constant which corresponds to the harvesting intensity in
this field. The parameter d can also be interpreted as a quota. The
last term reðuÞ is a density-dependent threshold function:

reðsÞ ¼ 0 if s � 0;

reðsÞ ¼
s

e if 0< s< e; and reðsÞ ¼ 1 if s� e;

where e is a small threshold below which harvesting is
progressively withdrawn. With such a harvesting function, at
each location x, the yield is constant in time whenever uðt;xÞ� e.
Note that from a mathematical point of view, the function re

ensures the nonnegativity of the solutions of (2) (Roques and
Chekroun, 2007). Considering constant-yield harvesting functions
without this threshold value would be unrealistic since it would
lead to harvest on zero-populations.

The second type of strategy corresponds to a more standard
proportional harvesting situation (Neubert, 2003), in a spatial
context, where

Yðx;uÞ ¼ E � xðxÞu: (4)

The function x is defined as above, and the term E � xðxÞ can now be
interpreted as a harvesting effort at the location x. The
instantaneous yield at a point x is then proportional to this effort
and to the local population density.

2.3. The model of fragmentation

There exist several ways of obtaining hypothetical landscape
distributions, see e.g. Gardner et al. (1987) and Keitt (2000) for
neutral landscape models, and Mandelbrot (1982) for measures of
fragmentation based on fractal dimension. The model retained
here is the one developed by Roques and Stoica (2007), and
inspired from statistical physics. This is a neutral landscape model
in the sense that it is a stochastic model of landscape pattern, and
the value – protected or harvested in the present case – assigned to
a position in the pattern is a random variable. As key property, this
Fig. 1. Some samples of harvesting field configurations. The black areas correspond to

Please cite this article in press as: Roques, L., Chekroun, M.D., Does rea
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stochastic model provides a numerical procedure for generating
several samples of landscapes with breaking apart of the habitat
while keeping constant habitat abundance, along with an exact
control of the later and the type of breaking apart. This model offers
therefore an appropriate framework for assessing the effect of
fragmentation per se on RD models, in the sense underlined by
Fahrig (2003). We make precise here the main parameters
calibrating the model for our present purpose.

The harvested and protected regions are entirely determined by
the harvesting field xðxÞ present in (2) via the removal term Y. In
order to build gradually fragmented configurations of these
regions, we have discretized the domain V into 50� 50 subcells
Ci, with in some cells xðxÞ ¼ 0 for the unharvested cells, and xðxÞ ¼
1 in the other cells. Based on the stochastic model of Roques and
Stoica (2007), we have built 6000 samples of such functions xðxÞ,
with different degrees of fragmentation. In all these samples, the
protected region occupies 10% of the domain V. The fragmentation
of the protected region is defined as follows. The lattice made of the
cells Ci is equipped with a 4-neighborhood system VðCiÞ. We set
sðxÞ ¼ number of pairs of neighbors ðCi;C jÞ such that x takes the
value 0 on Ci and C j. This number sðxÞ is directly linked to
fragmentation: the protected region is all the more aggregated as
sðxÞ is high, and all the more fragmented as sðxÞ is small (Fig. 1).
Therefore, sðxÞ can be seen as an ‘‘aggregation index’’ of the
protected region. On our samples, the aggregation index s varies
from 94 to 460. For each aggregation index incremented as follows
sk :¼ 94þ 6� ðk� 1Þ, we picked up arbitrarily a configuration xk

with sðxkÞ ¼ sk. This lead to 62 harvesting field distributions, with
gradually aggregated configurations of the protected region.

2.4. Methods

The response to the spatial perturbation terms Yðx;uÞ,
distributed according to the aggregation index of their underlying
harvesting fields, as described above, is analyzed in terms of total
population size PðtÞ, and annual yield RðtÞ in the region V. More
precisely, we evaluate the time-dependent quantities

PðtÞ :¼
Z
V

uðt;xÞdx;

corresponding to the total population at time t, and

RðtÞ :¼
Z t

t�1

Z
V

Yðx;uðt;xÞÞdx dt;

corresponding to the annual yield during the year that precedes t.
Note 1: In the case of quasi-constant-yield harvesting, if uðt;xÞ

is greater or equal than e for all t within the temporal window
ðt � 1; tÞ and x in the domain V, we simply obtain

RðtÞ ¼ d � ½area of the harvested region	:

In the case of proportional harvesting, we have

RðtÞ ¼ E � ½mean population in the harvested region during the

yearðt� 1; tÞ	:
protected regions, where x ¼ 0. (a) sðxÞ ¼ 94, (b) sðxÞ ¼ 274 and (c) sðxÞ ¼ 460.

ction-diffusion support the duality of fragmentation effect? Ecol.
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We estimate the intertwined effects of fragmentation per se and
harvesting intensity by plotting PðtÞ and RðtÞ against d for the quasi-
constant-yield strategy, and against E for the proportional harvesting
strategy. For every configuration, the result is represented by a curve
which color is attributed in function of the aggregation index; red
corresponds to the more aggregated configurations, and blue to the
more fragmented configurations. For each fixed harvesting intensity,
we computed the gap between the maximum and minimum
population sizes obtained over the 62 harvesting field distributions,
and we expressed it in terms of relative loss obtained in the worst
configuration compared to the best one, through the formula: 100�
ðhighest population � lowest population Þ = ðhighest populationÞ.
Similarly, for the annual yield, 100� ðhighest annual yield�
lowest annual yieldÞ=ðhighest annual yieldÞwas computed for each
fixed harvesting intensity, where the maxima and minima are taken
over the 62 harvesting field distributions.

For the numerical setup we consider V to be a square domain of
300 km � 300 km. We set r ¼ 1 year�1 and K ¼ 103 individuals/
km2. The diffusion coefficient D varies between 10 km2/year (low
mobility) and 100 km2/year (high mobility); see the book of
Shigesada and Kawasaki (1997) for some observed values of r and
D, for several animal species. The threshold e is set to 10
individuals/km2. Our results, except in Section 3.4, are presented
at a fixed time t ¼ 5; this time has been chosen to fit usual times for
observations and responses in anthropic harvesting activities.

The numerical integrations of the RD models were performed
using a second order finite elements method where the solutions
uðt;xÞ of the model (2) have been computed with the initial
condition and harvesting strategies discussed above. The quan-
tities of interest PðtÞ and QðtÞ are then easily computable. The
numerical results with ecological interpretations are discussed in
the following section.

3. Results

3.1. Quasi-constant-yield harvesting strategy

For every configuration, the higher the quota d, the smaller the
population size Pð5Þ (Fig. 2a). On the other hand, a maximum yield
Rð5Þ is reached for an intermediate value of the quota, while small
values and large values of d both lead to small yields (Fig. 2b).

As it could be expected, for small values of d, there is no
dependence of the yield with respect to the habitat configuration.
Indeed, in such cases, the population density should be everywhere
Fig. 2. (a) Total population in V after 5 years, in function of the quota d. (b) Total yie

configuration of the protected region. Blue curves correspond to more fragmented confi

dotted lines indicate, for each d, the relative losses obtained in the worst configuration
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above e, and the harvesting function is therefore constant in time,
equal to d in the harvested regions; see Note 1. However, this linear
dependence of Rð5Þ pursues for higher values of d in fragmented
configurations. This indicates that the population density never
falls below e on these configurations. Thus, the more fragmented
configurations first lead to higher yields for intermediate quotas,
with a yield loss in aggregated configurations which attains 88%.
Conversely, the more fragmented configurations lead to lower
yields for higher values of d. Overall, the maximum yield is attained
on the more fragmented configuration. Similarly, population sizes
are higher for fragmented configurations and low quotas, with
losses in population size up to 54% on aggregated configurations.
They then become higher for aggregated configurations and higher
quotas. It is noteworthy that, whenever the harvesting term is
really constant, i.e., in the region where Rð5Þ is linear, fragmented
configurations lead to higher population sizes.

Such a reversion of the influence of fragmentation on both P and
R, for increasing quotas, is not intuitively obvious. Yet, we can give
a reasonable explanation for it. In fragmented configurations, the
mean distance to a protected region – where population density is
higher – is reduced compared to more aggregated configurations.
Therefore, when d is not too large, at each location in V, the
population can be efficiently sustained by the protected regions,
and the density never falls below the threshold e, leading to higher
yields, compared to more aggregated configurations. For larger
values of d, the harvested regions become very hostile, and because
of dispersion, populations tend to extinct, even in the protected
regions. In the case of protected regions with small perimeters,
corresponding to aggregated configurations, dispersion of the
individuals into the harvested regions is reduced. With such
configurations, populations can therefore sustain higher quotas
without risking extinction, leading to higher values of P and R. Note
that, whenever uðt;xÞ is less than or equal to e everywhere in the
harvested region, quasi-constant-yield harvesting becomes
equivalent to proportional harvesting, with effort E ¼ d=e.

Comparable qualitative results were found for diffusion
coefficients D ranging from 10 to 100 and are thus not shown.

3.2. Proportional harvesting strategy

When the harvesting function Y is of proportional type (4), our
model reduces to @u=@t � Dr2u ¼ ruð1� E � xðxÞ=r � u=KÞ. Popu-
lation persistence for this model has been thoroughly investigated
(Cantrell and Cosner, 2003; Berestycki et al., 2005a; Roques and
ld during year 4, Rð5Þ, in function of d. Each curve is associated with a different

gurations, and red curves correspond to more aggregated configurations. The black

s compared to the best ones. These computations were carried out for D ¼ 50.

ction-diffusion support the duality of fragmentation effect? Ecol.
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Fig. 3. (a) Total population in V after 5 years, in function of the harvesting effort E. (b) Total yield during year 4, Rð5Þ, in function of E. To each curve corresponds a different

configuration of the protected regions; the blue curves correspond to more fragmented configurations, and the red curves correspond to more aggregated configurations. The

black dotted lines indicate, for each value of E, the relative losses obtained in the worst configurations compared to the best ones. For these computations, we fixed D ¼ 50.
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Hamel, 2007; Roques and Stoica, 2007), both analytically and
numerically.

The specific effects of fragmentation of the protected regions
can be deduced from the numerical study of Roques and Stoica
(2007). It shows that, on aggregated configurations, higher efforts E

can be sustained without risking extinction. The optimal shapes of
the protected regions, in terms of maximum sustainable effort, has
even been obtained in Roques and Hamel (2007). Surprisingly,
these shape depend on the area of the protected region. Indeed,
small areas have been proved to lead to disc-shaped optimal
shapes, while high areas lead to stripe-shaped optimal shapes.

Following our approach, we still focus on the quantities P and R,
on which the effects of fragmentation have not yet been
investigated. For every configuration, the population size Pð5Þ
decreases as the effort E increases (Fig. 3a). Contrarily to the quasi-
constant case, with such a proportional harvesting strategy,
aggregated configurations always lead to larger populations,
whatever the effort. The effect of fragmentation/aggregation of
the protected region on the population sizes really becomes
noticeable when Pð5Þ falls below one-fourth of the environment
carrying capacity. In such a case, the involved mechanisms are
those of persistence, which require in particular the state 0, where
no individuals are present, to be very repulsing (or equivalently
‘‘unstable’’, see Shigesada and Kawasaki, 1997; Berestycki et al.,
2005a). It is therefore not surprising to obtain effects of
fragmentation comparable to those described in the existing
literature.

On the other hand, the yield Rð5Þ again reaches a maximum (cf.
Fig. 3b). As in the quasi-constant-yield case, the maximum yield is
attained for the most fragmented configuration. Fragmented
configurations have a longer perimeter, and thus provide higher
transfer rates into the harvested regions. Indeed, obtaining higher
yields with smaller total populations, for small values of E, implies
that the size of the population situated outside the protected
regions is higher for fragmented configurations; see Note 1. In the
quasi-constant case, such a larger ‘‘unprotected’’ population would
not have implied higher catches whenever u greater than e; this
explains the qualitative difference between the two harvesting
strategies in terms of the effects of fragmentation on Pð5Þ.

As above discussed, higher values of the effort give a significant
advantage to aggregated configurations, in terms of total popula-
tion sizes. This translates into higher yields on aggregated
configurations. Still, these qualitative results do not depend on
Please cite this article in press as: Roques, L., Chekroun, M.D., Does rea
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the values of diffusion coefficients, in the selected range ½10;100	,
and are not shown.

3.3. Total population vs. annual yield

In Fig. 4, are depicted the population sizes Pð5Þ, in terms of the
yields Rð5Þ, and of the level of fragmentation of the protected
region for the quasi-constant-yield and proportional harvesting
strategies (Fig. 4(a) and (b), respectively). The flip shapes of these
diagrams teach us that for a given yield two branch of disjoint
intervals of population size are admissible, sufficiently far to the
left from the ‘‘bending point’’. The upper branch corresponds to
low harvesting intensities (below that leading to maximum yield),
and the lower branch corresponds to higher intensities. Remark-
ably, for each given population size, higher yields are obtained on
more fragmented configurations; the lower the population size,
the higher this effect.

This 
 -shape of the P–R diagram supports the idea that it will
be difficult to predict the quantitative effect of fragmentation in
practice, at a fixed yield, without knowledge of the total population
size; a situation which typically arises in ecological application
where such a knowledge is difficult to achieve.

3.4. Results for times t 2 ð0;20Þ

Fig. 5 depicts how the total population PðtÞ depends on the
harvesting intensity and on the aggregation index in function of
the time t.

For the quasi-constant-yield harvesting strategy (Fig. 5a), we
observe that the higher the quota, the sooner the inversion of the
effects of fragmentation. Thus, the threshold quotas, above which
aggregated configurations lead to higher populations, decrease as t

increases.
For the proportional harvesting strategy (Fig. 5b), at each time t,

aggregated configurations are still associated with larger popula-
tions. Moreover, the effect of fragmentation tends to increase with
time.

In both cases, the amplitude of the effect of fragmentation
depends on the harvesting intensity and on the time point of the
analysis. However, those results, and in particular the quasi-
constant-yield case, suggest previous sections results might still
be qualitatively true at times other that t ¼ 5. This is confirmed
by numerical computations (not presented here) which indeed
ction-diffusion support the duality of fragmentation effect? Ecol.
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Fig. 5. (a) Total population PðtÞ in function of time t and in terms of the quota d, for the quasi-constant-yield strategy. (b) Total population PðtÞ in function of time t and in terms

of the effort E, for the proportional harvesting strategy. For these computations, we again fixed D ¼ 50.

Fig. 4. (a) Total population Pð5Þ in V after 5 years, in terms of the yield during year 4, Rð5Þ, for the quasi-constant-yield strategy. (b) Total population Pð5Þ vs yield Rð5Þ, for the

proportional harvesting strategy. Blue curves correspond to more fragmented configurations, and red curves correspond to more aggregated configurations. For these

computations, we fixed D ¼ 50.
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lead to comparable results, but with a shift in the harvesting
intensity.

Analytical studies show that the solution uðt; xÞ of (2) converges
to some equilibrium state for both quasi-constant-yield (Roques
and Chekroun, 2007) and proportional (Berestycki et al., 2005a)
harvesting strategies; however, convergence rates are not known.
Fig. 5(a) and (b) provide information about these convergence
rates: the higher the harvesting intensities, the sooner equilibria
are reached. Thus, at t ¼ 5, population sizes may be almost at
equilibrium for high harvesting intensities or still farer to reach it
for lower intensities.

4. Concluding remarks

In the existing single-species modeling literature, fragmenta-
tion of the favorable region is usually found to be detrimental for
population survival. On the other hand, recent empirical studies
show that fragmentation may have positive or negative effects, and
that positive effects occur more often.
Please cite this article in press as: Roques, L., Chekroun, M.D., Does rea
Complex. (2009), doi:10.1016/j.ecocom.2009.07.003
In her review paper on the topic Fahrig (2003) proposed two
reasons for negative effects of fragmentation of these favorable
regions. Firstly, favorable patches are too small to sustain a local
population, and secondly, the total perimeter of the favorable region
is large, leading to increased transfer rates into the unfavorable
regions. She also proposed several reasons for positive effects of
fragmentation. Among these reasons, smaller distance between
patches, higher immigration rates into the patches (see Grez et al.,
2004) and positive edge effects for some species are evoked.

In our work, based on single-species reaction-diffusion models
with harvesting terms, we have captured both positive and
negative effects of fragmentation of the favorable region, inter-
preted here as a protected region.

Firstly, for large harvesting terms, we found that aggregated
configurations of the protected region leadtohigher populationsizes,
and higher yields than fragmented configurations. In that sense, our
results are not contradictory with previous modeling results: under
hostile conditions, the extinction risks are higher, and the chances of
persistence are increased on aggregated configurations. The reasons
ction-diffusion support the duality of fragmentation effect? Ecol.
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evoked by Fahrig for negative effects of fragmentation then become
paramount in our model at low population sizes.

On the other hand, fragmented protected regions lead to higher
population sizes when a constant number of individuals are
removed per unit of time in the unprotected region (constant-yield
harvesting). Furthermore, for fixed population sizes, the two
harvesting strategies we studied in this paper lead to higher yields
for fragmented configurations; cf. Fig. 4. Such higher yields may
stimulate harvesters to slow down, and may therefore be beneficial
for populations.

Sumaila (1998), through a compartment modeling approach,
showed that transfer rates between favorable and unfavorable
regions were of critical importance for understanding the role of
reserves, and the author emphasized the necessity of a more precise
modeling approach of the transfer rate function. Latter, Tischendorf
et al. (2005) found, via a simulation approach, negative effects of
fragmentation when the probability of individuals to go from the
favorable to the unfavorable region was high, and positive effects in
the opposite case with a high unfavorable to favorable boundary-
crossing probability. In our models, the diffusion coefficient is
spatially constant, and the boundary-crossing probabilities are
therefore equal in inward and outward directions. However, net
transfer rates from favorable to unfavorable regions depend on the
geometry of the protected regions, and on the relative population
densities inside and outside the favorable regions. Indeed, indivi-
duals moves are driven by random diffusion, and Green’s formula
(see e.g. (Evans, 1998)) implies that the instantaneous population
flux from the protected region to the harvested one is

FluxProtected region!harvested region ¼ �D

Z
G

@u

@n
ds;

where G denotes the boundary of the protected region, and @u=@n

is the outward gradient in population density observed on this
boundary. Our work shows that both the geometry of the protected
regions, and the relative population densities inside and outside
the favorable regions interact to give negative effects of
fragmentation for high harvesting terms, i.e., when the contrast
between protected and harvested areas is strong, and positive
effects for less contrasted environments.

In multi-species models, fragmentation per se can alter
interactions among species. As reviewed by Ryall and Fahrig
(2006), predator–prey models predict varying effects of fragmen-
tation on equilibrium densities of predator and prey populations,
depending on the specific assumptions of these models. In this
paper we have demonstrated that single-species reaction-diffusion
models with removal terms can support relative effects of
fragmentation per se. The methods and results could serve as a
first step to bridge the gap between empirical work and modeling,
for reaction-diffusion as well as other single-species models.
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