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Abstract

In data assimilation for a system which evolves in time, one combines past and
current observations with a model of the dynamics of the system, in order to improve
the simulation of the system as well as any future predictions about it. From a
statistical point of view, this process can be regarded as estimating many random
variables, which are related both spatially and temporally: given observations of
some of these variables, typically corresponding to times past, we require estimates
of several others, typically corresponding to future times.

Graphical models have emerged as an effective formalism for assisting in these
types of inference tasks, particularly for large numbers of random variables. Graph-
ical models provide a means of representing dependency structure among the vari-
ables, and can provide both intuition and efficiency in estimation and other inference
computations. We provide an overview and introduction to graphical models, and
describe how they can be used to represent statistical dependency and how the re-
sulting structure can be used to organize computation. The relation between statis-
tical inference using graphical models and optimal sequential estimation algorithms
such as Kalman filtering is discussed. We then give several additional examples of
how graphical models can be applied to climate dynamics, specifically estimation
using multi-resolution models of large–scale data sets such as satellite imagery, and
learning hidden Markov models to capture rainfall patterns in space and time.
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1 Introduction

This paper provides a tutorial introduction to graphical models in the broad
context of geoscientific data analysis. Graphical models provide a graph-theoretic
framework for representing dependencies among sets of random variables as
well as general purpose algorithms for inference and estimation. The paper
focuses in particular on how graphical models can be used as a general repre-
sentation for a broad class of state–space models.

1.1 Background and Motivation

Data assimilation can be viewed as the procedure by which observed data
measurements are mapped into the space of a dynamical model, in order to
update (or improve) the model’s estimate of the state–space vector. An esti-
mate of the state vector xt−1 at time t − 1 is propagated forward in time by
the dynamical model to yield an estimate xt at time t, which is updated using
observed data measurements yt at time t. This approach can then be applied
recursively to propagate information about the updated state forward to time
t + 1, combine this with data measurements obtained at time t + 1, and so
on. In atmospheric and oceanic applications the data observations are usually
spatial in nature, the state vector represents the true (but unknown) state
of the atmosphere and ocean in the model space, and the dynamical model
captures the physics of how the state evolves over time. Given the inherent
uncertainties in the problem (such as measurement noise and errors due to
approximations in the physical model) it is often worthwhile to adopt a prob-
abilistic viewpoint and work with the conditional probability distribution 1 of
the state at time t given all observations up to time t, denoted p(xt|y1, . . . , yt)
(e.g., see [1–4]). This tracking of (or monitoring) of the state vector over time
is known as filtering in inference terminology.

For models with linear dynamics and Gaussian noise the probabilistic com-
putations for sequential state estimation can be performed using the Kalman
filter recursions [5–7]. The Kalman filter model can be represented by a graph-
ical model that depicts the evolution of the model state vector xt according

1 We will abuse notation slightly by using p(xt) to indicate either the probability
distribution of xt when xt takes on a continuous set of values, or the probability
mass function of xt when it takes on one of a discrete set of values.
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Fig. 1. The Kalman filter operates on a graphical model called a hidden Markov
chain (the xt state variables form a Markov chain that is unobserved or hidden), in
which the observations yt at each time t are used to update the current estimate of
the model state xt. Shaded nodes indicate variables with observed values.

to the model dynamics, together with the updating by observational data yt

(see Figure 1). The graphical model shows dependencies (and independencies)
between variables, here between a dynamical model’s evolution and available
observations, as a basis for inference.

While linear and Gaussian models are a useful starting point, they have well–
known limitations when applied to real data assimilation problems in the
atmospheric and oceanic sciences. The main limitations are dynamical and
computational: first, planetary flows, atmospheric and oceanic, are nonlin-
ear [8–10], and hence give rise to non-Gaussian processes; second, the number
of variables necessary to simulate these flows in detail is huge, and the re-
quirement of computing the evolution of the covariance matrices is therefore
prohibitive.

Efforts to overcome the dynamical obstacles include methods such as the ex-
tended Kalman filter to capture non-linearities [11–15] and ensemble meth-
ods to characterize non-Gaussian distributions (e.g., [16,2,17,18]). Methods to
overcome the computational difficulties arising from large covariance matrices
involve low–rank and partitioning approximations [19,20], as well as paral-
lelization techniques [21,22]; reviews include [23,24]. At the same time, data
assimilation is perceived more and more as a powerful strategy in advancing
understanding, simulation and prediction in the earth sciences as a whole [25]
and beyond [26].

Data assimilation in the atmospheric and oceanic sciences is widely used for
the initialization of numerical weather prediction (NWP) models with ob-
served data. However, its relevance within climate science is much broader.
As pointed out by Stephenson et al. [27], the observable variables that we are
interested in predicting, like precipitation at a particular location, are not the
same mathematical quantities used by NWP models to predict weather or by
general circulation models (GCMs) to simulate climate. These models resolve
large–scale climatic fields spectrally or on a grid. Thus, the state vector of the
observation state space is different from the state vector of the GCM state
space. The latter is the one addressed by traditional data assimilation, while
the former is one we are often more interested in, if we want to make use of
the climate forecasts. Stephenson et al. [27] coin the term forecast assimila-
tion for the procedure of mapping GCM predictions into the observational
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space. They demonstrate the mathematical duality with traditional data as-
similation, used to map observations into the model state space to initialize
the NWP model or GCM and make a weather or climate prediction. Forecast
assimilation refers to the calibration and tailoring of GCM forecasts, to the
appropriate real–world space, which may vary by context.

The graphical models described in this paper are often motivated by the de-
sire to build simplified probabilistic models of this observed state space, and
tend to be characterized by simple assumptions, rather than sets of partial
differential equations. The real–world observational space consists of data in
ever increasing quantities, where identification of dependencies between vari-
ables is a key step toward producing a concise description of the data, and
one amenable to prediction. Graphical models provide a principled way to
analyze such dependencies and incorporate them into predictive models. For
example, a Markovian assumption in time, while highly simplifying, yields a
surprisingly good description of daily time dependence of rainfall occurrence,
as illustrated in one of the examples in this paper.

The real–world observational space is not limited to meteorological variables.
In the application of forecasts to climate–related risk management in agricul-
ture or health, for example, the space of interest could be malaria incidence
over a particular region [28]. Dependencies between disease and meteorolog-
ical variables would need to be isolated and modeled, perhaps in terms of
GCM model outputs. The assimilation of these GCM outputs together with
observed data into a probabilistic model of disease incidence is a problem in
data assimilation, for which the structure of the model may be empirical, or
involve physically–based equations.

1.2 Graphical Models

The focus in this paper is somewhat different to that of traditional work
in data assimilation in that we are interested in a broader and more gen-
eral characterization of the nature of probability computations (or inference)
involving an observed sequence of measurements and a parallel unobserved
state–sequence. Important inference goals include not only the estimation of
hidden (unobservable) random variables xt such as the complete model state,
whether in the past (called smoothing), present (filtering), or future (predic-
tion), but also goals such as the prediction or simulation of the observable
variables yt in the future (which by definition have not yet been observed).
The paper’s motivation arises from questions such as “how could we add more
complex (e.g., non-Markov) dependencies into a state–space model?”, “what is
the appropriate systematic approach to handling missing data observations?”,
and “how should parameter estimation be performed in such models?”.
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In this context, the goal of the paper is to provide a tutorial review of graphical
models, a general framework for representing and manipulating joint distrib-
utions defined over sets of random variables [29–34]. Graphical models have
been adopted in recent years across a wide variety of application areas, includ-
ing genetics [35,36], error–correcting codes [37], speech processing [38], image
analysis [39–41], and computational biology [42,43]. Indeed, graphical models
(in the form of Markov random fields) have been used in data assimilation
problems as well, for example [44]. These applications have in common the
fact that they involve complex models with large numbers of random vari-
ables. However, despite the typically large numbers of variables involved, the
dependency relations among these variables are often highly structured. This
structure can in turn be leveraged by the graphical model framework to yield
highly efficient computational algorithms for making inferences about unob-
served quantities given observed measurements. Both the representational as-
pects of graphical models (how to efficiently represent complex independence
relations) and the computational aspects (how to use the independence rela-
tions to infer information about state variables given data) make graphical
models a potentially valuable tool in the computational geoscience toolbox.

To motivate the rest of the paper we briefly review the main aspects of graphi-
cal models below, leaving a more detailed description to subsequent sections in
the paper. The principles that underlie graphical models can be summarized
as follows:

• each variable of interest is associated with a node (vertex) in a graph. More
generally, nodes can be associated with sets or vectors of random variables
when this is appropriate. For example, in Figure 1, each of the xt nodes
could represent d variables at time t in a d-dimensional state vector xt, and
similarly the yt nodes could also represent a multidimensional variable.

• edges in the graph represent dependencies between random variables in
the joint distribution model; or, conversely, absence of edges in the graph
represent conditional independence relations among random variables;

• the joint probability model can be factored into products of local functions
defined on nodes and their immediate neighbors;

• problems involving computation of quantities related to the joint probability
model can be profitably cast within a graph–theoretic framework. Such
computations include calculation of conditional probabilities or expectations
of variables of interest given observations of others. In particular, as we will
show later in this paper, the underlying structure of the graph is closely
related to the underlying computational complexity of an inference problem.

Thus, a graphical model consists of two parts: (1) a graph structure (nodes and
edges) such that the connectivity of the graph characterizes the dependency
relations in an underlying probability model, and (2) functions defined on local
neighborhoods of nodes on the graph that parameterize local components of
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Fig. 2. Two simple examples of graphical models.

the overall joint probability model.

1.3 Examples of Graphical Models

As a simple example, consider three random variables that form a Markov
chain such that p(x1, x2, x3) = p(x1)p(x2|x1)p(x3|x2). We leave the functional
forms of p(x2|x1), etc., unspecified at this point and focus instead on the struc-
ture of the model. The associated graphical model has 3 nodes, one for each
variable, and the graph structure is a chain (Figure 2(a)): x1 and x2 have
direct dependence, as do x2 and x3, and x1 and x3 are conditionally inde-
pendent given x2. If we want to compute the probability of x3 given a par-
ticular value for x1 we can do so by marginalizing 2 over x2, i.e., p(x3|x1) =∫

p(x3, x2|x1)dx2 =
∫

p(x3|x2)p(x2|x1)dx2. In terms of the graph we can view
this computation as representing information flowing from x1 through x2 to
x3, a graphical interpretation of the well–known recursion for updating prob-
abilities in a Markov chain.

For the most part, we shall keep the interpretation of these variables xi some-
what abstract, with specific examples in Section 4. These variables may rep-
resent quantities related by time, space, or both, and may be scalar or vector-
valued. In general, there is a trade-off between graph complexity and the
dimensionality of the variables (see Section 3.3).

Consider now the more complex model in Figure 2(b), a graph that is more
tree-like in structure (i.e., it cannot be arranged in a linear fashion, but also
does not contain any loops, or cycles). We can represent the joint distribution
for this model as a product of local factors, such as,

p(x1, x2, x3, x4, x5) = p(x5|x3)p(x4|x3)p(x3|x1)p(x2|x1)p(x1). (1)

Now consider, for example computing p(x5|x1), i.e., the probability distribu-

2 Of course, if x2 is discrete–valued, this integration is simply a sum.
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tion for x5 conditioned on a specific value for x1. By the law of total probability,

p(x5|x1) =
∫∫∫

p(x2, x3, x4, x5|x1)dx2dx3dx4.

In this form this equation requires integration over the 3-dimensional space
x2, x3, x4—more generally, if there were k variables in the model, we would
have to integrate over a (k− 2)-dimensional space to compute p(x5|x1). How-
ever, it is clear that we can use the structure of the graph to reduce the
amount of computation that is needed: specifically, by using the conditional
independence relations that are implicitly defined by the graph structure (and
by Equation (1)) we get

p(x5|x1) =
∫∫∫

p(x2|x1)p(x3, x4, x5|x1)dx2dx3dx4

=
∫∫ [∫

p(x2|x1)dx2

]
p(x5|x3)p(x4|x1)p(x3|x1)dx3dx4

=
∫

p(x5|x3)p(x3|x1)

[∫
p(x4|x1)dx4

]
dx3

=
∫

p(x5|x3)p(x3|x1)dx3

which only requires a 1-dimensional integration over x3. Note that while we
computed here the conditional distribution p(x5|x1) (by marginalization over
the other unobserved random variables), we could instead have computed
other quantities of interest about x5 conditioned on x1, such as the conditional
mean or the conditional mode. The same type of factorization used above
to compute a conditional density can also be leveraged to derive quantities
such as conditional means or modes in an efficient manner. We will refer to
these types of computations (whether computing distributions, expectations,
modes, etc.) as inference. A key point is that inference algorithms can directly
leverage structure in the underlying dependency graph for the purposes of
efficient computation.

In the simple example above it is visually intuitive from the structure of the
graph in Figure 2(a) that only a single variable x3 needs to be marginal-
ized to update x5 given x1. However, when there are many variables in the
problem (for example thousands or even millions) and they involve complex
graph structures (such as various forms of chains, tree structures, and even
graphs with cycles) it is not necessarily obvious a priori (1) how to derive a
computationally–efficient inference scheme, or (2) whether an efficient compu-
tational scheme even exists.

As we will illustrate later in the paper, the framework of graphical models
allows to answer both of these questions in a general manner. The structure
of the underlying graph provides the answer to the second question: generally
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speaking, graphs without cycles lead to very efficient inference schemes. For
graphs with cycles the situation is more complex, but sparsity (having fewer
edges in the graph) helps—the sparser the graph the less computational effort
is generally required to perform inference. The impact of cycles and sparsity on
inference algorithms are discussed more fully in Section 3.3. The first question,
how to find an efficient computational scheme given a graph (if one exists), is
straightforward for graphs without cycles, and again, for graphs with cycles
tends to be easier when the graph is sparse.

1.4 Outline of the Paper

To orient the reader, we give a short outline of the sections which follow.
Section 2 begins with a tutorial discussion on how graphical models provide a
general framework for efficiently representing dependency relations among sets
of random variables. Section 3 then builds on these ideas to show how inference
calculations can be performed that take advantage of the underlying graphical
structure in a model. In Section 4 we illustrate these ideas in the context of
two applications of graphical models to real–world data, involving assimilation
of ocean data using tree–structured models, and modeling and simulation of
station precipitation data using hidden Markov models. Section 5 concludes
the paper with a brief discussion and summary.

2 Graphical Models as a Representation Language for Sets of Ran-
dom Variables

Graphical models provide a convenient framework for representing structure
within a probability distribution over a collection of random variables. In
particular, for a graph G = (V , E) we associate the nodes V with the random
variables of interest, and use the edges E to indicate the factorization of their
distribution. This factorization, or decomposition of the joint distribution over
all variables into a product of smaller functions, can then be used to organize
the computations required to perform inference, e.g., estimating the likely
values of some variables given observations of others.

Since each node s is associated with a random variable xs, we will frequently
make no distinction between the two. Additionally, we can correspond sets of
nodes with their (collection of) random variables, so that for any set A ⊆ V
we have xA = {xs : s ∈ A}.
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xA xB xC

Fig. 3. Graph separation indicates conditional independence. Since every path be-
tween sets A and C passes through B, we have that the distribution factors as
p(xA, xB, xC) = p(xB)p(xA|xB)p(xC |xB).

2.1 Markov Random Fields

Graphical models may be formulated in any of several closely related ways. We
shall restrict our attention to undirected graphical models, specifically Markov
random fields, in which we make no distinction between the edge (s, t) and
the edge (t, s). If (s, t) ∈ E , we say that s and t are adjacent, and those nodes
which are adjacent to t are called its neighbors, denoted Γt ⊆ V .

It is also possible to define graphical models using directed edges (e.g., Bayes
nets [30]), in which case many of the same (or similar) results hold as for
undirected graphs, though there are some minor differences. For example,
directed graphs are sometimes better able to represent causative relationships,
while undirected graphs may be better able to represent purely correlative
relationships. However, it is easy to convert any directed graphical model into
an undirected one, although unfortunately some of the useful structure may
be lost in the process [29,45].

The relationship between the structure of the joint distribution p(·) over all
variables xV and the graph G is succinctly described by a Markov property—
the distribution p is said to be Markov with respect to G if separation within
the graph implies conditional independence in the distribution. To be precise,
let A,B, C ⊂ V be three sets of nodes, and xA, xB, xC be the random variables
associated with each set. Then, if every path, or sequence of non-repeating,
adjacent nodes (i.e., v1, . . . , vL with (vi, vi+1) ∈ E and vi 6= vj for i 6= j) from
any node in A to any node in C pass through at least one node in B (see
Figure 3), we require the joint distribution to factor as

p(xA, xB, xC) = p(xB)p(xA|xB)p(xC |xB),

i.e., that the variables xA and xC are conditionally independent given the
variables xB.

Given a factorization of p(·), it is easy to guarantee this Markov property with
a simple constructive procedure for G, by connecting each pair of nodes by an
edge if their associated random variables are both arguments to a common
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factor 3 . Turning this statement around, we have that given a graph G, p(·)
is Markov with respect to G if p(·) can be written as a product of functions
defined on the cliques, or fully–connected subsets of nodes, as

p(xV) =
∏

C∈C
ψC(xC) (2)

where C is the set of all cliques in G and the ψC are non-negative functions
called potentials. Moreover, when p(·) is strictly positive (as, for example, in
jointly Gaussian models) the form (2) is a necessary condition as well [47].
Interestingly, for jointly Gaussian models, the structure of the graph G is
echoed in the structure of the inverse of the covariance matrix of xV , in the
sense that the (s, t)th entry of this matrix is non-zero if and only if (s, t) ∈
E [31,48,44].

Thus, the graph G specifies a factorization of p(·), while the potential functions
ψ define the terms of that factorization. To illustrate this more clearly, we
examine a Gaussian auto–regressive process (whose graphical model is a simple
Markov chain) in Section 2.3. First, however, we describe the important sub-
class of graphical models formed when G is required to be a tree (and of which
the Markov chain is a member).

2.2 Tree–Structured Graphical Models

It turns out that many probabilistic and statistical operations are greatly
simplified when the graph structure associated with the random variables
possesses no cycles. Specifically, a cycle in G is any non-trivial path which
begins and ends at the same node. If a graph G contains no cycles, it is called
tree–structured 4 .

Tree–structured graphs have a number of nice properties which we shall exploit
in later sections. For example, if G is tree–structured, then each pair of nodes
s and t are joined by a unique path (if any such path exists), and thus by the
graph separation property, xs and xt are conditionally independent given any
of the variables along this path. Additionally, the cliques C of a tree–structured
graph consist solely of single nodes and pairs of nodes, so that each term in (2)

3 In some graphical models these “factors” of the joint distribution are explicitly
represented in the graph as additional nodes; see, e.g., factor graphs [46]. How-
ever, for most graphical models (including those considered here) the factors are
associated implicitly with sets of edges in the graph.
4 If G is connected, i.e., there is a path between every pair of nodes s and t, it is
called a tree; if not, it is called a forest (a collection of trees). Since the distinc-
tion is not important for statistical graphs, we refer to both cases alike as “tree–
structured”.
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is a function of at most two variables. We use this fact to write each ψC in (2)
as either ψs(xs) for some s ∈ V or ψst(xs, xt) for some (s, t) ∈ E .

Finally, any tree–structured graph can be used to provide a partial ordering
of its nodes. Designating an arbitrary node s in the graph as the root, we can
designate its neighbors t ∈ Γs as its children (s is similarly called the parent
of t), the neighbors of each t except s (Γt \s) as the children of t, and so forth.
Nodes which have no children are called leaf nodes of the graph.

These properties make inference in tree-structured graphs relatively efficient.
In particular, in Section 3.2 we shall see how the ordering defined by parents
and children can be used to construct efficient schedules of computation in
the graph, while path uniqueness allows us to easily construct compact (low–
dimensional) sufficient statistics for the computations.

2.3 Markov Chains

To see how a graphical model can be specified in practice, we examine the
familiar example of a linear, auto–regressive state space model with Gaussian
noise. In particular, let us define a collection of (possibly vector–valued) ran-
dom variables by the recursion

xt+1 = Axt + wt

yt = Cxt + vt
(3)

for t in some fixed interval {0, . . . , T}, and where the quantities wt and vt

are samples of zero–mean white Gaussian noise with covariances Q and R
(respectively) and the uncertainty on the initial vector x0 is also Gaussian with
mean µ0 and covariance Σ0. As is common, here the variables xt represent a
“hidden” state of the system which can only be observed indirectly through
the quantities yt.

It is well–known that for such a state–space model, the variables {xt} for all
t form a Markov chain—specifically, the joint distribution factors as

p(x0, y0, . . . , xT , yT ) = p(x0)p(y0|x0)
T∏

t=1

p(xt|xt−1)p(yt|xt) (4)

We can graphically represent this structure by associating open circles with
the hidden random variables xt and filled circles with the observed random
variables yt, connecting by an edge each pair of variables if they are related
by one of the terms in (4), as described previously. This procedure results in
the same graphical model depicted in Figure 1.

11



From this graphical model, the graph separation condition makes it easy to
see a well–known property of Markov chains, that given the state xt1 at some
time t1, the “past” and “future” states are conditionally independent:

p(xt0 , xt1 , xt2) = p(xt0|xt1)p(xt1)p(xt2|xt1) where t0 ≤ t1 ≤ t2

since (in the graph) any path from xt0 to xt2 must pass through the node
associated with xt1 .

As exhibited by (4), we could specify the potential functions ψ in terms of
conditional distributions. However, this choice is not unique—for example, we
could also choose the “symmetric” form

p(x0, y0, . . . , xT , yT ) =
T∏

t=0

p(xt, yt)
T∏

t=1

p(xt, xt−1)

p(xt)p(xt−1)
. (5)

In fact, there are many equivalent ways to specify the potentials ψ (in the
sense that both represent the same joint distribution p). Different choices
may affect the interpretation of the intermediate quantities computed during
inference (see, for example, Section 3.2.1), but do not alter the final results.

3 Inference in Graphical Models

It turns out that the structure of the graphical model G can be used to cre-
ate efficient methods of performing inference over the collection of random
variables. Typically, of course, we are primarily interested in computing an
estimate of the values of any unobserved variables given the observations.
Typical estimates include, for example, the maximum a posteriori (MAP)
estimate, the maximum posterior marginal (MPM) estimates, and the least–
squares (LS) estimates of xs. From a Bayesian point of view we would like
not only estimates of the xs but also some measure of uncertainty on those
estimates, i.e., we would prefer to have the distribution of likely values for xs,
rather than just the most likely one.

These goals fall generally into two tasks—maximization of the joint likelihood
function (MAP), and marginalization (MPM). It turns out that both these
operations may be performed quite efficiently in tree–structured graphical
models, using quite similar algorithms. Before discussing the more general
case, however, we consider the special case of the Markov chain of Section 2.3,
for which optimal inference may be performed using the Kalman filtering, or
Rauch–Tung–Striebel (RTS) smoothing, algorithms.

A third possible inference goal, which we do not explore in detail, is to ob-
tain samples from the joint distribution given the observed values. In this
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problem as well, the graph structure plays a similar role, determining the
complexity of the procedure and enabling one to design both exact and ap-
proximate sampling methods which operate using the graph structure. These
samples can then be used to provide Monte Carlo estimates of other quantities
(for example, means, variances, and other expectations). For more details, see
e.g., [49,50].

3.1 Kalman Filtering and Smoothing

In the system described by (3), it is well–known that optimal inference on the
hidden variables xt given a collection of past observations can be accomplished
using a recursive estimation procedure called the Kalman filter [5]. Specifically,
the Kalman filter recursively computes the quantities

x̂t|t−1 = Ax̂t−1|t−1 x̂t|t = x̂t|t−1 + Kt(yt − Cx̂t|t−1)

Pt|t−1 = APt−1|t−1A
T + Q Pt|t = (I −KtC)Pt|t−1

(6)

where I is the identity matrix, AT is the transpose of A, and Kt is the Kalman
filter gain, given by

Kt = Pt|t−1C
T(CPt|t−1C

T + R)−1 (7)

taking initial conditions P0|−1 = Σ0 and x̂0|−1 = µ0. Then, x̂t|t provides the
best estimate of xt given the observations up to time t under a wide variety of
criteria (including the MAP, MPM, and LS criteria mentioned previously). An
important point here is that the quantities x̂t|t and Pt|t are sufficient statistics
of the past observations {y0, . . . , yt} for computing estimates or expectations
over future states such as xt+1. In fact, these statistics are simply the para-
meters of the posterior marginal, i.e.,

p(xt|y0, . . . , yt) = N (xt ; x̂t|t, Pt|t) (8)

where N (x ; µ, Σ) is a Gaussian distribution with mean µ and covariance Σ.

Efficient estimates of xt given all observations (i.e., smoothing) can be ac-
complished using a two–pass version of the Kalman filter, typically called the
Rauch–Tung–Striebel (RTS) smoother [6]. One way to understand this com-
putation is that (assuming A is invertible) we may also run a second Kalman
filter backward in time, so that

x̂−t|t+1 = A−1x̂−t+1 x̂−t|t = x̂−t|t+1 + K−
t (yt − Cx̂−t|t+1)

P−
t|t+1 = A−1P−

t+1|t+1(A
−1)T + Q P−

t|t = (I −KtC)P−
t|t+1

(9)

with “initial” conditions x̂−T |T+1 = 0 and (P−
T |T+1)

−1 = 0. Notice that (like the

initial condition) the matrices P−
t|t+1 produced by this recursion will not nec-
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essarily be positive definite, and thus may not correspond to the covariance of
a valid Gaussian density. In fact, the quantities x̂−t|t+1 and P−

t|t+1 are the para-
meters of the likelihood function p(yt, . . . , yT |xt) (which also has a quadratic
form similar to the Gaussian distribution, but is not necessarily normalizable).
The best estimate of xt and its posterior marginal are then given by

p(xt|y0, . . . , yT ) ∝ p(xt|y0, . . . , yt)p(yt+1, . . . , yT |xt)

∝ N (xt ; x̂t|t, Pt|t)N (xt ; x̂−t|t+1, P
−
t|t+1)

i.e., a product of the quantities computed in each of the two passes.

The Kalman filter uses the (chain) structure of G to derive a method of in-
ference which is efficient (linear) in the number of variables T (the length of
the Markov chain). However, if the dimension d of the individual state vari-
ables xt is high, each step of the Kalman filter may remain computationally
difficult, since (6) involves the multiplication of matrices of size d × d. Since
the dimension of the variables in atmospheric and ocean modeling problems
may be 106 or larger, the cubic cost of this multiplication may be intractable.
In fact, for such high dimensions even the quadratic cost of representing the
covariance matrices such as Pt|t and P−

t|t+1 may be impossible. In this case, the
Markov chain structure does not in itself yield an efficient solution. It may,
however, be possible to treat each dimension of xt as an individual random
variable to expose and exploit further independence structure in the graph (see
Section 4.2). For the Gaussian case, the dependence structure encompassed in
the covariance matrix can often be utilized to speed up the matrix inversion
(e.g., [51,48]). In general, the issues of structure and dimensionality are closely
related and together determine the complexity of inference (see Section 3.3).

As mentioned previously, the Kalman filter and RTS smoother can be thought
of as simultaneously computing the maximum a posteriori (MAP) estimates
of each xt given observations {yt}, and computing the posterior marginal
distributions p(xt|y1, . . . , yT ). Although described for the Markov chain, the
Kalman filtering algorithm generalizes relatively easily to jointly Gaussian
distributions defined over any tree–structured graphical model. However, when
the random variables are not jointly Gaussian, these inference goals are not in
general equivalent, and thus are not both achieved using the same algorithm.
However, each can be performed using algorithms which are similar in spirit
to the Kalman filter. For example, for models with discrete–value unobserved
variables in the Markov chain (often called a hidden Markov model [38]), the
inference is similarly performed in a two–pass forward–backward manner [52].
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3.2 Inference on Tree–Structured Graphical Models

The Kalman filter and RTS smoother can be viewed as special cases of the
more general inference algorithms alluded to previously. It turns out that sim-
ilarly efficient forms can be derived for any tree–structured graph, in essence
taking advantage of the partial ordering of variables defined by the tree.

One useful way of framing these inference algorithms is as a set of iterative
message–passing operations. In particular, each node t computes a message
mts to send to its neighbor s, where mts is a function of the messages re-
ceived by the other neighbors of t, Γt \ s. On a tree, this iterative procedure
is guaranteed to converge in a finite number of steps. In fact, there exists an
efficient order in which to compute these messages, so that each message is
only computed once.

Specifically, beginning with the leaf nodes, we compute messages to parents
(an upward sweep through the tree), with each node computing the outgoing
message to its parent only after it has received messages from all its children.
Then, beginning with the root node, we compute messages to children in a
similar, downward sweep through the tree. This ordering can be thought of
as a generalization of the forward and backward sweeps used in smoothing on
a Markov chain (Section 3.1). We first describe how the operations of mar-
ginalization can be performed in this manner, then describe the modifications
necessary to perform joint maximization.

3.2.1 Marginalization

The posterior marginal distributions of the variables at each node can be
computed efficiently on a tree using a message–passing algorithm (sometimes
called the sum–product algorithm), in which the outgoing message from t to
s is computed using the incoming messages from t’s other neighbors, as

mts(xs) = αts

∫

xt

ψ(xs, xt)ψ(xt)
∏

u∈Γt\s
mut(xt)dxt. (10)

On a tree, the previously described ordering (upward from leaves to root, then
downward from root to leaves) can be used to compute these messages in a
well-posed manner. Each message mts is a function of the state variable xs,
defined on the same domain as xs itself; it may sometimes be interpreted as a
conditional distribution or a likelihood function, as illustrated by the example
later in this section.

The posterior marginal at xt is then given by the product of all incoming
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Fig. 4. (a) Given a tree–structured graphical model with observed variables {yt}, or
(b) an equivalent graphical model of only the hidden variables {xt}, the messages
required for inference can be computed efficiently using a two–pass algorithm. Tak-
ing x1 to be the root node, (b) we compute upward messages m32 and m42, then
message m21, followed by (c) a downward pass, computing m12 followed by m23 and
m24.

messages,

p(xt|{ys}) = αtψ(xt)
∏

u∈Γt

mut(xt). (11)

Both definitions (10) and (11) contain a scalar proportionality constant α.
Although the posterior (11) should be normalized so as to integrate to unity
(making it a valid probability distribution), the constants αst are essentially
arbitrary, and chosen to avoid numerical underflow in the computations, often
again by normalization. However, it is important to note that in the most
general case, the individual messages mts may not even be finitely integrable
(for example, the likelihood functions computed in the RTS smoother). For
Gaussian uncertainty, the messages have a convenient closed form (an ex-
ponentiated quadratic), while in discrete-valued systems the messages are
finite–length vectors and thus may always be normalized. In more general
systems, one may use Monte Carlo techniques [50] to approximate the in-
tegrals involved. For Markov chains, examples include particle and ensemble
filtering [53,54], and similar methods can also be applied to more general graph
structures [55].

To see how this procedure works, let us consider the graph in Figure 4, and
compute the posterior marginal distributions for each xt. Although our original
graph, shown in Figure 4(a), contains both hidden variables {xt} and observed
variables {yt}, we will first convert it to a simpler graph (Figure 4(b)) of only
the hidden variables. In this new graph, each potential function ψt(xt) is an
implicit function of the observation yt (whose value is known). Specifically, let
us choose to parameterize the potential functions as conditional distributions,
so that the root has a single–node potential given by ψ(x1) = p(x1, y1), the
pairwise potentials are conditionals, e.g., ψ(x1, x2) = p(x2|x1), and the re-
maining single–node potentials are the observation likelihoods, e.g., p(y2|x2).

By Bayes’ rule, the posterior marginal of x1 is

p(x1|{yt}) = p(x1, {yt})/p({yt}).
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The denominator p({yt}) is simply a constant (the data likelihood); then,
using the law of total probability and the factorization implied by the graph
structure we have

∝
∫∫∫

p(x1, y1)p(x2|x1)p(y2|x2)p(x3|x2)p(x4|x2)p(y4|x4)p(y3|x3) dx2dx3dx4.

By the distributive law, this is

= p(x1, y1)
∫

p(x2|x1)p(y2|x2)
(∫

p(x3|x2)p(y3|x3)dx3

) (∫
p(x4|x2)p(y4|x4)dx4

)
dx2

and applying the definition of the sum–product messages we have

∝ p(x1, y1)
∫

p(x2|x1) p(y2|x2) m32(x2) m42(x2)dx2

∝ p(x1, y1) m21(x1),

which matches (11). From this it is relatively easy to see that, like the backward
pass of the Kalman filter example in Section 3.1, the upward messages in this
graphical model are likelihood functions, e.g.,

m32(x2) ∝ p(y3|x2) m21(x1) ∝ p(y2, y3, y4|x1);

one can show similarly that the downward messages are conditionals, e.g.,

m12(x2) ∝ p(x2|y1) m23(x3) ∝ p(x3|y1, y2, y4)

Thus the messages mts(xs) provide sufficient statistics for each marginal com-
putation in the graph. Other choices of ψ, such as the symmetric potentials (5),
result in different interpretations of the messages mts, but still provide suffi-
cient statistics using precisely the same computational steps [56].

Higher–order posterior marginal distributions may also be estimated using
these sufficient statistics; for example, the posterior over two nodes s and t
with (s, t) ∈ E is given by

p(xs, xt|{yu}) ∝ ψ(xs)ψ(xt)ψ(xs, xt)
∏

u∈Γs\t
mus(xs)

∏

u′∈Γt\s
mu′t(xt). (12)

The resulting marginal distributions can be used not only to create estimates
of the xt, but for other inference goals as well; for example, to compute ex-
pectations over functions of the variables.

Finally, note that the same algorithm (specifically, the upward pass) can be
used to compute the likelihood of the observed data {yt}. In particular, recall
that the αts are arbitrarily chosen (typically for numerical convenience) and
that αt are chosen so as to normalize the posterior distribution. If we enforce

17



the choice αts = 1 in our example, we find that the product on the right–
hand side of (11) is the joint p(xt, {ys}), and thus the normalizing constant
αt is precisely the likelihood p({ys}). The same likelihood computation can,
of course, be accomplished by simply keeping track of the αts at each stage,
a process which (like many likelihood calculations) is often performed in the
log–domain for numerical reasons.

3.2.2 Maximization

The principle of the distributive law which underlies the sum–product algo-
rithm for marginalization can be extended to a general set of computations
which can be made efficient on a tree [57]. Another inference goal in this
category which is frequently of interest is to find a joint state x̂V which has
maximum posterior probability (the MAP estimate).

By replacing the integrals of (10) and (11) by a maximum over the space of xt,
we obtain an alternate procedure, called the max–product algorithm [30,58].
Instead of the posterior marginal distributions, this algorithm computes the
so–called “max–marginals” ρ(xt) over each variable xt, given by

ρ(xt) ∝ max
x′V\t

p(xt, x
′
V\t) (13)

and pairwise max–marginals ρ(xs, xt) defined similarly. (Note that the max–
product operations can equivalently be written in terms of log–probabilities,
in which case one obtains a “min–sum” algorithm.)

Using these quantities, it is a simple matter to find a joint MAP estimate
for each xt. To do so, we first compute the max–marginal at the root node
of the tree, which we denote x0 without loss of generality, by calculating the
upward messages of the max–product algorithm. Let x̂0 be any value which
maximizes ρ(x0). Now, proceeding downward through the tree, we compute
a MAP estimate of xt given the estimate of its parent xs by choosing any x̂t

which maximizes ρ(xt, x̂s).

Once again we see that in a tree–structured graph, exact inference can be
performed efficiently in two sweeps of a simple message–passing algorithm. The
max–product algorithm is in fact an example of dynamic programming [59],
and when the graph structure is a simple chain, becomes equivalent to the
well–known Viterbi algorithm [60].
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Fig. 5. Removing cycles from a graph. (a) Given a graph with cycles, one may (b)
group variables together to form (c) a new graph with no cycles, but higher–dimen-
sional variables associated with some nodes.

3.3 Inference Over Arbitrary Graph Structures

When the graphical model is not tree–structured, inference becomes somewhat
more difficult. In particular, the presence of cycles means that the messages
in Section 3.2 are no longer sufficient statistics: for any two variables xs, xu

within a cycle, no single other variable xt provides graph separation. One way
to perform inference in graphs with cycles is to first convert them into a tree–
structured graph via a process of variable augmentation, and then perform
inference on the new graph using the methods described previously.

To see how graph augmentation can be used to remove a cycle, consider Fig-
ure 5(a). In this example, we have a graph with five random variables, four of
which form a single cycle. If we define new random variables by concatenating
x3 with each of the other variables in the loop (Figure 5(b)), the independence
structure of the new variables allows us to obtain the graph in Figure 5(c),
which has no loops. In the original graph, x2 and x3 together were sufficient
to separate x1 and x4, and this is captured in the new graph by treating x2

and x3 jointly. By successively applying such a procedure, one may convert
any graph with cycles into a tree–structured graphical model [29].

However, this procedure comes at a computational price. Specifically, we have
increased the dimensionality of several of the random variables in our graph.
This means that the representation size of the potential functions and messages
in the new graphical model are larger, increasing the storage and computa-
tional costs accordingly. In jointly Gaussian models, this increase is modest
(since a d–dimensional covariance matrix is specified by d2/2 entries) but can
be unacceptable at sufficiently high dimensions; for discrete–valued random
variables, however, the increase is exponential (since the concatenation of d
binary random variables has 2d possible values) and can very quickly become
intractable.

Graphical models can also be used to define reasonable approximate alter-
natives when exact inference is deemed too computationally expensive. One
of the most popular methods, “loopy” belief propagation (or loopy sum–
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product), involves simply applying an iterative version of the sum–product
equations (computing a message mi

ts at iteration i in terms of its neighbor’s
messages mi−1

ut at the previous iteration) despite the presence of loops in the
graph [30]. Although this procedure does not necessarily converge to the cor-
rect estimates, and may in fact not converge at all, it has been shown to have
very good empirical performance in many applications [57,61], and a number
of methods with generally similar justifications have been developed [62–64].
Typically these algorithms perform well for graphs which are “close” to trees,
i.e., are sparse and have relatively long cycles.

3.4 Learning Graphical Models

We have thus far assumed that both the graphical model’s structure and
its potential functions have been completely specified; but in many practical
problems this is not necessarily the case. Often, either the functions ψ or both
ψ and the graph structure E are unknown a priori, and must be learned from
data.

In general, either learning task can be a formidable one. Specifically, the opti-
mal choice of which edges to include in G given, say, a constraint on the com-
plexity of inference in the resulting graph is NP-hard [65]. Given the structure
of the graph, learning the model parameters (as specified by the potential
functions ψ) remains a challenging problem. In general one resorts to local,
likelihood–based search methods such as iterative proportional fitting [66], in
which one performs a type of coordinate ascent by repeatedly optimizing each
potential function to match the observed data given all the other potential
functions.

However, once again the special case of tree–structured graphical models ad-
mits tractable solutions to both problems. Indeed, in any tree the maximum
likelihood choice of the potential functions ψ have a simple closed form solu-
tion, which can be written in terms of the observed distributions over pairs
of variables (either the conditional distributions as in (4) or in terms of the
pairwise and single–variable marginals as in (5)). Because of this, and the ease
of calculating likelihoods on a tree, it is also straightforward to select the op-
timal set of edges E such that G forms a tree. One may do so by following a
simple maximum–weight spanning tree algorithm, where the weights are given
by functions of the observed distributions over pairs of variables [67], as will
be illustrated in Section 4.2.

Occasionally, even these pairwise distributions are unavailable (as, for exam-
ple, in a hidden Markov model where the hidden state variables xt are never
observed), or the potentials ψ may be constrained to some limited parametric
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form. In these cases we can again perform likelihood based optimization of the
parameters of ψ. The expectation–maximization (EM) algorithm [68] is one
popular means of performing this optimization. EM is an iterative algorithm
which, in each step, first holds the parameters of ψ fixed and uses inference
to compute the posterior of the hidden variables, p({xt}|{yt}), then holds this
distribution fixed while maximizing the likelihood of the yt over the para-
meters of ψ. This process can be quite efficient, since the maximization step
frequently has a simple, closed form solution. By repeating this procedure, one
is guaranteed to find parameters of ψ which correspond to a local maximum
of the likelihood under very mild conditions.

If we take a more Bayesian approach to parameter estimation, we may wish
to determine not only the maximum likelihood setting of the parameters of
ψ but also a distribution over these parameters (which may be more useful
than a simple point–estimate). In this case, the parameters themselves can be
included in the graphical model. We can then perform inference about quanti-
ties of interest, including both parameters and state variables, by applying the
same algorithms to this graph. Parameter estimation, for example, becomes
a computation on this graph: we can marginalize over the hidden state vari-
ables to obtain either point estimates of the parameters (conditional means
or modes), or in a more Bayesian fashion compute posterior distributions over
the parameters. Since this estimation process is the same as performing in-
ference on a graph (a graph with nodes for both parameters and variables),
the same principles apply in terms of computational schemes: graphs without
cycles are straightforward and graphs with cycles become more complex, with
sparsity again playing a role. This can be regarded as a generalization of the
“augmented state vector” approach to parameter estimation, in which the un-
known parameters of the model dynamics or system noise are added to the
state vector in sequential estimation (and are typically assumed to evolve in
time in a very simple way, e.g., by staying constant in time [69,24]).

4 Illustrative Examples of Graphical Models

In this section, we provide two illustrative examples of how graphical models
have already been applied to atmospheric and climatological modeling. The
first example describes how multi-scale graphical models can be used to cap-
ture the interactions among very large numbers of Gaussian random variables,
such as might arise in satellite imagery. In the second example, we consider
how graphical models can be used to model spatial and temporal patterns of
rainfall observed at a collection of stations. In both cases, we shall see that
tree–like graphical models can be used to both represent statistical depen-
dency among the variables and perform the required inferences (estimation,
etc.) efficiently. Note that both examples below are intended to highlight how
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the concepts described earlier in the paper can be applied to observational
geoscience data—for more complete details on multi-scale graphical models
and their applications to geoscience data readers can consult [70], and [71,72]
for details on spatio-temporal graphical models applied to precipitation data.

4.1 Multi-Scale Tree–Structured Models

Multi-scale or multi-resolution models and algorithms have been used success-
fully in numerous application areas, including satellite [73], tomographic [74],
and natural image processing [75]. Graphical models provide one means of de-
scribing the statistical dependence relationships in multi-scale models which
enable efficient representation and computation even for high–dimensional
data. Here, we describe one example of how tree–structured graphical models
can be used to solve large–scale data interpolation problems.

Figure 6(a) shows an image of the sea–surface temperature measurements
recorded on a single day by the NASA MODIS/Aqua satellite [76]. Suppose
that we wish to recover an estimate of the temperature, at some reasonable
granularity (for example, the image in Figure 6(a) involves some 105 scalar
variables, one for each pixel). However, the available observation data are
extremely sparse (approximately 4000 observations total); the rest are com-
pletely unobserved due to the limited satellite path or the presence of cloud
cover. We wish to interpolate these few observations into an estimate of the
complete surface temperature (Figure 6(b)), and we may also wish to be in-
formed of our estimate’s reliability.

Of course, there exist many possible methods for interpolating the observed
data [77]; but the method on which we shall focus relies on treating the tem-
perature as a (large) collection of jointly Gaussian random variables, and ap-
plying a multi-scale model to lend structure to the covariance matrix and
inform us of how to perform optimal estimation efficiently within this model.
Note first, however, that the full, joint covariance matrix has ≈ 1010 entries,
and is therefore too large to represent explicitly, much less manipulate. By
using a graphical model, we can enforce a form of sparseness which gives both
an efficient representation and enables tractable inference algorithms.

We assume that the process which generated the temperature data in Fig-
ure 6(a) can be described using a simple multi-scale model, specifically (since
the data is two–dimensional) a quad-tree structure as shown in Figure 7(b).
This type of multi-scale model (see Figure 7) has been successfully applied to
the very similar problem of estimating sea–surface height using sparse satellite
imagery [73]. We associate the finest scale of the tree structure with the origi-
nal variables of interest (i.e., temperature), while the higher levels of the tree
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(a) (b)

Fig. 6. Estimating sea–surface temperature. (a) Given only sparse satellite obser-
vations, we would like to produce both (b) an interpolated image of temperature
estimates at each point.

(a) (b)

Fig. 7. Tree–structured multi-scale models. (a) A binary tree multi-scale model of a
one dimensional process x1 . . . x8, some of which have been observed (shaded nodes);
(b) a quad-tree model of a two dimensional process (such as an image), again with
partial observations.

are taken to be new variables representing the “state” of a broader (larger)
region which decouple the state of their children. For example, the root node
might be thought of as representing a kind of average global temperature, its
children as capturing deviations from this mean in each of the four quadrants,
and so forth at increasingly finer scales. The graph structure then represents
our belief that the child nodes are statistically independent given the parent’s
(higher–scale) state, and the potential functions ψ define a (scale–dependent)
amount of process noise. By choosing this noise level to increase geometrically
with scale, the process takes on a 1/f -like fractal self–similarity, similar to the
self–similarity observed in many real–world applications [70].

Specifically, for each node u and its parent node t, we take ψut = N (xu −
xt ; 0, σ2 · 22 sc(u)), where sc(u) is the scale of node u—zero for the finest-scale,
leaf nodes and increasing by one at each coarser scale—and σ ≈ .13 for state
measured in degrees Celsius. The observations themselves are assumed for this
example to be noise–free, producing only an interpolation effect rather than
smoothing. However, a more sophisticated model with observation noise is
equally feasible; this observation noise could be learned from the data or set
to the measured accuracy level of the sensing instrument (in this case, about
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.3◦ Celsius).

Given the tree-structured graphical model, it is then easy to perform optimal
estimation on the hidden variables (e.g., to compute MAP estimates of the un-
observed leaf (pixel) nodes in the model) using the two-pass inference process
described in Section 3.2. The computational cost of this algorithm is linear in
the number of variables to be estimated, versus (for example) the quadratic
or even cubic cost of directly manipulating the joint covariance matrix. These
MAP estimates can be used as an interpolated estimate of the temperature,
shown in Figure 6(b). Moreover, in a tree-structured model, it is equally easy
(linear in the number of variables) to also obtain estimates of our uncertainty
in these values (such as their marginal variance).

One issue that frequently arises for such multi-scale Markov trees is the pres-
ence of block artifacts along the edges of the quad-tree. We typically believe
that a process such as temperature should be spatially smooth, but our model
may not be—for instance, there are nodes which are spatially close, but are
far from one another in the tree, indicating that they will have relatively low
correlation (for example x4 and x5 in Figure 7(a)). A number of methods can
be used to fix this. For the images in Figure 6, we used the computationally
expedient technique of simply averaging the results of several such trees, each
with centers slightly shifted from the others [70]. Other, more sophisticated
approaches include creating a hidden mixture model of several such shifted
trees and performing inference over the mixture (producing a weighted aver-
age rather than a simple average); using a single tree with overlapping leaf
regions [78]; or introducing one or more extra edges (thus creating cycles in
the graph) [79].

Finally, imposing a simple statistical structure also makes it feasible to es-
timate the parameters of the model [80,70]. First, the statistical structure
imposed greatly reduces the number of parameters necessary for the model,
and additional prior knowledge can be brought to bear on how the parameters
are themselves interrelated. Secondly, the tree-structured nature of the graph
makes it easy to compute likelihoods and expectations (a necessary step in any
likelihood-based parameter estimation) using the same techniques of Section 3.

4.2 Hidden Markov Models for Precipitation Modeling

Our second example application illustrates how graphical models can be used
to model precipitation for networks of rain stations. Accurate representation
of both spatial and temporal dependencies in rainfall across a region can be
important for many hydrological applications. For example, simulations of
rainfall patterns can be used in conjunction with hydrologic models to estimate
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Fig. 8. Locations for stations in Southwestern Australia and their marginal proba-
bilities of rainfall (> 0.3mm) as indicated by the circle radii.

flood risk under current or future conditions. We can view both the creation
of a statistical model of rainfall and its initialization to current conditions
as an assimilation of historical precipitation data (and we shall also describe
how one may include other observed or simulated atmospheric measurements
such as sea surface temperature or wind vectors). We focus our discussion on
the models for precipitation occurrence, a multivariate binary process with
0 corresponding to the value of “dry” and 1 corresponding to “wet”. 5 For
this discussion, we assume that the precipitation data is collected at regular
intervals (daily) for a period of T days for a given set of d stations. We will
denote a d–dimensional binary vector of precipitation occurrence at day t
by yt = [y1

t . . . yd
t ], with each dimension yi

t corresponding to the observation
at station i. By building a model of the time series {yt}, we can predict or
simulate realistic rainfall patterns in the future.

4.2.1 Example: Precipitation Data from Southwestern Australia

We use a data set collected at d = 30 stations in Southwestern Australia
stations over the winter months of May–October, 1978–1992. 6 Figure 8 shows
the geographic locations of the stations and their average rainfall occurrence
probabilities.

Broadly speaking, any good model for rainfall patterns must capture both
spatial correlations between the individual stations at time t, and temporal
correlations between time t and t + 1. Due to the high dimensionality of the
observations (each yt can take on some 2d possible values), the distributions in-
volved are difficult to represent or manipulate directly. For example, modeling

5 Many models for rainfall amounts also use occurrence models as a first step.
6 This data set was first studied in [81] and provided to us courtesy of Dr. Stephen
P. Charles of CSIRO, Australia.
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Fig. 9. Graphical models for describing rain station dependencies. (a) conditional
independence,

∏
p(yi

t|xt) [83]; (b) all pairwise dependencies, so that p(yt|xt) is fully
connected [84,81]; (c) conditionally tree–structured, so that p(yt|xt) is tree–struc-
tured, but that structure depends on the value of xt.

of p(yt|yt−1) directly as a Markov chain would involve order of 22d parameters.
As before, by structuring such distributions using a graphical model we can
considerably reduce the complexity of such models and make the associated
computations tractable.

4.2.2 Modeling Temporal Dependencies

Let us first consider the temporal structure of the data. One way we can
create an efficient representation is to postulate the existence of a relatively
low–dimensional hidden state xt which captures the dependence of yt on its
past [82,81,83]. In particular, we can use a hidden Markov model (Figure 1) in
which the dimensionality of xt is much smaller than that of yt. This bypasses
the aforementioned problem of modeling p(yt|yt−1) directly and instead seeks
to capture temporal dependence via a lower-dimensional Markov chain defined
on the xt state variable. The hidden variable xt can be viewed as a “weather
state” representing general, temporally–localized conditions about the present.
This state might capture, for example, whether the present time is likely to
be very wet or very dry, or even indicate the likelihood of particular spatial
patterns.

Introducing the hidden state xt allows us to decompose the problem into
several, more manageable parts: (a) determine the temporal state transition
distribution p(xt|xt−1); (b) determine the graph structure, or factorization of

p(yt|xt) = p
(
y1

t , . . . , y
d
t |xt

)
describing the spatial distribution of rainfall at a

particular time t and conditioned on a particular state xt, and (c) learn the
parameters, ψ, of the distributions in parts (a) and (b) from observed data.

4.2.3 Modeling Spatial Dependencies

We next turn to modeling p
(
y1

t , . . . , y
d
t |xt

)
, the spatial distribution of rain-

fall patterns across stations, given the hidden state xt. Perhaps the simplest
possible graphical structure for the yi

t is to make them conditionally indepen-
dent given the state xt [83]. This type of model is depicted in Figure 9(a).
However, this model may be too simplistic as xt can capture only some of the
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dependence between pairs of stations (yi
t and yj

t ). Hughes and Guttorp [84,81]
suggest modeling all of pairwise dependencies via an auto-logistic model with
graph structure described in Figure 9(b). However, due to the dense nature of
the dependence, exact inference and parameter estimation for this model are
infeasible, and approximations are cumbersome and slow. An alternative ap-
proach is to learn a model with a sparse dependence structure for p (yt|xt). For
example, a tree structure is appealing since we can both perform inference and
estimate the parameters efficiently. While it seems unlikely that the true de-
pendency among the yi

t will be tree-structured, we could select the best, single
tree-structured model for their dependence [67]. However, we would likely ob-
serve artifacts similar to those described in Section 4.1, where the correlation
between stations which are close spatially but not directly connected in the
tree would be modeled poorly. This can be avoided by making the structure of
yt dependent on the value of the state xt. Specifically, conditioned on a state
xt, the stations yi

t are tree-structured, but the structure may be quite different
for different values of xt [85]. This type of structure is shown in Figure 9(c).

4.2.4 Examples of Models Learned Using the Australia Data

As briefly discussed in Section 3.4 we can use the EM algorithm to find maxi-
mum likelihood estimates of the parameters of a graphical model with known
structure involving a hidden variable xt. Complete details on using EM to
learn parameters for each of the conditional–independence and tree–structured
HMMs (the models described above) can be found in [86].

The cardinality of the hidden state xt can be selected using different data-
driven approaches—for the Southwest Australian data we maximized the out–
of–sample log–likelihood under cross–validation [87]. More specifically, for each
possible cardinality and each year of data, we withhold that year and use EM
to train a model using the remaining years, and then evaluate the performance
of each model by computing the log-likelihood of the withheld data. Finally,
we select the cardinality which results in the best average cross–validated log–
likelihood. In our example, using a HMM with a tree–structured model for
p(yt|xt), this results in five hidden states (i.e., xt takes on one of five discrete
values).

The tree distributions corresponding to p(yt|xt), for two particular values of xt,
are shown in Figure 10. The first (xt = 2) is a relatively wet state, characterized
by rainfall probabilities exceeding 0.7 along the west coast, with probabilities
below 0.5 inland. The tree structure indicates north–south dependencies be-
tween stations, rather than east–west, with the strong dependencies between
stations in the southwest. This is consistent with the meteorology and topogra-
phy of the region [81]. Winter rainfall over southwestern Australia is large-scale
and frontal, impacting the southwest corner of the domain first and foremost.
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(a) p(yt|xt = 2) (b) p(yt|xt = 5)

Fig. 10. Visual interpretation of two of the hidden states for a 5-state HMM trained
on Southwestern Australia data. Circle radii indicate the precipitation probability
for each station given the state. Lines between the stations indicate the edges in
the dependence tree. Patterns of lines correspond to different strengths of mutual
information, a measure of pairwise dependence: solid (strong), dashed (moderate),
dash-dotted (fair), and dotted (weak).

Hence, the tendency for correlations between stations along the coast during
moderately wet weather states. The second state (xt = 5) characterizes dry
conditions throughout the domain, and spatial dependencies between stations
are generally weaker. This is consistent with the lack of organized large scale
rain- bearing systems; any rainfall is local and very sporadic. Notice also that
in both cases, the tree structures are consistent with the topography of the re-
gion, i.e., the vast majority of edges connect neighboring stations, even though
the model uses no geographical information about the stations.

4.2.5 Extensions

An advantage of the type of graphical model described above is that it can
also be used to perform inference about missing observations. Since the state–
dependent conditional distributions p(yt|xt) are tree–structured, they can be
estimated even in the presence of missing data with very little additional ef-
fort by marginalizing out any missing elements of yt. This feature can be quite
useful, since although the example shown used a complete data set, histori-
cal precipitation data sets for many geographic regions can have substantial
numbers of missing observations [88].

In addition to decoupling spatial and temporal dependencies, hidden states
can also be used to efficiently incorporate other variables into the model.
Since precipitation is a result of an atmospheric process, other atmospheric
measurements can be a useful addition to the model. Assuming that other
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y1 y2 y3 yT−1 yT

Fig. 11. Graphical model for a nonhomogeneous hidden Markov model
(NHMM)—the additional atmospheric variables ut lend information about the state
by influencing the dynamics p(xt|xt−1, ut).

atmospheric variables are also measured (or simulated) at a daily scale for the
same days as y, we will denote by ut a vector of atmospheric variables for
day t, and use a graphical model to represent p (y1, . . . , yT |u1, . . . , uT ). One
way to incorporate the information in ut is to make the transition distrib-
ution between the hidden states p (xt|xt−1) to be dependent on the values
of ut: p (xt|xt−1, ut) [82]. The resulting transition probabilities are no longer
stationary, and thus the resulting HMM is sometimes referred to as a non-
homogeneous HMM, or NHMM. Its graphical model is shown in Figure 11.
When provided relevant atmospheric variables, an NHMM model was found to
produce more realistic simulated sequences than a corresponding HMM [82],
and can also be applied to assimilate the information in atmospheric variables
useful in modeling inter-annual variability [71,72].

5 Summary and Discussion

Graphical models provide a systematic framework for inference on sets of ran-
dom variables. The key idea in graphical modeling is the equivalence between
conditional independence among random variables and separation of nodes in
a corresponding graph. In particular, highly structured, sparse graphs often
lead to efficient computational inference methods. Well known computational
schemes such as the Kalman filter recursions can be viewed as special cases of
a more general framework for inference in graphical models.

In a data assimilation context the random variables in the graph typically
include data nodes (whether observed or missing), unobserved state nodes, and
possibly even nodes corresponding to parameters (whose values may be known
or may need to be estimated). Questions about nodes in the graph whose values
are not known with certainty (unobserved variables) can be answered in a
systematic way by applying the message-passing algorithms discussed earlier.
The generality of this approach lies in the fact that the inference computations
are applicable equally well to nodes involving data (e.g., missing observations),
state variables (unobserved states), parameters (unknown parameter values),
or any combination of these.
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As pointed out earlier, the framework of graphical models is not a cure–all
for problems in data assimilation. For example, in a Gauss–Markov state–
space model in which the state is a d-dimensional variable, the local message
passing computations are O(d3) due to the matrix computations required in
updating the error covariance at each step. Tree–structured graphs are efficient
in the sense that only a linear number of such computations (in the number
of nodes of the graph) are required. However, for the large d values that may
be of interest in atmospheric and oceanic modeling problems (e.g., d ≈ 106 or
107), even a single such computation is not computationally feasible. In such
systems, additional factorization (graph) structure may be imposed on the
model (as in Sections 4.1–4.2), and other methods of approximation, such as
low–rank, Monte Carlo, or ensemble approximations may be applied to reduce
computation.
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