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Motivation
• The climate system is highly nonlinear and quite complex.
• Its major components — the atmosphere, oceans, ice sheets

— flow on many time and space scales.
• Its predictive understanding has to rely on the system’s

physical, chemical and biological modeling,
but also on the mathematical analysis of the models
thus obtained.

• The hierarchical modeling approach allows one to
give proper weight to the understanding provided by the
models vs. their realism, respectively.

• This approach facilitates the evaluation of forecasts
(pognostications?) based on these models.

• Back-and-forth between “toy” (conceptual) and detailed
(“realistic”) models, and between models and data.



OutlineOutline
 The IPCC process: results (!!) and questions (???)
 Natural climate variability: source of uncertainties

- sensitivity to initial state => error growth
- sensitivity to model formulation =>

change in means & variances – see below!
 Uncertainties and how to fix them

- structural instability – ENSO-FDE model
- random dynamical systems – toy models

 Conclusions and references

(!!) Nobel Peace Prize!!; (???) So what’s next???



Global warmingGlobal warming  andand
its socio-its socio-economic economic impactsimpacts

Temperatures rise:
• What about impacts?
• How to adapt?

Source : IPCC (2007),
AR4, WGI, SPM

The answer, my friend,
is blowing in the wind,
i.e., it depends on the
accuracy and reliability
of the forecast …



GHGs GHGs riserise
It’s gotta do with us, at

least a bit, ain’t it?

But just how much?

IPCC (2007)



Unfortunately, thingsUnfortunately, things
arenaren’’tt  all all that easy!that easy!

Ghil, M., 2002: Natural climate variability, 
in Encyclopedia of Global Environmental 
Change, T. Munn  (Ed.), Vol. 1, Wiley

What to do?

Try to achieve better
interpretation of, and
agreement between,
models …
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M. Ghil & I. Zaliapin, UCLA Working Meeting, August 21, 2007

InterannualInterannual, , interdecadal interdecadal and and intraseasonal intraseasonal variabilityvariability

Smooth and sharp transitions in behaviorSmooth and sharp transitions in behavior

Multiplicity of solutionsMultiplicity of solutions



• Climate models -- the most sophisticated models of natural phenomena.

• Still, the range of uncertainty in responses to CO2 doubling is not decreasing.

• Can this be a matter of intrinsic sensitivity to model parameters and
parameterizations, similar to but distinct from sensitivity to initial data?

• Dynamical systems theory has, so far, interpreted model robustness in
     terms of structural stability; it turns out that this property is not generic.

• We explore the structurally unstable behavior of a toy model of ENSO
variability, the interplay between forcing and internal variability, as well as
spontaneous changes in mean and extremes.



Differential Delay Equations (DDE) offer an effective modeling language
as they combine simplicity of formulation with rich behavior…   
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The general solution is given by

In particular, oscillatory solutions do exist.

ODE DDE

i.e., exponential growth
(or decay, for α < 0)

M. Ghil & I. Zaliapin, UCLA Working Meeting, August 21, 2007





Southern Oscillation:
The seesaw of sea-level pressures ps between
the two branches of the Walker circulation

Southern Oscillation Index (SOI) = normalized difference between
ps at Tahiti (T) and ps at Darwin (Da)

Neelin (2006) Climate Modeling and Climate Change, after Berlage (1957)

The large-scale Southern Oscillation (SO) pattern associated
with El Niño (EN), as originally seen in surface pressures



Time series of atmospheric pressure 
                and sea surface temperature (SST) indices

Data courtesy of NCEP’s Climate Prediction Center 
Neelin (2006) Climate Modeling and Climate Change



Battisti & Hirst (1989)
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Suarez & Schopf (1988), Battisti & Hirst (1989)
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Seasonal forcingAtmosphere–ocean coupling
(Munnich et al., 1991)
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Thermocline depth deviations 
from the annual mean in the 

eastern Pacific

Wind-forced ocean waves
(E’ward Kelvin, W’ward Rossby)

Delay due to finite wave velocity

Seasonal-cycle forcing

Strength of the 
atmosphere-ocean 

coupling
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M. Ghil & I. Zaliapin, UCLA Working Meeting, August 21, 2007
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and we consider the following parameter ranges:

  

0 ! " ! 2 [yr]

0 <# < $
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The seasonal-cycle forcing has the period P0:

The initial data for our DDE are given by the constant history (warm event):

( ) 1,  - 0h t t!= " <

P0 = (ω)–1 = 1 yr,

M. Ghil & I. Zaliapin, UCLA Working Meeting, August 21, 2007



With no seasonal forcing we have [ ]( ) ( )
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For “large” delays, the solution
is asymptotically periodic,
with period 4τ

For “small” delays, the solution
is asymptotically zero, as it is for 
no delay (ODE case)

M. Ghil & I. Zaliapin, UCLA Working Meeting, August 21, 2007
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For “large” delays, there are
nonlinear interactions 
between periodic solutions 
with periods 4τ and 1

For “small” delays, the solution
is asymptotically periodic
with period 1, as for the no-
delay (ODE) case

M. Ghil & I. Zaliapin, UCLA Working Meeting, August 21, 2007



“Low-h” (cold) seasons in successive years
 have a period of about 5 yr in this model run.

N.B. Negative h corresponds to NH (boreal) winter
        (upwelling season, DJF, in the
         eastern Tropical Pacific)

1,  4.76,  0.66b ! "= = =

M. Ghil & I. Zaliapin, UCLA Working Meeting, August 21, 2007



“High-h” season with period of about 4 yr;
notice the random heights of high seasons

N.B. Rough equivalent of El Niño in this 
        “toy model” (little upwelling near coast)

  1,  100,  0.42b ! "= = =

M. Ghil & I. Zaliapin, UCLA Working Meeting, August 21, 2007



Bursts of intraseasonal oscillations (*)
of random amplitude

(*) Madden-Julian oscillations,
   westerly-wind bursts?

1,  500,  0.0038b ! "= = =

M. Ghil & I. Zaliapin, UCLA Working Meeting, August 21, 2007



Interdecadal variability:
Spontaneous change of
(1) long-term annual mean, and
(2) Higher/lower positive and
      lower/higher negative extremes

N.B. Intrinsic, rather than forced!
1,  10,  0.45b ! "= = =

M. Ghil & I. Zaliapin, UCLA Working Meeting, August 21, 2007



Trajectory maximum (after transient): κ = 0.5

Smooth map

Monotonic in b

Periodic in τ



Trajectory maximum (after transient): κ =1

Smooth map

No longer monotonic 
in b, for large τ

No longer periodic
in τ,  for large τ



Trajectory maximum (after transient): κ  = 2

Neutral curve
f (b, τ) = 0 appears,
above which
instabilities set in.

Above this curve,
the maxima are no
longer monotonic in b
or periodic in τ, and
the map “crinkles” (i.e.,
it becomes “rough”)



Trajectory maximum (after transient): κ  = 11

The neutral curve
that separates rough
from smooth behavior
becomes itself crinkled
(rough, fractal?).

The neutral curve
moves to higher
seasonal forcing b
and lower delays τ.

M. Ghil & I. Zaliapin, UCLA Working Meeting, August 21, 2007



This region
expanded



M. Ghil & I. Zaliapin, UCLA Working Meeting, August 21, 2007



Instability point



1. A simple differential-delay equation (DDE) with a single delay reproduces the
realistic scenarios documented in other ENSO models, such as nonlinear PDEs
and GCMs, as well as in observations.

2. The model illustrates well the role of the distinct parameters: seasonal forcing b,
ocean-atmosphere coupling κ, and oceanic wave delay τ.

3.  Spontaneous transitions in mean temperature, as well as in extreme annual
values occur, for purely periodic, seasonal forcing.

4. A sharp neutral curve in the (b–τ) plane separates smooth behavior of the period
map from “rough” behavior.

5. The model’s dynamics is governed by multiple (un)stable solutions; location of
stable solutions in parameter space is intermittent.

6. The local extrema are locked to a particular season in the annual cycle.

7. We expect such behavior in much more detailed and realistic models, where it is
harder to describe its causes as completely.



o Ghil, M., and A. W. Robertson, 2000: Solving problems with GCMs: General
circulation models and their role in the climate modeling hierarchy. General Circulation
Model Development: Past, Present and Future, D. Randall (Ed.), Academic Press, San
Diego, pp. 285–325.

o Hale, J. K., 1977:  Theory of Functional Differential Equations, Springer-Verlag, New
York, 365 pp.

o Jin, F.-f., J. D. Neelin and M. Ghil, 1994:  El Niño on the Devil's Staircase: Annual
subharmonic steps to chaos, Science, 264, 70–72.

o Saunders, A., and M. Ghil, 2001: A Boolean delay equation model of ENSO
variability, Physica D, 160, 54–78.

o Tziperman, E., L. Stone, M. Cane and H. Jarosh, 1994:  El Niño chaos:  Overlapping
of resonances between the seasonal cycle and the Pacific ocean-atmosphere
oscillator.  Science, 264, 72–74.

o Munnich, M., M. Cane, and S. Zebiak, 1991: A study of self-excited oscillations of the
tropical ocean atmosphere system 2. Nonlinear cases , J. Atmos. Sci., 48, 1238–1248.

M. Ghil & I. Zaliapin, UCLA Working Meeting, August 21, 2007



So whatSo what’’s it s it gonna gonna be like, by 2100?be like, by 2100?



Can dynamical systems theory help, again?Can dynamical systems theory help, again?
The uncertainties

might be intrinsic,
rather than mere

“tuning problems”

If so, maybe
stochastic structural
stability could help!

The DDS dream of structural stability (from Abraham  & Marsden, 1978)

Might fit in nicely with
     recent taste for
“stochastic
     parameterizations”



Random Dynamical Systems - RDS theory (1)

Framework
This theory provides concepts and tools to deal rigorously with
geometric aspects of stochastic dynamical systems, including
SDEs. It provides the counterpart of the geometric theory of
ODEs.

RDS theory extends the notion of flows, via the concept of
cocycle that models the stochastic trajectories (paths).

RDS theory allows one to compare qualitative behavior
between two systems, through a rigorous definition of a
random change of variables in phase space.

The concept of attraction is understood in a pullback
sense, which leads to the concept of random attractor,
taking into account the random character of the forcing.

Mickaël D. Chekroun, Eric Simonnet, Michael Ghil



Random Dynamical Systems - RDS Theory (2)

A few details (“light")

Noise forcing is modeled by a stationary process;
its coupling with the underlying deterministic dynamical
system (DDS) is expressed mathematically by
the cocycle property.

Fiber-by-fiber view of the dynamics: each fiber
represents the phase space, parameterized by
distinct realizations of the noise.

A path of the stochastic process thus corresponds to a
selection of points in each fiber of the resulting bundle;
see next figure.

Mickaël D. Chekroun, Eric Simonnet, Michael Ghil



Random Dynamical Systems - Geometric view

ϕ is a random dynamical system (RDS)
The cocycle property is analogous to the semi-group
property for DDS
Θ(t)(x , ω) = (θ(t)ω, ϕ(t , ω)x) is a flow on the bundle

Mickaël D. Chekroun, Eric Simonnet, Michael Ghil



Random Dynamical Systems - Random attractor (1)

Key features

Random attractors involve pullback attraction in a
non-autonomous system.

Pullback attraction does not involve running time
backwards: we perform measurements at time t in an
experiment started at time s < t long ago;
hence we assess the “attracting state" at time t .

For random forcing, we get a random attractor;
it represents the frozen statistics at time t ,
when a long-enough history is taken into account,
and it evolves with time.

These geometric objects are numerically computable.

Mickaël D. Chekroun, Eric Simonnet, Michael Ghil



Random Dynamical Systems - Random attractor (2)

A random attractor A(ω) is both invariant and “pullback"
attracting:
(a) Invariant : ϕ(t , ω)A(ω) = A(θ(t)ω).
(b) Attracting : ∀B ⊂ X , limt→∞ dist(ϕ(t , θ(−t)ω)B,A(ω)) = 0

almost surely

Mickaël D. Chekroun, Eric Simonnet, Michael Ghil



Random Dynamical Systems - Predator-prey model(1)

The model

We consider the following perturbed Holling’s model (Mem.
Entomol. Soc. Canada, 1965):

ẋ = (r + σξ̇t)x(α + x)(1− x)− Cxy ,
ẏ = −αdy + (C − d)xy ,

where

x is the prey and y the predator,

r and d : growth rate and death rate,

C = C0 + (C0−d)
4 sin(νt) is a periodic coupling parameter

that mimics a seasonally dependent hunting of x by y ,

σξ̇t : white noise of amplitude σ,

α: bifurcation parameter.

Mickaël D. Chekroun, Eric Simonnet, Michael Ghil



Random Dynamical Systems - Predator-prey model(2)

A continuum of global random attractors (red tube) over one period.
The trajectories are all attracted by a random point shown in black.

Note 3 : 1 subharmonic resonance!
Mickaël D. Chekroun, Eric Simonnet, Michael Ghil



Random Dynamical Systems - Predator-prey model(3)

A section of the tube: the global attractor (blue ), the attracting
random point on it (black ), and a single noisy trajectory (green dots)

Mickaël D. Chekroun, Eric Simonnet, Michael Ghil



Stochastic equivalence - Robust classification (1)

Comparison procedure of random dynamical systems

We now want to use these tools in order to compare two
cocycles ϕ1 and ϕ2 representing two RDSs or SDEs.

To be qualitatively the same, these cocycles have to exhibit
topologically the same random attractors.

The time-dependent character of random attractors
contrasts with the classical notion of probability density
function (PDF), which is frozen in time.

N.a.s.c. to be qualitatively the same is that there exist a
random change of variables that transforms ϕ1 into ϕ2;
that is, ϕ1 and ϕ2 should be stochastically equivalent.

Mickaël D. Chekroun, Eric Simonnet, Michael Ghil



Stochastic equivalence - Robust classification (2)

A tool for classification: stochastic equivalence

Stochastic equivalence: two cocycles ϕ1(t , ω) and ϕ2(t , ω)
are conjugated iff there exists a random
homeomorphism h of X and an invariant set Ω̃
of full P-measure (w.r.t. θ) such that h(ω)(0) = 0 and:

ϕ1(t , ω) = h(θ(t)ω)−1 ◦ ϕ2(t , ω) ◦ h(ω); (1)

h is also called a cohomology of ϕ1 and ϕ2.
It is a random change of variables!

Motivation: We would like to measure qualitatively, as well
as quantitatively, the difference between climate models.

Mickaël D. Chekroun, Eric Simonnet, Michael Ghil



Stochastic equivalence - Could noise help?

As the noise tends to zero or the parametrizations are switched off,
structural instability reappears, as a “granularity" of model space.
For nonzero variance, the random attractor A(ω) associated with
several GCMs might fall into larger and larger classes,
as the noise level increases.

Mickaël D. Chekroun, Eric Simonnet, Michael Ghil



A family of toy models -
Theoretical and numerical results

Arnol’d family of diffeomorphisms

We want to perform a classification in terms of
stochastic equivalence.

Our first theoretical laboratory is
the Arnol’d family of circle maps:

xn+1 = FΩ,ε(xn) := xn + Ω− ε sin(2πxn) mod 1

Mickaël D. Chekroun, Eric Simonnet, Michael Ghil



Why this family?

Frequency-locking phenomena & the Devil’s staircase

Topological classification of the Arnol’d family {FΩ,ε}:

countable regions of structural stability;

uncountable structurally unstable systems,
with non-zero Lebesgue measure!

Two types of attractors:

periodic orbits on the circle;

the whole circle.

Mickaël D. Chekroun, Eric Simonnet, Michael Ghil



Arnol’d tongues and the Devil’s staircase

Mickaël D. Chekroun, Eric Simonnet, Michael Ghil



Noise effects on topological classification

Mickaël D. Chekroun, Eric Simonnet, Michael Ghil



Extension of the paradigm - Devil’s quarry

The deterministic model
Dynamics on a 2-D torus:

xn+1 = xn + Ω1 − ε sin(2πyn), mod 1
yn+1 = yn + Ω2 − ε sin(2πxn) mod 1

Web of resonances & chaos:
- partial resonance — Ω1 and Ω2 are rational
and there is a rational relation m1Ω1 + m2Ω2 = k ;
m1, m2, and k are integers
- full resonance and chaos, with possibly multiple attractors

A more realistic paradigm for dynamics observed in the
geosciences and elsewhere.

What is the effect of noise in such a context?

Mickaël D. Chekroun, Eric Simonnet, Michael Ghil



A French garden near the castle of La Roche-Guyon

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



The Devil’s quarry - a web of resonances

coupling parameter ε = 0.15
Mickaël D. Chekroun, Eric Simonnet, Michael Ghil



The Devil’s quarry - noise effects

Mickaël D. Chekroun, Eric Simonnet, Michael Ghil



Concluding remarks

Some insights

Reduction of the attractor dimension:
limσ→0 dimAσ(ω) < dimA0 as the noise intensity σ → 0.

Stochastic parametrization ⇒ gain of structural stability
for random attractors.

These results hold for relevant deterministic models that
are stochastically perturbed.

RDS theory offers a meaningful framework for performing
classification in stochastic modeling.

Future work

Colored-noise and lag-correlation effects
on stochastic classes.

Noise effects on nonhyperbolic chaos (Lorenz system,
Newhouse phenomena, Hénon map, etc.)

Mickaël D. Chekroun, Eric Simonnet, Michael Ghil



Some conclusions &/or questions
What do we know?
• It’s getting warmer.
• We do contribute to it.
• So, we should act as best we know and can!

What do we know less well?
•  How does the climate system really work?
•  How does natural variability interact with

anthropogenic forcing?

What to do?
• Better understand the system and its forcings.
• Better understand the effects on economy and society,

and vice-versa.
• Explore the models’, and system’s, stochastic structural stabilitystochastic structural stability..
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Climatic uncertainties & moral dilemmasClimatic uncertainties & moral dilemmas

 Feed the world today
or…

 … keep today’s
climate for tomorrow?

Davos, Feb. 2008, photos by TIME Magazine, 11 Feb. ‘08;
see also Hillerbrand & Ghil, Physica D, 2008, in press.



Earth System Science Overview, NASA Advisory Council, 1986



• Temporal
 stationary, (quasi-)equilibrium
 transient, climate variability

• Space
 0-D (dimension 0)
 1-D

• vertical
• latitudinal

 2-D
• horizontal
• meridional plane

 3-D, GCMs (General Circulation Model)
• horizontal
• meridional plane

 Simple and intermediate 2-D & 3-D models

• Coupling
 Partial

• unidirectional
• asynchronous, hybrid

 Full

HierarchyHierarchy:: from the simplest to the most elaborate,
       iterative comparison with the observational data

Climate models (atmospheric & coupled) : A classification

Radiative-Convective Model(RCM)

Energy Balance Model (EBM)

Ro

Ri



Composite spectrum of climate variability
Standard treatement of frequency bands:
   1. High frequencies – white (or ‘‘colored’’) noise
   2. Low frequencies – slow (‘‘adiabatic’’) evolution of parameters

From Ghil (2001, EGEC), after Mitchell* (1976)
* ‘‘No known source of deterministic internal variability’’



GHGs rise
It’s gotta do with us, at

least a bit, ain’t it?

IPCC (2001)



The “hockey stick” & beyond
The “hockey stick”
of TAR (3rd Assesment
Report) is a typically
(over)simplified version
of much more detailed
and reliable knowledge.

National Research Council, 2006:
Surface Temperature Reconstructions
For the Last 2000 Years.
National Academies Press,
Washington, DC, 144 pp.
http://www.nap.edu/openbook.php?
record_id=11676&page=2



Isotopic (proxy) temperatures and GHGs at Vostok, over the last glacial cycle; courtesy of P. Yiou



Ts and GHGs over 400 kyr

The same lead–lag relations are apparent over these 4 glacial cycles …



Sun-Climate Relations
• It ain’t new:

v. ~1000
papers (in
1978!), as well
as Marcus et al.
(1998, GRL).

• “Corrélation
n’est pas
raison.”

• Requires
serious study of
solar physics.
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M. Ghil & I. Zaliapin, UCLA Working Meeting, August 21, 2007
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Corollary
A discontinuity in solution profile indicates existence of an unstable
solution that separates attractor basins of two stable ones.



Resonances and random attractors

The web of resonances is nonlinearly altered;
it is linked with stochastic normal form theory.

This web lives in a sea of "chaos + noise."

A random attractor computed in a partial-resonance tube:

Mickaël D. Chekroun, Eric Simonnet, Michael Ghil



Synchronization in the Arnol’d family

Sample trajectories for different initial data
and a single noise realization ω:

Conclusion: Noise transforms the deterministic 1-D attractor
to a random fixed-point attractor (0-D)!

Mickaël D. Chekroun, Eric Simonnet, Michael Ghil






