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Abstract

We apply empirical mode reduction (EMR) methodology
(Kravtsov et al. 2005; Kondrashov et al. 2006) to the
output of a long simulation of a global baroclinic,
quasigeostrophic, three-level T21 model (QG3) with
topography (Marshall and Molteni 1993), to obtain a
reduced nonlinear stochastic model of extratropical low-
frequency variability. We revisit the question of origin of
the nonlinear signatures in model's phase space, by
looking at the mean phase space tendencies and
"important" interactions detected by EMR that contribute
to observed nonlinear behavior.

Empirical Model Reduction

The EMR models are nonlinear multi-level generalizations
of the linear inverse models (LIMs: Penland 1989, 1996;
Penland and Ghil 1993) to include quadratic (and higher-
order polynomial, if necessary) combinations of predicted
variables in the dynamical operator of the main model
level. Additional model levels are included to simulate the
main-level time-dependent stochastic forcing. The number
of model levels is chosen to ensure that the forcing at the
last level can be well approximated by a vector-valued
white-noise process.

Goal: Capture statistics (histograms, correlations, spectra)
and important dynamical aspects of linear (oscillations)
and nonlinear (regimes) of the original dataset's
”resolved” behavior. The stochastically forced
simulations of EMR model can be exploited to analyze
various dynamical aspects of the observed evolution
(when no good physical model is available), or high-end
model generated integration by using a reduced model
with much fewer d.o.f, as well as used for prediction
(ENSO, Kondrashov et al. 2005).
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X; time series (can be PCs), i = 1,2,...M, are predictors.
Computed tendencies dx; are predictants.

Multiple linear regression to estimate L;, Njx and F;
for ijk=1,2,..Mand I=0, 2, ...L.

Multi-level noise modeling for regression residuals ry.
d&i~N(0,Q), Q = sample cov(rc).

Regularized regression fitting of EMR coefficients.
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ospheric model

The QG3 model’s (with ~103d.o.f.) low-frequency variability
(LFV) is characterized by the existence of a few persistent
and recurrent flow patterns, or weather regimes, as well as
by intraseasonal oscillations (Kondrashov et al. 2004,
2006). We use 10 leading EOFs of daily 500-hPa
streamfunction from 5104 days of integration to construct 3-
level quadratic EMR with O(100) independent coefficients.
EOF statistics
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Mean phase space tendencies

Recent studies have used the mean phase space
tendencies in the subspace of leading EOFs to identify
distinctive signatures of nonlinear processes in both the
intermediate QG3 model (Selten and Branstator, 2004;
Franzke et al. 2007) and more detailed GCMs (Branstator
and Berner, 2005). Of particular interest is to establish the
relative contributions of ”resolved” and “unresolved”
modes that may lead to observed deviations from
Gaussianity, e.g. to double-swirls.

- We estimate the tendencies <(dx;dxk)>=F(x;x«) in a
given plane of the EOF pair (j, k) from QG3 and EMR
simulation data.

- The ’resolved” vs. "unresolved” split depends on
assumptions about “signal” and “noise”. With no
pronounced time-scale separation between individual
EOFs, we consider EOFs x; (i = 4) as “resolved”
because:

1) these EOFs have the most pronounced deviations from
the Gaussianity in terms of skewness and kurtosis.

2) they determine the most interesting dynamical aspects
of LFV; linear (intraseasonal oscillations) as well as
nonlinear (regimes) (Kondrashov et al. 2004, 2006).

QG3 tendencies

ency Atmospheric Modes

Y i

m
e}
T

Linear features for EOF pairs (1-3), (2-3) only: antisymmetric for reflections through the origin and
constant speed along ellipsoids (Branstator and Berner, 2005). Excellent agreement between EMR and
QG3! (shading indicates the magnitude in 1 std dev day—1, and arrows are normalized to have the same length).
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Pronounced nonlinear double swirls for EOF pairs (1-2), (1-4), (2-4) and (3-4).

For a given x; (i<4), we split nonlinear interaction x;xx

as “resolved” Tr (set Q of (j,k); jk <4):

Tr= Nik X, Xk - R;,
R/': < N/'[kX/',XK>

and “unresolved” Ty for (j,k) ¢ Q:
Tu=Nik x;,xx + Ri + Fi

Since F; ensures <dx;>=0: Fi=- < NjkXj,xk> V j,k
we have <Tr>=0,<Ty>=0,and <Tg+Ty >=0!

The multiplicative-noise explanations of non-Gaussian
atmospheric behavior depend on how the partition is
made between unresolved and resolved variables.
When they are reasonably defined, we find that the
nonlinear “double-swirl” feature is mostly due to the
”resolved” nonlinear interactions!
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