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 We apply empirical mode reduction (EMR) methodology 
(Kravtsov et al. 2005; Kondrashov et al. 2006) to the 
output of a long simulation of a global baroclinic, 
quasigeostrophic, three-level T21 model (QG3) with 
topography (Marshall and Molteni 1993), to obtain a 
reduced nonlinear stochastic model of extratropical low-
frequency variability. We revisit the question of origin of 
the nonlinear signatures in modelʼs phase space, by 
looking at the mean phase space tendencies and 
"important" interactions detected by EMR that contribute 
to observed nonlinear behavior. 
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xi  time series (can be PCs), i = 1,2,...M,  are predictors. 
Computed tendencies dxi  are predictants.  
Multiple linear  regression to estimate Lij, Nijk and Fi 
for i,j,k = 1,2,...M and l=0, 2, ...L.   
Multi-level noise modeling for regression residuals rl,i.  
dξ i ~ N(0,Q ), Q  = sample cov(rL).  

    Regularized regression fitting of EMR coefficients. 
                                                                                                    

1. Kondrashov, D., K. Ide, and M. Ghil, (2004) J. Atmos. Sci., 61, 568–587. 
2. Kondrashov, D., S. Kravtsov, A. Robertson and M. Ghil, (2005) J. Climate, 18, 4425. 
3. Kondrashov, D., S. Kravtsov, and M. Ghil, (2006), J. Atmos. Sci., 63, 1859–1877. 
4. Kravtsov, S., D. Kondrashov, and M. Ghil, (2005) J. Climate, 18, 4404–4424.

References

Empirical Model Reduction 

QG3 atmospheric model

Goal: Capture statistics (histograms, correlations, spectra) 
and important dynamical aspects of linear (oscillations) 
and nonlinear (regimes) of the original dataset's 
”resolved”  behavior. The stochastically forced 
simulations of EMR model can be exploited to analyze 
various dynamical aspects of the observed evolution 
(when no good physical model is available), or high-end 
model generated integration by using a reduced model 
with much fewer d.o.f, as well as used for prediction 
(ENSO, Kondrashov et al. 2005). 

The QG3 modelʼs (with ~103 d.o.f.) low-frequency variability 
(LFV) is characterized by the existence of a few persistent 
and recurrent flow patterns, or weather regimes, as well as 
by intraseasonal oscillations (Kondrashov et al. 2004, 
2006). We use 10 leading EOFs of daily 500-hPa 
streamfunction from 5•104 days of integration to construct 3-
level quadratic EMR with O(100) independent coefficients. 

Mean phase space tendencies

   EMR  tendencies

EMR tendencies budgetEMR nonlinear tendencies

Recent studies have used the mean phase space 
tendencies in the subspace of leading EOFs to identify 
distinctive signatures of nonlinear processes in both the 
intermediate QG3 model (Selten and Branstator, 2004; 
Franzke et al. 2007) and more detailed GCMs (Branstator 
and Berner, 2005). Of particular interest is to establish the 
relative contributions of ”resolved” and ”unresolved” 
modes that may lead to observed deviations from 
Gaussianity, e.g. to double-swirls.     

- We estimate the tendencies <(dxj,dxk)>=F(xj,xk) in a 
given plane of the EOF pair (j, k) from QG3 and EMR 
simulation data.  
- The ”resolved” vs. ”unresolved” split depends on 
assumptions about ”signal” and ”noise”. With no 
pronounced time-scale separation between individual 
EOFs,  we consider EOFs xi (i ≤ 4) as ”resolved”  
because: 

1) these EOFs have the most pronounced deviations from 
the Gaussianity in terms of skewness and kurtosis. 

2) they determine the most interesting dynamical aspects 
of LFV; linear (intraseasonal oscillations) as well as 
nonlinear  (regimes) (Kondrashov et al. 2004, 2006). 

For a given xi (i≤4), we split nonlinear interaction xjxk 

 as   ”resolved” TR  (set Ω of (j,k); j,k ≤4): 

TR = Nijk xj,xk - Ri,
Ri = < Nijk xj,xk >

and ”unresolved” TU  for (j,k) ∉ Ω: 

              TU =Nijk xj,xk + Ri + Fi   

Since Fi   ensures < dxi > = 0: Fi = - < Nijk xj,xk > ∀ j,k
we have <TR > = 0, <TU > = 0, and <TR +TU  > = 0!
                          

dxi = (Nijkxjxk + L(0)
ij xj + Fi) dt + r0,i dt,

dr0,i = L(1)
ij [x, r0]jdt + r1,i dt,

dr1,i = L(2)
ij [x, r0, r1]jdt + r2,i dt,

. . .

drL−1,i = L(L)
ij [x, r0, r1, . . . , rL−1]jdt + dξi

!"#!$

!
"
#
!
%

&'()*+,-+.&/

(

(

!0 1 0
!2

!0

!$

1

$

0

2

1

13$

130

132

13%

134

!"#!$

!
"
#
!
%

5'()*+,-+.&/(6/.7*,8.96

(

(

!0 1 0
!2

!0

!$

1

$

0

2

1

13$

130

132

13%

134

!"#!$

!
"
#
!
%

:'(;<=(>-?(

(

(

!0 1 0
!2

!0

!$

1

$

0

2

1

13$

130

132

13%

134

!"#!$

!
"
#
!
%

9'(;-+.&/

(

(

!0 1 0
!2

!0

!$

1

$

0

2

1

13$

130

132

13%

134

!"#!$

!
"
#
!
%

&

&

!% ' %

!%

'

%

'

'($

'(%

'()

'(*

!"#!$

!
"
#
!
*

&

&

!% ' %

!%

'

%

'

'($

'(%

'()

'(*

!"#!$

!
"
#
!
)

&

&

!% ' %

!%

'

%

'

'($

'(%

'()

'(*

!"#!%

!
"
#
!
)

&

&

!% ' %

!%

'

%

'

'($

'(%

'()

'(*

!"#!%
!
"
#
!
*

&

&

!% ' %

!%

'

%

'

'($

'(%

'()

'(*

!"#!)

!
"
#
!
*

&

&

!% ' %

!%

'

%

'

'($

'(%

'()

'(*

Conclusions
Pronounced nonlinear double swirls for EOF pairs  (1-2), (1-4), (2-4) and (3-4). 

Linear features for EOF pairs (1-3), (2-3) only: antisymmetric for reflections through the origin and 
constant speed along ellipsoids (Branstator and Berner, 2005). Excellent agreement between EMR and 
QG3! (shading indicates the magnitude  in 1 std dev day–1, and arrows are normalized to have the same length).

The multiplicative-noise explanations of non-Gaussian 
atmospheric behavior depend on how the partition is 
made between unresolved and resolved variables. 
When they are reasonably defined, we find that the 
nonlinear ”double-swirl” feature is mostly due to the 
”resolved” nonlinear interactions!
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Empirical Mode Reduction (EMR)

The EMR models are nonlinear multi-level generalizations 
of the linear inverse models (LIMs: Penland 1989, 1996; 
Penland and Ghil 1993) to include quadratic (and higher-
order polynomial, if necessary) combinations of predicted 
variables in the dynamical operator of the main model 
level. Additional model levels are  included to simulate the 
main-level time-dependent stochastic forcing. The number 
of model levels is chosen to ensure that the forcing at the 
last level can be well approximated by a vector-valued 
white-noise process. 
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