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Motivation
• The climate system is highly nonlinear and quite complex.
• Its major components — the atmosphere, oceans, ice sheets

— flow on many time and space scales.
• Its predictive understanding has to rely on the system’s

physical, chemical and biological modeling,
but also on the mathematical analysis of the models
thus obtained.

• The hierarchical modeling approach allows one to
give proper weight to the understanding provided by the
models vs. their realism, respectively.

• This approach facilitates the evaluation of forecasts
(pognostications?) based on these models.

• Back-and-forth between “toy” (conceptual) and detailed
(“realistic”) models, and between models and data.



OutlineOutline
 The IPCC process: results and questions
 Natural climate variability: source of uncertainties

- sensitivity to initial state => error growth
- sensitivity to model formulation => see below!

 Uncertainties and how to fix them
- structural instability
- random dynamical systems

 Conclusions and references



Global warmingGlobal warming  andand
its socio-its socio-economic economic impactsimpacts

Temperatures rise:
• What about impacts?
• How to adapt?

Source : IPCC (2007),
AR4, WGI, SPM

The answer, my friend,
is blowing in the wind,
i.e., it depends on the
accuracy and reliability
of the forecast …



GHGs GHGs riserise
It’s gotta do with us, at

least a bit, ain’t it?

But just how much?

IPCC (2007)



Unfortunately, thingsUnfortunately, things
arenaren’’tt  all all that easy!that easy!

Ghil, M., 2002: Natural climate variability, 
in Encyclopedia of Global Environmental 
Change, T. Munn  (Ed.), Vol. 1, Wiley

What to do?

Try to achieve better
interpretation of, and
agreement between,
models …



So whatSo what’’s it s it gonna gonna be like, by 2100?be like, by 2100?



Can we, nonlinear Can we, nonlinear dynamicistsdynamicists, help?, help?
The uncertainties

might be intrinsic,
rather than mere

“tuning problems”

If so, maybe
stochastic structural
stability could help!

The DDS dream of structural stability (from Abraham  & Marsden, 1978)

Might fit in nicely with
     recent taste for
“stochastic
     parameterizations”



Random Dynamical Systems - RDS theory

This theory is a combination of measure (probability) theory
and dynamical systems initiated by the “Bremen group" (L.
Arnold, 1998). It allows one to treat Stochastic Differential
Equations (SDEs), and more general systems driven by some
“noise," as flows .

Setting:

(i) A phase space X . Example : Rn.

(ii) A probability space (Ω,F , P). Example : The Wiener space
Ω = C0(R; Rn) with Wiener measure P = γ.

(iii) A model of the noise θ(t) : Ω → Ω that preserves the
measure P, i.e. θ(t)P = P; θ is called the driving system.
Example : W (t , θ(s)ω) = W (t + s, ω)−W (s, ω); it starts
the noise at s instead of t = 0.

(iv) A mapping ϕ : R× Ω× X → X with the cocycle property.
Example : The solution of an SDE.

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Random Dynamical Systems - A geometric view of
SDEs

ϕ is a random dynamical system (RDS)

Θ(t)(x , ω) = (θ(t)ω, ϕ(t , ω)x) is a flow on the bundle

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Random Dynamical Systems - Random attractor

A random attractor A(ω) is both invariant and “pullback"
attracting:
(a) Invariant : ϕ(t , ω)A(ω) = A(θ(t)ω).
(b) Attracting : ∀B ⊂ X , limt→∞ dist(ϕ(t , θ(−t)ω)B,A(ω)) = 0

a.s.

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Stochastic equivalence - Toward a robust classification

A tool for classification: stochastic equivalence

Stochastic equivalence: two cocycles ϕ1(t , ω) and ϕ2(t , ω)
are conjugated iff there exists a random
homeomorphism h ∈ Homeo(X ) and an invariant set Ω̃ of
full P-measure (w.r.t. θ) such that h(ω)(0) = 0 and:

ϕ1(t , ω) = h(θ(t)ω)−1 ◦ ϕ2(t , ω) ◦ h(ω); (1)

h is also called cohomology of ϕ1 and ϕ2. It is a random
change of variables !

Motivation: We would like to measure quantitatively as well
as quantitatively the difference between climate models.

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Stochastic equivalence - Could noise help the
classification?

As the noise variance tends to zero and/or the parametrizations
are switched off, one recovers the structural instability, as a
“granularity" of model space. For nonzero variance, the random
attractor {A(ω)} associated with several GCMs might fall into
larger and larger classes as the noise level increases.

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Investigation of these ideas on a family of dynamical
toy systems - Theoretical and numerical results

V. Arnold’s family of diffeomorphisms

We want to perform a classification in terms of stochastic
equivalence.

Our first theoretical laboratory is Arnold’s family of
diffeomorphisms of the circle:

xn+1 = FΩ,ε(xn) := xn + Ω− ε sin(2πxn) mod 1

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Which paradigm is represented by this family?
Why this family?

Frequency-locking phenomena & Devil’s staircase

Topological classification of Arnold’s family {FΩ,ε}:

Countable regions of structural stability,

Uncountable structurally unstable systems with non-zero
Lebesgue measure!

Two types of attractors:

Periodic orbits in the circle.

The whole circle.

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Arnold’s tongues and Devil’s staircase

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Effect of the noise on topological classification?

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Extension of the paradigm - Devil’s quarry

Short description of the deterministic model

Dynamics on a 2-D torus:

xn+1 = xn + Ω1 − ε sin(2πyn), mod 1
yn+1 = yn + Ω2 − ε sin(2πxn) mod 1

Web of resonances & chaos:
- Partial resonance (Ω1,Ω2 are rational and there is one
rational relation m1Ω1 + m2Ω2 = k ∈ Z∗ with
(m1, m2) ∈ Z∗ × Z∗)
- Full resonance
- Chaos with possibly multiple attractors

A more realistic paradigm of observed dynamics in the
geosciences, and more...

What is the effect of noise in such a context?

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



A French garden near the castle of La Roche-Guyon

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Devil’s quarry for a coupling parameter ε = 0.15:
a web of resonances

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Effect of the noise on Devil’s quarry

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Some conclusions &/or questions
What do we know?
• It’s getting warmer.
• We do contribute to it.
• So, we should act as best we know and can!

What do we know less well?
•  How does the climate system really work?
•  How does natural variability interact with

anthropogenic forcing?

What to do?
• Better understand the system and its forcings.
• Better understand the effects on economy and society,

and vice-versa.
• Explore the models’, and system’s, stochastic structural stability.
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Earth System Science Overview, NASA Advisory Council, 1986



• Temporal
 stationary, (quasi-)equilibrium
 transient, climate variability

• Space
 0-D (dimension 0)
 1-D

• vertical
• latitudinal

 2-D
• horizontal
• meridional plane

 3-D, GCMs (General Circulation Model)
• horizontal
• meridional plane

 Simple and intermediate 2-D & 3-D models

• Coupling
 Partial

• unidirectional
• asynchronous, hybrid

 Full

HierarchyHierarchy:: from the simplest to the most elaborate,
       iterative comparison with the observational data

Climate models (atmospheric & coupled) : A classification

Radiative-Convective Model(RCM)

Energy Balance Model (EBM)

Ro

Ri



Composite spectrum of climate variability
Standard treatement of frequency bands:
   1. High frequencies – white (or ‘‘colored’’) noise
   2. Low frequencies – slow (‘‘adiabatic’’) evolution of parameters

From Ghil (2001, EGEC), after Mitchell* (1976)
* ‘‘No known source of deterministic internal variability’’



GHGs rise
It’s gotta do with us, at

least a bit, ain’t it?

IPCC (2001)



The “hockey stick” & beyond
The “hockey stick”
of TAR (3rd Assesment
Report) is a typically
(over)simplified version
of much more detailed
and reliable knowledge.

National Research Council, 2006:
Surface Temperature Reconstructions
For the Last 2000 Years.
National Academies Press,
Washington, DC, 144 pp.
http://www.nap.edu/openbook.php?
record_id=11676&page=2



Isotopic (proxy) temperatures and GHGs at Vostok, over the last glacial cycle; courtesy of P. Yiou



Ts and GHGs over 400 kyr

The same lead–lag relations are apparent over these 4 glacial cycles …





Sun-Climate Relations
• It ain’t new:

v. ~1000
papers (in
1978!), as well
as Marcus et al.
(1998, GRL).

• “Corrélation
n’est pas
raison.”

• Requires
serious study of
solar physics.



A short analysis of the noise effect from
RDS theory

The web of resonance is nonlinearly altered. It is linked
with stochastic normal form theory.

This web lives in a sea of "chaos + noise".

A random attractor computed on a partial resonance
region:

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Concluding remarks

Some insights

Reduction of the attractor dimension:
limσ→0 dim{Aσ(ω)} < dimA0 as the noise intensity σ → 0.

Stochastic parametrization ⇒ gain of structural stability for
random attractors.

These results hold for relevant deterministic models that
are stochastically perturbed.

RDS theory offers a meaningful framework for performing
classification in stochastic modeling.

Some perspectives

Effect of colored noises and lag-correlation on stochastic
classes.

Accurate description of noise on non-hyperbolic chaos
(Lorenz system, Newhouse phenomena, Hénon map...)

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



An example of random attractor for Arnold’s family

Several trajectories for different initial data and one single
realization ω:

Conclusion: Noise transforms the deterministic 1-D attractor
to a random fixed point attractor (0-D!)

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin




