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experimental forecasts are leading to quasi-operational ones. In midlatitudes
and on the global scale, there is substantial interest in nowcasting and short-
range forecasting by the world's navies, fisheries, and off-shore drilling
corcerns; This interest is being met by a small, but very active segment of the
oceanographic community, especially on the regional and subbasin scale.

The most pressing motivation for a much larger number of physical

oceanographers is, however, the optimization of the use of the much-
expanded, but still insufficient data iets expected'in the near future, for the
purposes of deepening and broadening our understanding of ocean circu-
lation on regional, basin, and global scales. This will require the blending of
actual current observations with the theoretical knowledge from past
observations, as incorporated into numerical models, prognostic or diagnos-
tic. Data sets from field programs will be archived and thus will be available for
imaginative use with different numerical models and data assimilation or
inverse methods, hence, the need to intensify the exploration and intercom-
parison of data assimilation methods in oceanography.

Numerical models can be used to assimilate meteorological and oceano-
graphic data, creating a dynamically consistent, complete and accurate
"movie" of the two geofluids, atmosphere and ocean, in motion. One key
problem for oceanographic applications is how to determine variables not
directly observed, such as the velocity components, from the observed
variables, such as surface height or wind stress. The other key problem is how
to use information in one part of the ocean, at the surface or in a western
boundary current, in order to infer the state of the other parts, at depth and
throughout a subtropical gyre. The anslvers to these two problems lie in the
dynamical coupling between variables for the one, and the propagation of
information with the flow for the other. This is the central role that dynamics
plays in estimating the state ôf the ocean, as well as that of the atmosphere,
from incomplete data. Numerical models, however, are not and never will be
perfectly accurate representations of the atmosphere and ocean's large-scale
motions. Both models and data have errors; hence the need to balance dy-
npmical and observational information properly.

Meteorological data usage can thus provide some guidance to oceano-
graphers. On the other hand, differences in the intrinsic properties of the two
fluids and in the nature of the available data sets imply that oceanographers
must proceed cautiously in building upon the experience accumulated by the
meteorological community. .The existence of complex continental borders
and of narrow, intense currents along western boundaries and the equator, the
difficulty in defining unambiguously a mean quasi-steady circulation, the
importance of deep convective processes that are confined to very limited
ocean areas are all major differences from the global atmosphere. These
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2. EvorunoN oF DATA Asnttt,c,flor.r N Mrteonorocy

We not only want to know and understand the climatological or current
state of either geofluid (the atmosphere or the ocean), we also want to predict
their future state. Beyond the qualitative understanding of either geofluid, a
quantitative estimate of its state in the past and present as well as quantitative
prediction of future states is required. The estimate of the present state is a
prerequisite for future prediction, and the accuracy of past prediction is
essential for an accurate estimate of the present.

How does the estimation of the present proceed in meteorology? The first
step along the road of quantitative numerical estimation in meteorology was
objectiue analysis, which replaced manual graphic interpolation of observa-
tions by automated mathematical methods, such as two-dimensional (2-D)
polynomial interpolation (Panofsky, 1949). Not surprisingly, this step was
largely motivated by the use of rapidly improving knowledge of atmospheric
dynamics to produce numerical weather forecasts (Charney et al.,1950).The
main ideas underlying objective analysis were statistical (Eliassen, 1954;
Gandin, 1963; Phillips, 1976). Observations are considered to sample a ran-
dom field with a given spatial covariance structure, which is predetermined
and stationary in time.

This generalizes, in fact, Wiener's (1949, 1956) ideas on statistical estima-
tion and prediction (cf. Ghil, 1989) from a finite-dimensional system, gov-
erned by ordinary differential equations (ODEs), to an infinite-dimensional
system, governed by the partial differential equations (PDEs) of geophysical
fluid dynamics. In practice, these statistical ideas appeared too complicated
and computationally expensive at the time to be adopted as they stood into
the fledgling numerical weather prediction (NWP) process. Instead, various
shortcuts, such as the successive-correction method were implemented in the
operational routine of weather bureaus (Cressman, 1959).

Two related developments led to the next step, in which the connection
between statistical interpolation on the one hand and dynamics on the other
became apparent and started to be used systematically. one development was
the increasingly accurate nature of numerical weather forecasts: the other was
the advent of time-continuous, space-borne observing systems. Together, they
produced the concept of four-dimensional (4-D) space-time continuous data
assimilation in which a model forecast of atmospheric fields is sequentially
updated with incoming observations (Charney et al., t969;Smagorinsky er al.,
1970; Rutherfofi,19721. Here the model carries forward in time the knowledge
of a finite number of past observations, subject to the appropriate dynamics,
to be blended with the latest observations.

Combining the 4-D assimilation of the new satellite, aircraft, and drifting
buoy data with the usual objective analysis of the earlier conventional data
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from radiosondes, ships, and land stations (see Fig. 1) led to an interesting

realization. In fact, NWP operations had, of necessity, combined dynamics

with observations all along in determining the state of the atmosphere at all

times and in particular at those times from which forecasts had to be issued.
Any weather bureau carries out two processes in parallel: one is the numerical
forecast from a particular moment in time, ot epoch,which we shall call initial

time: the other is the 4-D assimilation of incoming data in order to estimate as

well as possible the state of the atmosphere at the next epoch from which a

forecast has to be issued.
Figure 2 shows the process of intermittent updating, in which all data within

a certain interval, or window, are used together at the same epoch to update
the state of the system as forecast by the NWP model (Bengtsson, 1975).
Forecasts are typically started at so-called synoptic times, 0000 GMT and

1200 GMT, in which case a 12 hr assimilation cycle with *6 hr windows is

used. The subsynoplic times 0600 GMT and 1800 GMT also intervene when

using a 6 hr cycle with * 3 hr windows. At analysis or update times, the

numerical forecast is first verified against the new data and then combined or
blended with them, i.e., the data are assimilated into the model. Finally, a new
forecast is issued from the newly estimated state of the atmosphere.

The intermittent updating process described above was entirely appropriate
as long as most data were taken, by international agreement, at the same time

in order to provide a "synopsis" of the global weather; hence the word

synoptic times and synoptic maps. With the advent of satellite data, time-
continuous data assimilation, i.e., in practice every model time step (Ghii et al.,
1979), became possible. Thus, considerable interest developed throughout the
1970s in objective analysis and data assimilation methods, in preparation for
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Frc. 2. Operational cycle of a weather service which combines the forecasting and data assim-

ilation process (from Ghil, 1989).
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actually observed data with model-evaluated values of the same dynamical
variables. This second approach emphasizes model parameter estimation,
formal testing of the models against the data, and the need to calculate
solution errors arising from the errors inherent in the model, in the data and
in their optimal blending. A discussion of these important aspects of ocean-
ographic data assimilation will be given in Section 6 in the context of specific
applications. Here we review the general similarities and differences between
the two geofluids in physics and dynamics, in current and expected data sets,
and in the numerical models used.for each medium.

3.1. Dynamics and Thermodynamics

The similarities between the two geofluids are well known, and a unified
theory is given by geophysical fluid dynamics (GFD). A number of books
address GFD from this broad point of view (Ghil and Childress, 1987; Gill,
1982; Pedlosky, 1987). Nevertheless, crucial differences exist between the
two fluid media. Hence, oceanographers cannot simply borrow the data
assimilation techniques developed in meteorology; they must reinterpret the
techniques and make them more suitable for oceanographic data sets.

Major similarities and differences are often paired. First, both atmosphere
and ocean are forced, dissipative systems (Lorenz, 1963; Ghil and Childress,
1987, Section 5.4), but the atmosphere is forced only thermally, by equator-to-
pole and land-sea temperature contrasts. Furthermore, this large-scale
thermal forcing changes slowly on the time scale of purely deterministic
prediction, 1 to 2 weeks.

By contrast, the major component of the ocean circulation on short time
scales is the wind-driven circulation. Hence, in order to model, understand,
and predict successfully oceanic currents, it is necessary to possess infor-
mation on the ocean's internal dynamic variables, as well as on the surface
forcing functions that drive these variables. Scatterometry will provide the
wind-stress field at the sea surface with a space-time resolution adequate for
global ocean circulation modeling and with reasonable accuracy.' 

The oceans'thermohaline circulation exhibits most of its variability on the
much longer time scales of decades to millenia (Gill, 1982; Ghil er al.,1987\.
But its short-term variability is also significant (Gill, 1982; Levitus, 1989), and
it does interact strongly with the wind-driven circulation. Unfortunately,
direct measurements of the heat and water fluxes, which drive the thermo-
haline component of the circulation, will not have adequate resolution and
accuracy for global ocean modeling. The global distribution of the incoming
solar radiation is relatively well known at the top of the atmosphere. At the
sea surface, however, the thermodynamic fluxes have been modified by the
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communicate through it by electromagnetic means, only by acoustic ones.
This major difference in the physics of the two fluids has had obvious and
profound consequences for the capability of collecting synoptic data sets with
global coverage, a capability not existing for the oceans and limited, even in the
future, to the ocean surface only (Munk and Wunsch, 1982).

Further complications in oceanographic modeling are due to the presence
of continents, which break the world ocean into major basins with complex
geometries. This has two effects. First, the break in the longitudinally periodic
configuration of the fluid makes it impossible to define a zonal-mean
climatological component of the circulation analogous to the atmospheric
subtropical jet. Many models and'results for the atmosphere rely upon the
expansion and linearization of the equations of motion around this dynamical
mean state, which constitutes a considerable simplification. This powerful
simplifying approach is impossible for the ocean.

Second, oceanic horizontal and vertical boundary conditions are much
more complex. In the atmosphere, horizontal boundary conditions are
periodic, which makes relatively simple spectral models extremely useful and
efficient. At the upper boundary, a simple radiation condition suffices. In the
ocean, continents introduce great flow distortions and multiple, model-
dependent choices for the horizontal boundary conditions. At the surface,
accurate knowledge of two major surface forcing functions, heat and
momentum, is required, as previously discussed. Only the bottom boundary
condition may be simpler, not because the ocean's bottom topography is less
complex than the earth's surface topography, but because deep ocean motions
are very weak, and the bottom boundary conditions can often be linearized.

All the differences between the two geofluids just reviewed briefly make the
ocean system less easily tractable than the atmospheric one, with respect to
realistic numerical modeling or the capability for data assimilation. In one
respect, however, the ocean is simpler than the atmosphere, and this may
simplify the development and adaptation of assimilation techniques. The
ocean is a very stably stratified system with a time-constant, permanent
pycnocline. Mixing occurs mostly along isopycnal surfaces, rather than across
them. This stable stratitcation strongly inhibits vigorous vertical motions,
and vertical velocities are usually of the order of 10-5 cm/sec compared to
I crn/sec for the horizontal components. Unlike the atmosphere, where ver-
tical convection plays a crucial role in the dynamics, deep convection cells
in the ocean are very limited in horizontal extent; they are mostly confined to
the North and South polar regions of the Atlantic, where the major water
masses are formed.

The ocean's strong stratification also helps determine the most energetic
scales and processes for the global ocean circulation. The counterpart of
synoptic-scale cyclones in the atmosphere is mesoscale eddies in the mid-
latitude ocean. Oceanic energy spectra (Wunsch, 1981) show a dominant
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Figures 3 and 4 represent the distribution in space and time of all oceano-
graphic data up to 1978, archived by the National Oceanographic Data
Center (NODC), Washington, D.C.

In Fig. I, the total number of scalar measurements of the atmospheric mass
and velocity fields over 12 hr is of the order of 10s (Ghil, 1986, 1989). This
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number is essentially adequate for a description of large-scale atmospheric
fields, by using the methods of data assimilation into weather prediction
models, which are currently operational in major weather bureaus. The test of
adequacy here is relatively accurate prediction for a few days or a few synoptic
periods.

The total number of archived oceanographic mass-field measurements over
a period of 80 years or so is of the order of 107: (a) temperature T and salinity
S from Nansen casts at about 500,000 hydrographic stations: (b) T from about
785,000 mechanical bathythermograph (MBT) and about 300,000 expendable
bathythermograph (XBT) soundings, each with its own vertical distribution
of individual measurements (Levitus, 1982). The situation for the ocean's
velocity field is rather worse than for the mass field.

On the face of it, taking the number of atmospheric observations as the
yardstick, there are 102 times more oceanic observations for a period of 105
times longer, i.e., 103 times fewer observations. This first estimate has to be
corrected by allowing for the different time and space scales of the basic
phenomena to be observed and predicted in the atmosphere and in the ocean.
The Rossby radius of deformation, which is the characteristic length scale in
both geofluids, is 0(102) km in the ocean vs. 0(103) km in the atmosphere,
thus requiring an observational density 102 times higher. This is compensated
only partially by the longer characteristic time in the oceans, requiring a fre-
quency of observation 10 times lower than the atmosphere. The corrected
estimate is therefore of 104 times fewer observations in the ocean.

Not only have oceanographers been accustomed to very few observations,
but these are even more unevenly distributed in space and time. Figure 3 shows
the distribution in time of MBT and XBT casts. The XBT is a more accurate
and convenient instrument than the MBT, which it has essentially replaced.
Unfortunately, the number of XBT casts has actually decreased, and there is
also a lag in the entry of some XBT measurements into the NODC files. The
distribution of observations in space, horizontally (Fig. a) and with depth
(Fig.5), is also very uneven. Most data are in the Northern Hemisphere (NH,
dotted line in Fig.5), and there is further concentration of data in western
boundary currents and along shipping lanes. The amount of data below the
permanent thermocline is a tiny fraction of the total, and decrease of
information with depth is quite rapid in the upper ocean as well.

In contrast to this situation, valid untiljust a few years ago, there are already
about 40,000 satellite sea-surface temperature measurements daily. In ad-
dition, in the early 1990s, about 50,000 sea-surface height measurements and
180,000 surface wind vectors will be available daily (Halpern, 1987). Thus,
the daily number of measu.rements in oceanography will become comparable
to that currently available in meteorology. Even so, two problems remain;
first. this is still a factor of 10 smaller, due to the difference in characteristic
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scales; and second, the additional data mentioned are all surface data. tt is
hoped that the number of vertical soundings will increase somewhat, due to
acoustic-tomography anays and other advanced systems. But it is unlikely
that this increase will be anywhere as dramatic as that for the surface.
Furthermorg the data for the interior water mass, and especially the deep
layers, will still be very unevenly distributed.

3.3. Oceanographic Models

Due to the smaller number and more uneven distribution of oceanographic
dat4 a proportionately heavier burden will rely upon numerical models
and data assimilation techniques to provide the dynamical interpolation of
the circulation to data-poor water volumes and from observed to unobserved
variables. oceanographic models have followed their meteorological counter-
part with a lag of about 10-20 years. As a result, most of them are still at the
stage of craft rather than technology: each has been designed with a specific set
of questions in mind or for limited domains; hence they are not portable in
general and cannot be used for general-purpose global assimilation and
prediction. Most numerical models in oceanography can be divided into four
major categories:

(1) Quasi-geostrophic models, a prototype of which is discussed by
Holland (1978).

(2) Layer models, based upon PE dynamics that use the adiabatic
approximation. Examples are the subtropical gyre models of Holland and Lin
(1975), models by Hurlburt (1986) and Thompson (1986) for the Gulf of
Mexico, and, more recently, for the Gulf Stream system (Thompson and
Schmitz, 1989); the equatorial models developed by Busalacchi and Picaut
(1983), Lutherand O'Brien (1985), Cane and Paden (1984)fordifferent tropical
oceans; and the Bleck and Boudra model (1986) in isopycnal coordinates.

(3) Primitive Equation models endowed with active thermodynamics, the
most complete prototype of which, known as the Geophysical Fluid
Dynamics Laboratory (GFDL) model, has been developed by Bryan (1969)
and Cox(1984). It is the only ocean general circulation model (GCM) made
available to scientists all over the world and is presently used for a vast variety
of modeling and data assimilation studies. A Semi-Spectral PE (SpEM) model
has been constructed by Haidvogel et af. (1991) and is being used in a variety of
applications.

(4) Intermediate Models.(IM) based upon different forms of the balance
equation have been proposed by Gent and McWilliams (1984). They are not
yet in widespread and standard use, but rather are in the development stage.
Portable QG and PE versions of a limited-area, open-boundary regional
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We assume that the two measurements are unbiased.

E5t= fr,2 - fi,16 (4.1b)

E is the expectation operator, the mean or average of a theoretically infinite
number of measurements, and Ex is not known a prtori. Requiring the
estimate itself to be unbiased, Eî - Ex immediately implies that a1 I ur: 1
and hence Eq. (4.1a) can be rewritten as

,î: l  -* uze _ y)

We also assume that the measurement errors are uncorrelated.

E(y - Ex)(z - Ex): g

and that their variances of and o] are known

o? : E(y - Ex)t, of = E(z - Ex)2 (4.2cd)

The optimal linear unbiased estimate of x is given by choosing a. and
dr : 1 - d2 so as to-minimize the uariance

o2 : E(î - x)z (4.3)

of the estimation error. The required minimum is achieved by choosing

ar: ô2lo?, az: ô21o3 $.aub)
here ô2 is just the variance of the optimal estimate given by

ô-2 : o12 + oiz (4.4c\

The weights a, and c, thus reflect the relative uncertainties in y and z,
respectively, and ô2 is smaller than both ol and of . In fact it is convenient to
define as accuracy A = o-2 the inverse of the variance of a random error. with
this terminology, Eq. (4.4c) states that the aocuracy of a linear unbiased
optimal estimate equals the sum of the accuracies of unbiased mutually
uncorrelated measurements.

Formally, the variational approach would have required here to minimize
J : J(x; fr,Êr),

J : f { x - ù 2 + F r $ - z ) ' (4.5)

with respect to x for arbitraiy weights p, and pr.Theresult will be the same,
Eq. (4.1) with (4.4), provided

or, eliminating ô2,

f r :  i l r ,

fr : ol2,

(.2a)

(4.2b)

F z :  a z

flz = oi2

(4.6a,b)

(4.6cd)
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In the applications we are interested in, the system matrix Y represents
the discretized version of a partial differential operator. In principle, the

discretization can be made by finite differences, spectral transform, or finite

elements. [n the case of finite-element or of implicit finite-difference methods,
Eq. (4.8a) becomes

Vi,t"nto : Y[t] rwi- r (4.8a')

The matrix Y[r)is in either case band limited and invertible, so that (4.8a') can
be reduced to (4.8a) by writing

Yr_r :;yf l t ]-rYf ' �J, (4.8a")

In the examples given in Section 5 and in Ghil (1989), we use for simplicity
explicit finite-difference methods. It is obviously desirable in data assimilation'
as well as in numerical prediction and simulation to use stable discretization
methods (but see Miller, 1986).

The observation vector wl has dimension p1 << N, where N is the dimension
of wr1 and wi. The matrix II1 represents the fact that only certain variables
or combinations thereof are observed at a set of points much smaller than
the total number of grid points (Figs. 1, 3, 4, and 5). For instance, remote
soundings of radiance by polar-orbiting satellites combine atmospheric
temperatures, or tomographic soundings of acoustic travel times combine
oceanic densities. Ilo also represents the interpolation of grid values to data
location for a grid-point model and (inverse) spectral transforms to physical

space for a spectral model. The vector 4t = wT - HuwI contains the new
information provided by the data. It is called innouation uector in the
engineering literature and obseruational residual in the meteorological
literature.

Equation(4.8b)has the form of Eq.$.2a)with y : w'r,z : w[, and dz : Kt,.
The conceptual difference between Eqs. (4.8) and (4. t) is that w[ represents past

observations, and the practical difference is that ?* * N,i.e. Hy is not square,
and it may have a different size at each time step. In fact, all operational data
assimilation schemes have the form of Eq. (4.8b), whether the model in
Eq. (4.8a) is linear or nonlinear. Existing assimilation schemes differ from
each other by the weight matrix K* and we wish to find the optimal Ko in a
precise sense to be defined forthwith; in the engineering literature, K. is often
called the gain matrix.

Optimality is defined in the context of the following assumptions. First the
true evolution of the geofluid, wl, is governed by

w L : Y * - t w ! - t + b l - ,

where b[ is a (Gaussian) white-noise sequence, i.e.,

Ebf : g, Ebl(bi)r : Qr,6r,r

(4.9a)

(4.9b,c)
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governed by

Prr:Yr-Êi- tYl- t  *  Qr-r

Pi=u - Kkilk)Pfkg - KrHù, + KTRTKJ

(4.r3a)

(4.13b)

Hence, by advancing P[o along with wf", one can know how well the true
state wl is estimated for any weight matrix K1. This in turn permits one to
determine the optimal & [cf.Eq. (a.15)].

There are two problems which arise at this point. First and foremost, one
must consider the computational complexity of advancing in time the error
covariance matrices. While Eqs. (4.8a,b) represent 0(N) computations per
time step, Eqs (4.13a,b) represent at face value O(N2) computations. This
is quite tolerable for typical engineering applications with N < 1000, but
prohibitively expensive for atmospheric and oceanic prediction or simula-
tion models with N > 10s. However, by exploiting special features of the
dynamics matrix Y and the covariance matrix P, which arise in the latter
applications, the operation count can be reduced to O(N), i.e., it can be
made comparable to that for currently operational, less sophisticated data
assimilation methods (Parrish and Cohn, 1985; Todling and Ghil, 1990; and
Section 5.3).

Second, the noise covariance matrices Qyand R* are assumed to be known
in the subsequent derivation of the optimal Ku. This is not so in practice,
and finding the actual magnitude of model errors and observational errors
is an important function of the data assimilation process. An adaptive filter
to achieve this in GFD was formulated by Dee et al. (1985). It was tested
only for the linear, one-dimensional (l-D) shallow-water equations, and sub-
stantial future work on this problem is necessary.

The optimal weight matrix Ko at each time step is obtained by minimizing
the expected mean-square (m-s) estimation error

J : tr Pl: E(wi - wi)r(wi - w[) (4.r4)

This is done by using Eq. (4.13b) for the matrix Pi and setting the derivative
of "/ with respect to each element of K,, equal to zero. A unique, absolute
minimum is attained for

K*: Kf = PîkH[(HkP[a[ + R*;-r (4.15)

The linear unbiased data assimilation schemes Eq. (4.8a,b) with the optimal
gain matrix Kf in Eq. (4.15) is called the Kalman filter (Kalman, 1960). Its
continuous-time counterpart [see Table IV(A) in Section 5.4] is often called
the Kalman-Bucy filter (Kalman and Bucy, 1961).

To complete the analogy between the Kalman filter (K-filter) and the two-
measurement example given at the beginning, it is useful to rewrite Eqs. (4.13b)
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Here Eq. (4.18) replaces the linear evolution of Eq. (4.8a), while Eq. (4.8b)
is still used at analysis time to update the model with incoming data. The
explicit, nonautonomous dependence of N on time t is indicated by the
subscript k.

The EKF is defined by using Eq. (a.17) with Yu being given by the Jacobian
matrix

(4.re)

With this Y*, the error evolution in Eq. (4.13a) is still correct to first order
in w[ - w[. Operational experience with suboptimal filters in NWP, OI in
particular, suggests that the linearization of Eq. (4.19) need in fact not be re-
computed at every time step. Y* can be kept fixed over time intervals over
which the flow does not change dramatically. The problem of filter diver-
gence, common in engineering applications, is likely to be encountered for
planetary flows only in the presence of strong instability combined with
strong nonlinearity of the flow (cf. Budgell, 1986b, for nonlinearity, and Miller,
1986, for instability). This is because nonlinearity in GFD is essentially qua-
dratic and, while of paramount importance in long-term behavior (Ghil and
Childress, 1987; Pedlosky,1987), is typically well behaved over the short time
spans involved in data assimilation. Nonlinear estimation and the EKF are
discussed further in Section 5.3.2.

4.2. Yariational Methods: Fundamentals and Variants

The point of view taken in the previous section is that of optimizing as-
similation techniques tEq. (a.8)l developed since the mid 1970s in NWP for
the purposes of assimilating satellite data (Ghil et al., 1979; Lorenc, 1981;
McPherson et al., 1979). A point of view which at first appears to be more
general is to minimize the distance between a given trajectory G : {w(t):
0 < r < r*) and a set of dataz(t): H(t)w'(t) + b"(t) over the time interval
0 < r < tt, subject to a dynamical or smoothness constraint S : S(w,r): Q,
i.e., minimize the functional J"",,

{r,r(t)A(t)a@ + Srr(t)s} dt (4.20)

Here we use for simplicity (Bennett and Budgell, 1987) continuous-time
notation, but still let vectors stand for spatial dependence to retain some sim-
ilarity with the notation in the previous section. The vector q(t):z - Hwr
is the observational residual mentioned already in the previous subsection,

(Yr)r;:#1,=*

J,"rft] = 
J:
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typical case:

* fl(x,r)/r,(x, r){V(x, t) - Vo(x, r)12

* y(x, r)s"(@, Y ; x, t)\ dZ dt (4.2r\

Here @ is geopotential and V horizontal velocity, x is the position vector of
horizontal and possibly vertical coordinates within the area (or volume) X,
a(x, r) and p(x, t) take the place of the matrix ,4(l), with 7(x, r) playing the role
of f(r) and s(@, V;x,t) that of S(w;4.The functions hr and ft, are sums of
Dirac delta functions at the discrete points (xr,t) at which observations of

ô and V, respectively, exist. Their presence highlights the need for the con-
straints s, in order to obtain smooth fields rf(x, t) and V(x,r) from discrete
observations Qo(xi,t) and Vo(x;,,f,). The exponent v equals 1 for a strong
constraint and 2 for a weak constraint.

The classical variational approach of ôJ = 0 leads to the Euler-Lagrange
equations for Eq. (4.21). This approach is particularly suited for the strong-
constraint formulation, since 7(x, r) becomes a Lagrange multiplier, while a
and P are prescribed a priori. A system of Euler-Lagrange PDEs is then ob-
tained for the unknown functions d, V, and y. The form of this PDE system
depends on the functional form of the constraint s(@, V) and on the geom-

etry; in general the system will be neither elliptic nor hyperbolic, but of
mixed type (Stephens, 1970). Certain PDE systems of mixed type lead to
well-posed initial boundary value problems and can be solved numerically
with reasonable computational cost (Ghil er al., 1977, and references therein).
In most cases of real interest, however, this approach has not proved par-

ticularly useful or promising.
In the case of weak constraints, with a, p, and y prescribed, ô"I : 0 can also

lead to a set of PDEs for the minimizing solution (Bennett and Mclntosh,
1982; Bennett and Budgell, 1989; Miller, 1987, pp. 18-23). Considerable
numerical and regularity problems arise in all but the simplest problems, in
this case as well.

The second approach of direct minimization by an iterative numerical
algorithm is more in tune with modern computational tools. This approach
circumvents the Euler-Lagrange equations and minimizes J in Eq. ('21)

directly with respect to the trajectory {d(*, 4, V(x, t)\ yielding, if the constraint
is strong, also y(x,r). If a, p,and 1'are given, positive constants (i.e., in the
simplest case of a weak constraint)and s is linear, the functional "/ is quadratic

in the solution and hence will have a unique minimum. This can be computed
by discretizin g Eq. g.2l) in space and time and minimizing the discretized J

with respect to all the components Q$i, t) on a regular grid (Hoffmann, 1982).

ft' f
Jlô,vf = 

J, Jr{o(*,t)h6(x,t)lô(x,t) 
- Q"(x,t)12
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If Dn and pn are ploperly chosen" the sequence wo(o) will tend to a wo(-\
which leads to the trajectory g@, minimizing "Ino[w], at least locally in phase
space. Various descent algorithms, including in particular steepest descent,
conjugate gradient, and quasi-Newton (QN) are described by Gill er al.(l9ï2l.

This method was introduced into GFD by Marchuk (1975). Its most general
form for the related problem of sensitivity analysis,was presented by Cacuci
(1981) and applied to a general circulation model by Hall (1986). Assimilation
results with a 2-D version of the inviscid barotropic vorticity equation and
24hr of radiosonde observations over the Northern Hemisphere were ob-
tained by Courtier and Talagrand (1987). The slightly different problem of
recovering wind stress in the tropics from oceanographic data was treated by
Thacker and Long (1988).

Data assimilation for fully nonlinear problems such as Eqs. (4.18) or (4.23),
in GFD and elsewhere, is incompletely understood, and no algorithms
satisfactory in all cases exist so far. Multiple minima of the cost functional
[Eqs. (a.21) or (4.22)f and rapidly changing growth rates of instabilities along
a trajectory approximating a minimum are only some of the difficulties
encountered (see Sections 5.3.2 and 6.3.4). Linearization is necessary in both
the sequential estimation approach (sections 4.1 and 5.3.2) and the direct
minimization approach (Section 5.4). The EKF [Eq. (4.19)] and its gen-
eralizations proceed by successive linearizations in time along a given
trajectory, while the adjoint method and its variants proceed by successive
linearizations in function space over the entire time interval in question. In
neither case is the optimal solution of the problem guarantee d a priori.

The adjoint method has no direct access to statistical information, and it
is not clear at this point how model errors can be taken into account. while
the K-filter imposes a very large computational burden in order to provide
the necessary error estimates. The relative advantages and disadvantages of
statistical and variational methods are a matter largely of numerical and
practical considerations (Lorenc, 1986). These are all changing rapidly in a
climate of intense research and of swift improvement in the computing
environment of GFD.

' 
5. CunnsNr Srnrus or MsrEnorocrcAl Der,l AssrrvrILATroN

This section is devoted to the meteorological applications of the estimation
and control theory discussed in Section 4. Meteorological data assimilation is
a mature subdiscipline, characterized by the following features:

(l) Well-developed numerical prediction models with forecasts validated
on a daily basis against observations;
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xr and x2,

cfi": ${t*! - xr,)lso}cf; - -cïiô

Cii," : {r - 2(x! - *t;' l t3}cli6

cliuu :2{(xi - xï(x! - xillsâ}cfro

(5.2b,c)

(5.2d)

(5.2e)

(5.5a)

(5.5b)

Here the Greek subscripts a and p correspond to eastward (1) or northward
(2) components, and a + fl (i.e.if a : 1 then f : 2 andvice versa).

The geostrophic assumption for the forecast errors breaks down, obviously,
near the equator, and relations (5.2b-e) have to be modified there. Vertical
correlations are treated at present differently from the horizontal correlations
(Lônnberg and Hollinsworth, 1986; Baker et al.,1987), since the analysis is
done separately on pressure or sigma-coordinate surfaces. A unified, truly 3-D
treatment of forecast error correlations would be an important step in the
direction of true optimality; indeed, baroclinic instability affects strongly
short-range forecasts and has a fully 3-D structure.

The evolution of the forecast error variance matrix D[ between update times
k' : (J - l)r and k" : Jr is prescribed,

D'r": Di,+ o (5.3a)

where D is an empirically determined approximation of mean forecast error
growth over r model time steps (6 h or l2h,cf. Section 2). At update time, the
new Di is obtained by using Eqs. (5.1,5.2) and

si: (1 - KkI{,)S[(/ - KoHùt + KTRTKJ (5.3b)

(5.3c)Dl: diag(Si)

with /c : k". Thus Eqs. (5.1-5.3) are the OI counterparts of Eqs. (4.13a,b) of
sequential estimation, and (4.15) is still used, with P[ replaced by S[,

KP': slnl(nrslnl + R*)-' (5.4)

The OI procedure uses exactly the same forecast and update equations as
the general linear unbiased data assimilation scheme [Eqs. (4.18, 4.8b)],

w [ :  N1- r (w i - , )

wi: w[ + Kfrlw; - Hot"i)

Equations (5.1-5.5) describe completely, in compact vector-matrix notation,
the OI assimilation procedure.

In a practical assimilation cycle, beside the operations implied by Eqs. (5.1,
5.3a-c, and 5.5b), considerable work is expended on the related problems
of quality control and data selection (Gustafsson, l98l; Gandin, 1988;
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Terr,p I. crilnc,qrERrsrrcs or Dete Assnar.enox scnaræs w oprnenoxer. use er rrs
END oF rrt 197(h"

Organization Opcrational analysis
orcountry methods Analysisarea Anatysisforecast

Australia Successivc corrcction SHd nhr
method (SCM)

Variational blending Regional 6 hr
techniques

Canada Multivariate3-D statistical NHd 6 hr
interpolation Regional (3 hr for the surface)

France SCM; wind-field and mass- NH 6 hr
field balancc through first
guess

Multivariate3-Dstatistical Regional
interpolation

F.R. Germany SCM. Upper-air analyses NH 12 hr
wcre built up, level by level,
from the surface

Variational hei ghr/wind
adjusfinent

Japan SCM

(6 hr for the surface)

Climatology only as
preliminary fields

NH l2hr

NH l2hr

Height-field analyses were Regional
corrected by wind analyses

Swedcn Univariatc 3-D statistical NH l2hr
interpolation

Variational height/wind Regional 3 hr
adjustment

UnitedKingdom Hemisphericorthogonal
polynomial method

Univariate statistical Global 6 hr -
interpolation (repeated .
inscrtion of data)

U.S.A. Spectral 3-D analysis Global
Multivariate 3-D statistical Global 6 hr

interpolation
US.S.R. 2-D" statistical

ioterpolation
ECMWFà Multivariate 3-D statistical Global 6 hr

i interpolation

o After Gustafsson (1981).
à Europcan Centre for Medium Range Weather Forecasts.
'2-D is in a horizontal plane.
d Southern Hemisphere and Nonhern Hemispherg resp€ctively.
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of the decade, most weather bureaus who could afford them implemented
one or another version of OI.

As much more powerful computers are likely to become available during the
coming decade, should we be content with OI and with increasing simply the
numerical resolution of our forecast and assimilation models? A strong case
can certainly be made for the positive impact of increased resolution on both
assimilation and forecasting accuracy (Atlas er aI.,1982; Hollingsworth et al.,
1985). But the rather crude approximation of forecast error covariance
evolution in OI has certain deleterious effects on assimilation results. This
might require us to use some of the increase in computing power to improve
and modify OI in the direction of a better approximation to the K-filter or to
replace it by a variational method.

Figure 6 shows the estimated analysis errors [cf. Eqs. (5.3b,c)] of a 6-hr
assimilation cycle at the U.S. National Meteorological Center (NMC)
(McPherson et a1.,1979). The errors in the mass field (upper panel) as well as in
the wind field (lower panel)have large inhomogeneities, with local maxima as
large as 6"C in temperature and 30 m/sec in zonal velocity. Some, but not all
of these maxima occur in regions of data sparseness, and most exhibit strong

Ftc. 6. Estimated analysis error at 250 mb for 0000 GMT 14 December 1977. (a) Temperature
error; contour interval is l"C. (b) Eastward wind component error; contours are 5 ms-r apart
(from McPherson et al.. 19791.
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leading to loss of ellipticity of the Monge-Ampère equation in question (e.g.,

nfiy"tiOa 1956). ûhile a generulued Monge-Ampère_equation can be

solved efficiently in the mixed-type case (Ghil er al., 1971), the PE system

proved much easier to use in an operational setting'

on the theoretical side, it turns out that the slow manifold does not exist in a

rigorou, mathematical sense (Vautard and Legras, 1986), and that inertia-

gtiui,y waves are an inseparable part of the total behavior of the synoptic

irutrriprri.o, 19g2; Lacaira_and Talagrand, 1988). In oceanograÎhy, global

or basin-wide PE models are necessary to account correctly for the interaction

between the thermohaline and the wind-driven circulation (Bryan and

sarmiento, 1985), and they are the only models available for the description

and prediction of tropical phenomena (Gill' 1982)'

In the process of data aisimilation, NWP experience has shown that the

discrepancy between current data, with their random elrors' and model first

guess,'with its errors, can excite a spuriously large amount of inertia-gravity

iun., in a pE model. These fast waves are damped out over 12-24 hr and

have been shown not to affect 24-48 hr forecasts substantially (e'g', Balgovind

et al.,1983).However, in an assimilation scheme without proper built-in error

estimation, they can lead to a rejection of data at the next subsynoptic update

time, being too different from the first guess (see also Daley, 1981' for

additional undesirable features of the fast waves)'

Therefore, a long-standing approach in NWP has been to eliminate entirely

or reduce as much as possible the amount of inertia-gravity waves at initial

forecast time. The minimization of the fast-wave energy at initial time goes by

the name initialization in NWP. In other disciplines, including sometimes

physical oceanography, initialization often means just the assignment of

iniiiat values, whatevèr their properties otherwise, to a forecast field (e.g.'

Robinson et a],.,1987,1988, 1989). The word is used in its narrow technical

NWP meaning throughout this chapter.
The optimai compromise between statistical minimization of the errors in

the initiàl state, on the one hand, and dynamical minimization of the fast

components in this state, on the other, is a topic of considerable current

interest in NWP, as witnessed by an entire volume of contributions dedicated

to it (Williamson, 1982; see also Ghil, 1980). The relevance to oceanographic

data assimilation is discussed in Section 6'2'
A reasonable recipe for this compromise can be given in a simple linear

shallow-water model (Ghil er aI.,l98l:Cohn, 1982). In this model, the Rossby

waves form a linear subspace, denoted by & in Fig. 7, and the inertia-gravity

waves form a complementary subspace, denoted by I in the figure.

In the standard formulation of slow manifold theory (Daley, 1980' 1981;

Leith, 1980), the two linear subspaces Q andg atepresented as orthogonal to

each other. This is only the case if the linear system under study is normal, e'g',
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The features that make this system worthy of interest, in spite of its great
simplicity, are the presence of advection, of the Coriolis acceleration and B'
effect, and of two physically distinct types of waves, slow Rossby waves and
fast inertia-gravity waves. Non-stationary Rossby waves arise in this constant-

/ model from the equivalent p-effect due to tbe -fUo term in the continuity
equation (5.7c). The equivalent p is given by 0* = ftu P (Phillips, 1971).

As usual, the coordinate x points eastward, u and u are perturbation
velocities eastward and northward, while @ is the perturbation geopotential.
The parameters are chosen with meteorological midlatitude applications in
mind. Thus, the mean zonal velocity is taken to be U : 20 m sec-r, the mean
geopotential is O : 3 x 104 m2 sec-2, and the Coriolis parameter is / :

10-a sec-l. The resulting equivalent P* is 6.7 x 10-12 m-l sec-l, so that

f* = f 12 with f having the usual value at 45" latitude.
The components of the state vector w1 are the values of (u,u,Q) on a space-

time grid (jLx,k\,t) over which Eqs. (5.7) are discretized by a finite-difference
approximation (Ghil et al., l98l). The approximation in question is the
Richtmyer two-step version of the Lax-Wendroff scheme, which is second-
order accurate in both space and time. The number of points used, I < i < M,
is M : 16, so that N :3M : 48. A spatially 2-D version of system (5.7), with
N: 3 x 60 x 61 : 10,980 is discussed in the next section.

The time step, chosen close to the Courant-Friedrichs-Lewy stability
limit, is ̂ t = 30 min. In this simple case, the dynamics matrix Yo is constant
in time, Yo = Y. But the reason for using U # 0 and the equivalent B-term
in the first place is the desire to build towards a satisfactory solution of the
data assimilation problem for nonlinear models. The EKF and its adap-
tion to GFD problems requires successive linearizations about realistic flows
(Ghil er al., 1981,1982) [cf. Eqs. (4.18, 4.19) here and the accompanying dis-
cussion]. It was shown (Budgell, 1986b; Lzcarra and Talagrand, 1988) that
the estimation can still proceed quite successfully in this more general and
realistic case (see also Sections 4.1 and 5.3.2).

Details about the linear subspaces Q and I in the continuous system (5.7),
as well as in the actual discrete system used in the numerical examples, can
be found in Cohn (1982). The different projections are written down expli'
citly there as matrix operators for the discrete system. The projection used
in the following numerical example has some physical justification, being the
minimum-energy projection, or E-perpendicular projection, which minimizes
the expected energy of the analysis error, f[". In this special case, the weight
matrix A will be denoted by E; it is positive definite, diagonal, and the diag'
onal entries are, at each grid point, unity for the velocity components u and u
and l/O for the geopotential d.

With these dynamical facts in mind, we can address the issue of the com-
promise between minimum errors and minimum fast waves by modifying the
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at update time, even when the analysis wi differs markedly from the first guess
w[. Changing the type of projection to f[11 or fI, does not seem to make too
much of a difference in the estimate (Ghil, 1989).

At what cost to the estimation error are the fast waves eliminated? It
is obvious that constrained optimization, Eqs. (5.6, 5.8), can only yield a
minimum larger than or equal to the result of unconstrained optimization
[Eq. (5.6)]. In Fig. 8, we see side by side the expected rms errors for the
K-filter and llK-filter.

The excess estimation error of the |IK-filter over the K-filter, for all the
cornponents of the energy as well as for the total, increases with time in the
assimilation cycle, but is still quite small in the asymptotic regime at day 10.
So the loss of accuracy in estimation is not too great. But what is the gain?

As pointed out earlier, inertia-gravity waves are an inseparable part of the
geofluid's behavior. They are essential in tropical phenomena, and in fact
their suppression in operational NWP practice by nonlinear normal-mode
initialization (Daley, 1981) has led to serious estimation errors in tropical
analyses (Kanamitsu, 1981). The correct amount of fast-wave energy could
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Ftc. 8. Evolution of the estimation error for a conventional network with and without ini-
tialization of the K-filter. Only the expected rrns error for u (solid for the standard K-filter,
dashed for the llK-filter) and for the total energy E (dasheddotted for K, short dashes for IIK)
is shown (after Ghil et aL. l98l).
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Consider the discretization, spectrally or by finite differences, of a typical
system of flow equations

w + i/-w: eM(w,w) (5.13a)

Here the generic nonlinear operator N of Eq. (4.23) has been decomposed
explicitly into a linear hermitian part L* : L and a quadratic part M,

N(w): -iLw * eM(w,w) (5.13b)

L is assumed to arise by linearization about a state of rest, hence the char-
acteristic skew-hermitian character of iL, which is associated with classical
tidal operators. M is quadratic and represents advective nonlinearities. Other
nonlinearities arising from physical processes, such as convection and its
interaction with radiation, have been mentioned before and are beyond the
treatment of NNMI given here. The small parameter e is typically a Rossby
number; e-r measures the (nondimensional) time scale over which nonlinear
effects are significant.

L has n real eigenvalues that are the frequencies of the system and are
assumed to fall into two distinct ranges such that, without loss of generality,

0 ( o , (5.14)

or :0 ( l )  fo r  /ca  +  1< k<n and o1 , :0 (e)  fo r  |  <  k<  kq ;  typ ica l l y  n=3ko
in PE systems. The eigenvectors associated with the small frequencies span
a slow subspace &;The others span a fast subspace g.Due to the linearization
about a state of rest and the resulting skew symmetry of L, all eigenvectors
are mutually orthogonal, and so are9 andA,in contradistinction from Fig.6.

Changing by an orthogonal transformation from the arbitrary basis of Eqs.
(4.23) or (5.13) to that of the eigenvectors of L yields a system

i+ is^ rx :eN, (z ,z )

i + t A y y : t N r ( z , z )

(5.15a)

(5.15b)

Here the matrices Â, and Â, are diagonal, having respectively the /co small
frequencies (rescaled explicitly by e) and n - ko large frequencies on the diag-
onal. The vector z : (xt,yt)t is the vector w expressed in the new basis.

For e: Q i.e., no nonlinearity and complete scale separation, a solution
starting from initial data y(0) = 0, x(0) : Xo # 0 would stay forever in 4.
For 0 < € << l, this is not the case: nonlinear interactions between x and y
will lead over time O(e-r) to significant fast components. Thus we wish to
determine, for any given xo, a y(0) = yo # 0 such that no high-frequency
oscillations arise over time 0(e-1).

Slightly different solutions to this problem were proposed by Baer (1977),
who applied his procedure to a nonlinear version of the l-D shallow-water
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normal mode initialization, see Errico (1989) and Daley (1991, chapters 6,

9, and 10).

5.3. Kalman Filtering Applications

As indicated in Section 4.1, two major issues in the practical application of

the K-filter to GFD problems are its computational cost and its reliable

extension to nonlinear systems. In this subsection, we show ways to address

these two issues.

5.3.1. Eficient Implementation

The key feature of the K-filter [Eqs. (4.17a-e)f is its estimating optimally
the state of a dynamical system as well as the error in this estimate due to

observational and systen errors. The computation of the forecast and analysis

error covariance P[n requires o(Nt) operations for a state vector with N

variables, in the absence of any simplifications. Even with the expected rapid
progress in computing speed and memory devices, given N :0(105 - 10u)

for state-of-the-art meteorological and oceanographic models and 0(107) in

the near future, the full implementation of such an algorithm would be out

of the question for the 1990s.
The computational burden in the forecast step [Eq. (4.17a,b)] can be

reduced in a number of ways, all of them involving simplifications in the

algorithm along with some loss of optimality. The trade off is between

computational cost and degree of optimality. To evaluate the best possible

trade off, it is still necessary to have, at least for development purposes, a full
implementation of the K-filter for a smaller size test problem in order to
evaluate the performance of the proposed suboptimal algorithm (e.g., Cohn

et al., l98l; Ghil er al.,1982; Section 5.1 here).
The approaches proposed or under study include various improvements to

OI, such as taking into account the inhomogeneity of forecast errors (Cohn

and Morone, 1984) or advecting mass-field error variances by ol-estimated
winds (J. Pfaendtner, personal communication, 1990). Another approach
would simply use a lower resolution model for the assimilation than for the
forecasting, possibly tuning some of the coefficients of the lower resolution
model to match as closely as possible its forecast fields to those of the higher
resolution one. Still another approach is to assume a certain spectral dis-
tribution of model errors, e.g., restricted entirely to slow modes (cf. Phillips'
1986) and with the energy decreasing with wave number among the latter (cf.

Balgovind et al.,1983; Bennett and Budgell, 1987). Cohn and Parrish (1991)'

making such simple assumptions, obtained for a linear barotropic 2-D

shallow-water model much better results with the K-filter than with OI, given
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covariance P[ from one pseudo-time step to the next, while Eqs. (4.llcd,e)
yield, by using the Woodbury formula (cf. also Eq. (4.16a)1,

(P;)-' : (P[)-' + HTR;tHh (5.re)
The second term on the righrhand side of Eq. (5.19) can be decomposed
further into smaller batôhes of observations or to individual observations.

In fact, this sequential processing could also be applied to reduce the com-
putational cost of the OI analysis step [Eqs. (5.3b,c) and (5.4)] by replacing
P* with s1 in Eq. (5.19). sequential processing is ideally suited conceptually
to the unified treatment of time-continuous remote-sensing data, on the one
hand, and of synchronous synoptic conventional data on the other. The only
hitch is that, since oI does not provide a reliable estimate of the analysis
error, separate empirical procedures for quality control, such as buddy checks
within batches of data had to be developed in NWp operations [see discus-
sion following Eq. (5.5), and references there].

The algorithmic simplifications to the forecast step and the analysis step
outlined previously, i.e., multiplication by diagonals of v and p and sequential
processing of observations, have been applied to a twoJayer shallow-water
model ina2-D domain:

ôYolôt  = - (vo.v)ve- lk

ôsolôt - -v.(ôovù
x Vo - Ylarô, + ôzf (5.20a)

(5.20b)

k= 1,2 are the upper and lower layers, respectivelylyt :(u,u) is the veloc-
ity vector, {* is the geopotential,.f : fo + py is the coriolis parameter and
the as are constants, d.1 : 1,d,2: prl pz, where p is density. The implemen_
tation of Parrish and cohn (1985) was for a oneJayer barotropic version
of Eq. (5.20) in a 6000 km x 6000 km square domain, extending approxi-
mately between l5"N and 75"N, with free-slip conditions at the northern and
southern boundaries and periodicity in the zonal direction. The equations
were linearized about a state with constantzonalvelocity Uo :20 ms-1.

These authors carried out computations with resolutions of 20 x 21,
40 x 4l,and 60 x 6l grid points on a cyber 205 vector processor. The latter
resolution of 100 km is quite comparable $'ith that of state-of-the-art global
and even regional NWP models. Experiments with different bandwidths b for
P[ were carried out: the total number of nonzero entries in any row or column
is 2b + 1. Table III shows the results of these experiments. It is clear that the
computation is feasible, and that the efficiency of the algorithm increases with
increasing resolution.

Parrish and cohn (1985) showed that in the absence of model errors
(Q = 0), it suffices to have observations of velocity and geopotential along a
single line of grid points every 12 hr to reduce the analvsis error to a level
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Frc. 9. Forecast error standard deviations in the height field at 10 days for a K-filter expcri-
ment with observations along the N-S symmetry axis of a periodic p-channel, perpendicular to
the basic zonal flow. (a) Full error covariance matrix used in forecast step; (b) banded approxi-
mation of P[, with à : 5; (c) bandwidth b = 3 (from Parrish and Cohn, 1985).
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general (e.g., Kerr, 1990) and can be corrected by the use of stabler square-root

fi lters (Bierm an, 197 7 ).

5.3.2. Strong Nonlinearity

No closed-form solutions to the estimation problem for stochastically
perturbed, nonlinear systems exist, at least not in any form that is com'

putationally realizable for large systems. Hence, there are many approaches to

ôbtuining approximate, more-or-less suboptimal solutions. One of these is to

renounce the physically realistic assumption of an imperfect model and

replace it with that of a perfect model, i.e., reduce the stochastic minimum-
variance estimation problem to a deterministic least-squares problem (Gelb'

1974, Section 6.3). A computationally efficient implementation of the latter is

the adjoint method (see Sections 4.2,5.4.3, and 6.3.4).
The quadratic advective nonlinearities of GFD, albeit small, are well known

to have important consequences for long-time behavior (Lorenz,1963; Ghil

and Childress, 1987; Pedlosky, 1987). But in data assimilation, it is only the

short-term behavior that counts, and neither these advective nonlinearities,
proportional to the small Rossby number, nor other nonquadratic non-

iinearities, associated with small-scale thermodynamic processes, affect
greatly the short-term behavior.

Lacana and Talagrand (1988) studied in detail the contribution of linear

and nonlinear terms to flow evolution in an /-plane barotropic shallow-water
model, as a function of wave number. They showed that for initial pertur-

bations in total energy per unit mass not exceeding 100 m2 sec-2, the linear

terms dominate error growth up to 24 hr, more so in the large-scale Rossby

modes than in the gravity waves and the shorter scales. Their results are in

agreement with those of Daley (1980), for a nonlinear shallow-water model
on the sphere, and of Balgovind et al. (1983) for a semi-operational NWP

model. Lacarra and Talagrand showed further that a constant-coefficient
approximation of linearizations about an arbitrary state reproduces rather
faithfully the behavior of the fastest-growing,large-scale waves for up to 48 hr.

These results confirm that a promising approach to nonlinear estimation in
GFD is the extended Kalman filter (EKF), which proceeds by successive
linearizations of the flow equations about the current estimate of the flow field

[cf. Eqs. (4.18) and (4.19)]. In most engineering applications, linearizations
àre performed at every update time. The theoretical results just discussed
and practical experience with OI imply that updates of the linearization

tEq. (a.19)l should only be necessary every 12-24 hr in meteorology and
at increasingly larger intervals in midlatitude and tropical oceanography.

This still leaves the question of whether the EKF can track successfully the
flow when its evolution is not smooth, but shifting from one type of behavior
to another, e.g., from zonal to blocked flow in the atmosphere (Charney and
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Fi l te red  So lu t ion

fs t imoted Error  Covor ionce

Reference S o l u t i o n
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Frc: ll. K-filter experiments for stochdstically perturbcd motion in a double-well potentiat,

Eq. (5.21); o2 : 0.24. (a) Observational noise variance 12 - 0,01, observations taken at time
intervals Âr = 1; (b) r2 :0.(X, Âr = l; (c) rt= 0.04, ̂ r - 0.25 (from Mitter and Ghil, 1990).

The idea is to use the control u(r) so that the state vector w(r) reach a pre-
scribed value w, at ûnal tirne r, from an arbitrary state at iniiial time. tn a
linear system, one can choose, without loss of generality, the final state to be
zero and the initial time to be zero. A simple GFD example is for Eq. (s.221
to be a lineaç say tropical, ocean model, and for u(t) to be an arbitrarily
prescribed wind stress. we shall have to restrict ourselves here to the open-

Error Covorionce

Reference

F i l te red  So lu t ion

Est imoted f r ror  Covor ionce

Ref  e rence So lu t ion
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TesLE IV.
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Dulurv RELATIoNsnps BElwEN Sroculsrrc Esrmrnox lxo Drrnmmsnc

CoNTRoLo

A. Contiouous (linear) Kalmao Filter

*{r) = F(r)wl(r) + G(t)b'(0' b'(t) - N[0' 0(t)]
fdiiy = i[f"iA) + bo(t), bo(t) - N[0'R(t)]

*'(ô: F(r)w"(t) + K(t)[wo(t) - n(t)w'lt)]'
rrii'= rtàpt,l * P(t)Fr(t) + c(r)0(t)Gr(t)

--K(t)R(4Kr(0, P(o) = po

K(t) = P(t)Hr(t)R-r(t)

E[wt(O)] = wi, E{[w'(0) - wâ][wt(O) - wà]r] = Po

R-1(t) exists
E{b'(r)tuo(r)lr} :0
/;Ai : E{[*f'; -''][t''" - tr']']

B. Continuous (linear) Optimal Control

*t(r) = F(t)w(t) + Ê1r)u1r)
"oiô = *i4 (urr system variables are measured)

utrt = -ri(rlw(r)
;li = -?Ti'iÈi;r - FtrrFlrr - ô$t + Flotitot(lo

frtrl: fr-'trlfrtrlFtrt
w(tr) :9
P(tr) = Cr ftc
J[w,u] = wf@,w, + 

J- 
t"'tttoltnt4 + ur(4fr(t)u(t)ldt

System Model
Measurement Model

State estimation
Error covariance

propagation
(Riccati Equation)

Kalman Gain

Initial conditions
AssumPtions

Performance Index

w'(0) = wi

System Model
Measurcment Model

Pcrforming control
Performance PrbPagation

(Riccati Equation)
Control Gain

Terminal conditions

Cost function

C. Estimation-ControlDualitY

Estimation

t^ initial time
tJtii"""UÀ"ble state variable of random

proce$t
wo(l) random observations
f(t) dynamic matrix

Oiri covariance matrix for the model errors

Il(t) efrect of observations on state variables

P(t) covariance of estimation error under

ootimization
K(ti weigbting on observation for optimal

estimation

t. final time
w(t) observable state variabl€ to be

controlled
u(t) deterministic control
Fr(l) dynamic matrix

0(i)'quaaratic matrix dcfrning acccptable

errors on model variables

E(t) efrect of control on state variables

F(t) quadratic Performancc under

ootimization
R(ri weighting on state for optimal control

o(A),Kalmanfi l terastheoptimalsolut ionfortheformerprob|em;(B),optimalsolut ionfor

the lauer problem; (C), equiv'alences between the two (aftei Kalman, 1960, and Gelb. 1974'

Section 9.5; courtcsy of R' Todling)'
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changed substantially to modify.4 and f and so on. This could combine some
of the advantages of both methods in terms of the error estimates provided
by the K-filter and the relative simplicity of the adjoint method.

With this theoretical background, nre are prepared to consider actual ex-
amples of variational data assimilation in meteorology.

5.4.2. Direct Minimization

As indicated in Section 4.2, it is desirable for the purposes of data assimi-
lation to circumvent the classical variational approach of deriving and solv-
ing Euler-Lagrange equations for a given quadratic functional [Eqs. (4.20),
(4.21),and(5.23)l.Instead, modern computing devices permit the use of direct
minimization for sizable state vectors and data sets. In particular, such an
approach might be desirable for novel types of satellite data, for which the
empirical statistics required by linear regression methods, such as OI, are
difficult to accumulate.

This idea was applied first by Ghil and Mosebach {1978) to temperature
retrievals from NASA'S Dsr-6 experiment (see section 5.1). The functional
chosen was

To), + plv - vgl, + y(p"- p!)2

+ ô@p"lôt)z| dZdo (5.25a)

using notation similar to that of Eq. (4.21).The volume over which minimi-
zation was carried out extended over several grid points and model o-levels;
within this volume lay a number of vertical temperature profiles derived from
a polar-orbiting satellite. Direct measurements used were satellite-retrieved
temperatures To and surface pressures p"o, with pseudo-observations of wind
v! derived from the former by the geostrophic relationship. The weak con-
straint used was the continuity equation in o-coordinates,

ôp"lôt: (5.25b)

q P, y, and ô were all prescribed positive constants. Equation (5.25b), along'with the geostrophic relation between v0 and ro, couple all the variables in
Eq. (5.25a).

A conjugate-gradient algorithm was used to minimize Eq. (5.25a) subject
to Eq. (5.25b). substantial changes from the forecast model's first guess for the
wind field were obtained over the otherwise data-void southern oceans. with
convergence of the algorithms in a few iterations. Complete implementation
of the method for semi-operational use was not feasible at that time because
of its computational cost.

Direct minimization for a local patch of satellite data was applied by

196
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- 1 8 - U O U 1 8 7 2 S

Time (h)

Frc.12. Rmsglobalerror(42)r/2ofanensembleof50indcpendentanalysis-forecastcyclcg
as a function of time: ODF (dotted line), ordinary dynamic forecast using data at t = 0 only;
PIF (solid line), perfect initialdata forecast;4DAF (dashed and dash-dottod lines),4-D analysis
and forccast (using slightly difercnt weights for data at different times). The rms measurement
error is shown by the solid line with plus signs (from Hoftnan, 1986).

available, in contradistinction from the K-filter which produces it towards the
end (e.g., Fig. 8). The exact position of the minimum rms error in Fig. 12
depends slightly on the weights given to the data: it shifts to the right as more
weight is given to the most recent data (dash-dotted line in the figure). But in
any case, the forecast started at t:0 using the 4-D variational estimate is

I

^
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where 0 < e << I is the control parameter while rz is the control variable. The
solution w* of the constrained probrem in Eq. (5.26) is sought u, it. ti*it
Yy 

- w* of a sequence of unconstrained probrerns fEq. (s.zî)1, as fo[ows:
Gjy"l 1 tiplet (Wr,Ap,82), Wyal is determinea Uy miïimizi"g':t":,oyW,lrr1,
with Wy as a first guess; Â1 and e1 are updated by 

- ':'s

. l
A t + r  :  A k + - l F l W k + J l

8ya1 :  C2ê2

(s.2e)

(5.30)
with 0 < ce < 1. Bertsekas (19g2) gives a proof of the convergence of this
augmented Lagrangian- argorithm and practical indications Ior choosing
the sequence of c*'s. The ratter are varuable in accererating "Lr,n"rg"n".,
because in practice one arways stops short of e:0, and hJnce one never
satisfies Eq. (5.26b) exactry. The use of a sequence e1 is somewhat anarogous
to Hoffrnan's (1982) shifting the weights of the summands in the cost func-
tional from emphasizing the first gu.ir to emphasizing the sASS data.

This algorithm is the most efficient and generat oi its crass. fhe penalty
algorithm is obtained from Eq. (5.2g) by retiing ô : 0, i.e., A = 0, while theduality algoritàtt? follows by letting e -* oo. The latter is unrelated to ihe dualityprinciple discussed in section 5.4.r; it involves instead the alternate use ofascent and descent steps in determining the saddle points of the Lagrangian
9t in Eq. (5.27). The augmented Lagrangian algorithm avoids the ill con_
ditioning that occurs.in the penalty argoÀhm ai e becomes very smalr andprovides greater freedom in choosing the first-guess Âo than in the duality
algorithm, avoiding the probrems the latter encounters when the Lagrangiangtlw, AJ is not groba[y convex with respect to w. Many practicll cJnsi-
derations on the convergence and relativÀ efficiency or opti*i"Jon argo-
rithms can be found in Fletcher (lgg7)and Gill ,t ot. (tggZi.
._ 19 uug.ented-Lagrangian argorithm was used by Navon and De viliers(1983) to maintain global energy and enstrophy ionstraints in the time
integration of a shallow-water moder. Le Dimet and raragrand (19g6) appried

..it to the minimization of the functional (4.21), with the constraiàt s : 0 beingthe steady-state form of the shallow-water equations, using u on"-luy", u"r-sion of Eq. (5.20). The weightsa and p in Eq. g.2l)were chisen as a(x, r) : 1and' f(x,t) = const. # l. The domain x for-whicrr they soughi a uariutionut
pnalysis was a square with a side of 2500 km centered at 45.N and 5.w, and
observations of both { and v were provided at alr points or a 25 x 25 grid
covering x. The purpose of the minimization was thus to reduce the error inthe observations, rather than to fill data gaps.

The results are shown in.Table V. The quantities 8,, E,, and E, listed
are rms values of the residual dynamic imbalances in ttre right side of
Eq' (5'20ab), in m sec-2 and m sec-r, respectively. conu.rg"i"" to rms
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then as variable but given,

u(x):ffie" - A (5.32b)

and finally the nonlinear equation with

u(x,t) : -  q(x, t) (5.32c)

was studied. The constant-velocity case [Eq. (5.32a\f can be analyzed

completely and solved in a single forward-backward iteration step to yield

50/, rms error reduction in the limit of small separation between the two

observations times. In this case, the transition matrix is orthogonal, yielding

these very simple but also very special results (cf. Miller, 1987). The linear,
varigble-coefficient case [Eq. (5.32b)] requires multiple iterations, and the

error reduction for finite separation is less than in the constant-coefficient case.

ln the nonlinear case tEq. (5.32c)1, the possibility of multiple solutions had

to be avoided, antl rms error reduction of 2D"/"only was obtained.
Lewis and Derber (1985) also used real data from six analyses over the

central United States, three hours apart, from the Atmosperhic Variability
Experiment, 6-7 March 1982. The analyses were generated separately from

a special network of rawinsonde observations (RAOB) at 2100,0000, and

0300 GMT and from temperature retrievals of the VISSR Atmospheric

Sounder (VAS) at 2030,2330, and 0230 GMT. There were about 35 RAOB

and 180 vAS data available for each of the analyses, corresponding to an

average spatial separation of 250 km and 100 km, respectively. The dynamic
constraint of singleJevel geostrophic potential vorticity conservation was
applied separately to each set of three RAOB and of three VAS analyses,
at 700 mb and at 250 mb. The results are shown in Fig. 13.

There are clear difrerences between the input RAOB and input VAS

analyses. The rms discrepancy in geopotential heights was 14 m at 700 mb

and42m at 250 mb, respectively. variational adjustments to the heights using

the conjugate-gradient method for Eq. (4.27) resulted in rms changes of 3.7 m

for the RAOB md 7 .9 m for the VAS analyses at 700 mb; the corresponding
changes at 250 mb were 13.5 m and22.0 m, respectively. As a consequence,
the rms difference between the RAOB and VAS analyses was reduced to 12 m

at 700 mb and increased to 53 m at 250 mb.In particular, a systematic positive

bias of 6 m in the VAS versus the RAOB analyses at 250 mb was not re-

moved by the adjustment. This problem of warm biases in satellite tempera-

ture retrievals was treated, for instance, by Ghil et al. (1979) in the context of

combining conventional and remote-sounding data during a sequential esti-

mation process. Similar biases, resulting in nonzero values of long-range

correlations for Ot also occur in the operational data assimilation systems
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on the sphere to study the adjoint method for simulated data. They truncated
at total wave number n = 2I and kept only the N = 231 real components
antisymmetric about the equator for both vorticity ( and streamfunction Y,
which were hence symmetric for the zonal velocity and antisymmetric for the
meridional velocity. The test case was a Rossby-Haurwitz wave with z : 5
and zonal wave numbet m: 4, propagating eastward without change of
shape by 9.55'per day. Minimization of the quadratic distance between the
analyzsd vorticity ((x,t) and the observed vorticity (o(x,r) over a 12 h time
interval in the Northern Hemisphere was started from a state of resl
((o)(x, r) = 0. When complete data (o were provided every time step, the initial

Frc. 14. 500 mb height field for 0000 GMT 26 April 1984. (a) Variational analysis minimizing

distance to data over 24-hr intcrvals; (b) differences between this variational analysis and the

operational analysis of the Direction de la Météorologie Nationale. Units are dam, and thc con-

tour interval is 4 dam (from Courtier and Talagrand, 1987)..
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between this variational analysis and the operational analysis of the French

weather service. The rms difference between the variational analysis and the

observations is 29.1m for the heights and 8.0msec-r for the winds, com-

pared to values of 185 m and l7.6msec-t for an atmosphere at-rest. Using

*irrd obrrtnations only yields 33.5 m for heights and 7.7 m sec-r for winds;

height observations only yield 28 m and 8.8 m sec-r. These values are much

smàner than the corresponding climatological stairdard deviations, and the

variational analysis also reconstructs certain features not observed directly

over the data-sparse Pacific Ocean. This work was extended by Courtier and

Talagrand (1990) to the nonlinear shallow-water equations at 500 mb, with

truncat ion n:2I and n: 42.
Using a shorter update interval of 4 hr reduces the cost functional in the

highly ôverdetermined, p>> N, problem [Eq. (5.33)], but reconstructon of

unobserved features is no longer possible. Courtier and Talagrand (1987)

noticed that in the adjoint approach, advection of information occurs not

only downstream, as in sequential estimation (Ghil er al.,1981,1982; Ghil'

1989), but also upstream with the forced adjoint in Eq. (4.26). The reach of

this advection, however, is still limited by its speed of propagation. The use

of longer time intervals over which to minimize the distance between model

trajectôry and the data obviously increases the computational burden. It

ahô leads to increased difficulties caused by the instability of the flows, the

consequent divergence of forward and backward trajectories, and the ap-

p€arance of multiple minima of the cost functional (F. Gauthiez, personal

communication, 1990; Miller and Ghil, 1990).

Derber (1989) also noted the discontinuity, created by variational methods

using multiple levels in time, between analyses based on successive 4-D assim-

ilation intervals. In particular, in the adjoint method, the state at time t :0

determined from data over the interval [0, r*] is substantially different from

the state obtained from a forecast started at t : - t*, using data over [ - t*,0]'

In fact, Courtier and Talagrand (1987) attributed to this clash of disjoint sets

of observations much of the differences between their variational result and

the operational one (Fig. lab).
To circumvent this difficulty in the context of variational methods, Derber

(1939) proposed a variational continuous assimilation (VCA) technique. This

iechnique also tries to move away from the perfect'model assumption of

constrâined optimization approaches by rewriting Eq. (4.18), which is the

discrete-time version of Eq. (4.23), as

w[+r :  Nft(wl)  +,tr 'Ô (5.34)

where ,tn is a sequence of scalars determined a priori, and S is a spatially

dependent vector of the same dimension as w, determined in the VCA pro-

cess. Minimization of the mean-square observational residual with respect
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than the pure forecast, obviously. The constant (dotted) and parabolic (dash-

dotted) choice of Î* give mutually similar results, both of them much better

than the adjoint method, which also leads to an initial jump in the solution.

Forecasts from the adjoint assimilations (not shown here) were considerably

less accurate than any of the others.
The ideas, methods, and results reviewed in this section show, aside from

the maturity of meteorological data assimilation, a host of remaining prob-

lems. The emergence of new observing systems per se will agg1avate rather

than solve these problems by the complexity of the different observing pat-

terns, the novelty of the distinct error characteristics, and the necessary ex-

tension of numerical models to domains and scales little explored so far. At

the same time, it will be possible to test and compare much more fully the

wealth of new ideas, from optimization and sequential estimation theory, due

to rapidly increasing computing power and memory size.

6. CunnrNr Srnrus oF OcEANoGRAPHIc DATA AsstmrlnoN

As mentioned in the introduction, the 1990s will mark a profound

revolution in the history of oceanography as new technology will for the first

time provide oceanographers with large synoptic data sets. Specifically, three

new lechniques will be of cruciai importance. First, altimetry will provide

global mapi of sea surface height that, in the case of the oceanographically

àesigned Topographic mission Experiment (TOPEX/POSEIDON), starting

in 1991) will have a horizontal resolution of about 300 km x 300 km in

midlatitudes, corresponding to a 10-day orbital period. The importance of

satellite altimetry lies in the fact that the surface elevation of the ocean relative

to the geoid can be shown to represent closely the pressure distribution

produced by the large-scale general circulation, assumed to be in quasi-

geostrophic balance (Pedlosky, 1987).- 
Second, scatterometry will provide one of the two major surface forcing

functions of the ocean circulation, the wind stress field, with a horizontal

resolution of l" longitude x 1o latitude for two-day vector-averaged velocities

[rWoild Ocean Circulation Experiment (WOCE), 1989]. Third, ocean acous-

t1c tomography, even though projected further into the future, has the

potential;f providing a 3-D picture of the interior density and velocity fields

àr tn" ocean. The most important potential use of tomography lies in its

integrating properties. The tomographic measurement per se is an integral
perfàrmed over long paths at the sound speed of - 1.5 km/sec. Thus, it is

capable of averaging out the energetic mesoscale eddy field and measure

averages over the large space and time scales of motion.
This capability of tomography to measure integral properties has already
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to the interior flows. A crude scale analysis based upon quasi-geostrophic

balance suggests that a horizontal pressure gradient at the sea surface over

mesoscale Èngth scales ( - 100 km) should reflect interior movements down to

the depth of the main thermocline (1500 m; wunsch, 1989a). Even if this were

the caie, the deep oceanic layers will not be seen by altimetry and will remain

void of measurements over almost the entire world ocean'
Tomography has the potential of providing 3-D imagery of the interior

lvater mass. Exploiting the integrating nature of the tomographic measure-

ment implies ûliering out the mesoscale eddy field considered as noise, thus

seeking ôstimates orily of the large-scale, long-time component of the cir-

culation. However, it is theoretically well known, and demonstrated at least

in numerical experiments (Holland and Rhines, 1980), that eddy-momentum

fluxes are "apable of giving rise to large-scale, quasi-steady components of

the circulation, especially in the deep layers. Thus, the question is how to

reconstruct a filtered-out eddy field or at least its statistics. Obviously this

must be done by using a dynamical tool, such as a dynamical model.

Moreoveç the conèept that the mesoscale eddy field is noise may be very

misleading in specific examples. There are major and very energetic regions of

the world ocean, for instance the western boundary currents of which the Gulf

Stream system is the prototype, where the dynamics is dominated by the range

of compiex interactions between the mean flow (the current jet) and the

associated Rossby wave radiation. In such systems, the mesoscale is the

essential part of tLe signal one seeks to measure. Entire experiments such as

synoptic ocean Prediction (sYNoP) are devoted to map and predict the

mesoscale in such systems. There, however, tomography is not the best

experimental tool because, in a traditional middepth tomographic con-

figuration, the acoustic rays are not capable of penetrating the swift core of the

current. Bottom-mounted configurations that might overcome the acoustic

problem have not yet been proved successful (Agnon et al.,1989\. A-nd even in

more quiescent parts of the ocean, such as the Sverdrup interiors of the gyres'

the acôustic wave guide usually prevents the acoustic rays from sampling

layers below 3000 m or 4000 m depth. Thus, the deep oceanic layers, those still

m;st unknown, will remain unprobed even by tomography that may fail also

in important oceanic regions such as the western boundary currents.

Ot'her important data sets available through forthcoming experiments such

as the World Ocean Circulation Experiment (WOCE) will consist mainly of

long hydrographic sections, highly localized in space and very asynoptic in

ti.é. Wia.i"giont of ocean will remain unmeasured between such sections'

Thus, in the foreseeable future, oceanographers will still have to rely heavily on

very localized and sparse clusters of moorings for long time-series measure'

ments of currents, temperature, and pressure. The previoUs constraints,

imposed by the nature of the existing and expected oceanographic data sets,
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The purpose of OSSE experiments is to answer the observability question

of estimatiàn theory for the fluid system in hand: do the observations provided

determine the state of the system, asymptotically in theory and over a

reasonâble amount of time in practice (Bucy and Joseph, 1987; Cohn and Dee,

1988; Ghil, 1980; Miller, 1989)? If not, can the observing system be modified

at an acceptable cost so as to yield an affirmative answer? Identical-twin

experimenis are only a first step in the right direction: meteorological

experience tends to indicate that their results are overly optimistic. Since the

aciual data from nature are not available at the time an OSSE is conducted, it

is desirable to use at least a history tape from a different model than the one

with which the data assimilation is carried out. This provides a simulation of

the discrepancy between any model and nature and its effects on forcing the

model with data towards the right solution, the one that nature provides.

Most OSSE carried out so far in oceanography have been of the identical'

twin type. Still, their results provide valuable information on the benefits of

va.ious observing systems and data acquisition rates. Question (l), about

propagation of surface information to depth, was first addressed in the pio-

n."ring works of Hurlburt (1986) and Thompson (1986), who made use of

two-laler models of the Gulf of Mexico. The method used in the two stud-

ies jusi discussed was direct insertion of the observations into the numerical

moâel (see Sections 5.1 and 6.3.2), and the simulated altimetric data were

provided at every grid point in space. Kindle (1986) assimilated simulated

àltimeter data along the satellite tracks in a one-layer model of the same

region.-In 
the active, two-layer PE model with a free surface, the surfaceJayer

pressure p, provided by the altimeter is simply related to the sea level 4 by

P r : 0 4 (6.1)

using this two-layer model, Hurlburt (1986) focused on the dynamic trans-

fer oiinformation from the surface to the deep layer, demonstrating the suc-

cess of the numerical ocean model used in recreating the deep circulation'
r 

An extensive series of simulations was carried out, covering a wide variety

of dynamical regimes. In Fig. 16, we show the evolution in time of the global

norÂafized t-t difftt n.e between the assimilation experiment and the con-

trol run (the reference ocean) for the pressure of the surface layer pt, the

pressure in the second layer pr, and the pycnocline depth anomaly ht (i'e',

its deviation from the overall spatial mean) for an experiment with strong

baroclinic instability. Three update intervals were considered: 40 days (upper

panel), 30 days (middle panel), and 20 days (lower panel)'- 
If the assimilation is successful, it forces the dynamic evolution to con-

verge to the reference ocean and the degree of success is measured by the

rate- of decrease of the rms errors. The initial error is not decreased when
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updating every 40 days, since the error growth rate due to baroclinic insta-

Uitity is iarger than the convergence rate due to data forcing. The dominant

time scale for baroclinic eddies in the model was of 57 days, and the impor-

tant result emerging from Fig. 16 is that approximately two updates per

eddy cycle are required for the assimilation to be successful and provide

convergence to the reference ocean; the convergence is clearly accelerated

further when updating every 20 days. More recently, Hurlburt et al. (1990)

have used statistical inference to determine weakly correlated subthermocline

fields from surface altimeter data.
Kindle (1986) addressed the sampling strategies for a satellite altimeter

using a oneJayer, reduced-gravity, shallow-water model of the Gulf of

Mexico. The major limitations of this model are the absence of baroclinic

instability and thè fact that there is a one-to-one correspondence between

sea-surface height and pycnocline depth. He examined the spatial sampling

requirements for the accurate resolution of oceanic eddies. The main result

is ihat an oceanic eddy can be adequately mapped when the altimeter-track

spacing equals the radius of the outer contour, and when both ascending and

descending tracks are used. The study, however, deals with a single stationary

eddy, circular or irregularly shaped, and not with a turbulent mesoscale field

where eddies are rapidly moving and interacting.
Thompson's (1986) study focused instead on the geoid error as it affects the

assimilation of altimeter data for mesoscale ocean prediction. Assimilation

of simulated altimeter data into a quasi-geostrophic eddy resolving ocean

model was also carried out by Marshall (1985b), DeMey and Robinson (1987)'

Verron and Holland (1989), and by Holland and Malanotte-Rizzoli (1989).

In QG dynamics with a rigid lid, the surface height variations ôh provided

by altimetry are related to streamfunction variations ôY by

ôY : T6h
(6.2)

Holland and Malanotte-Rizzoli (1989) examined the space-time resolution

to be provided by the forthcoming Topographic Experiment (TOPEX) altim-

etry according to the two alternatives proposed originally, of a 10-day or

204ay repeat period. These choices correspond to global coverages with spa-

tial resolution in midlatitudes of roughly 2.8' of latitude and longitude, for

a track separation of 280 km in the case of a 10-day repeat orbit, and 1.4',

with track separation of 140 km for a 20-day repeat orbit. The decision has

now been made to adopt the 10-day repeat period.
when the altimetric data are assimilated along the actual tracks, that is

only at the track grid points and at the actual time of arrival, by a nudging

technique (see Section 6.3.2), assimilation results achieved with the satellite

repeat periods of either l0 or 20 days are about equally unsatisfactory for

improving the model estimates of the circulation. The residual rms errors
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Holland and Malanotte-Rizzoli 1989).

on tracks separated by 140 km, according to a 20-day repeat period (Fig. l7),
and by 280 km, according to a l0-day repeat period (Fig. l8).

Holland and Malanotte-Rizzoli also examined the space-time resolution
issue by providing altimetric data as a gridded map to the model (in the real
case, one optimally interpolated map every T days, if T is the repeat period).
Two strategies were followed. First the gridded map had the same space re-
solution as the model, i.e., data were assimilated at every model grid point,
but the time interval between successive maps was changed from 2 to l0 and
then to 20 days. Second, gridded maps were assimilated continuously in time
but the spatial resolution ïvas progressively coarsened, passing from track
spacing of 42 to 99 km, and to 198 km. The results are much better when
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taken to nudge the surface fields towards the observations. The rms difrer-

ences between the assimilation experiments and the control run show the

samee.foldingdecaytimescaleofroughlysixmonthsinamultilayer,asin
"1*o-t"y., tioO.t (i{olland and Malanotte-Rizzoli, 1989). Thus, for multi'

ûy.i.JJar, the nudging technique seems-to be much more efficient, given

,u.fu.. data only, than direct inseition of these data in the upper layer only,

at least in QG models. $/e shall return to the dynamical mechanjsms under-

lyingthenuagingversusdirectblendingtechniquesinSection6.32.Anex.
Jtri"ii"" f"rih."diff.rrnces given by Haines (1991) is discussed along with
'" 

n.* method of direct inseition, which has important similarities to the

nudging technique.---ÀïiËrr.nt 
type of transfer of information from the surface to the deep

fu'.r. ir tfrut ,iptoit.A in the assimilation studies of Robinson and collabo-

iaiÀ., tnouinson and Leslie, 1gg5; Robinson er al.,1996,1987, 1988, 1989;

Robinson' 1987; Mooers et a1.,1987; Robinson and Walstad, 1987; DeMey

and Robinson, 1987). In these studies, sea-surface infrared temperature images

are used as initial and update data for an open-boundary regional QG model

iii*gft the procesS of reconstruction of ocean features (feature model), such

as the Gulf stream mean path and warm- or cold-core rings. The surface

information is projected along the vertical onto the deeper layers through

the Empirical orthogonal Functions (EOFs), which characterize the second-

order siatistics (covariance matrix) of the flow fields in the region being

studied. This assimilation procedure has led to the development of Gulfcast

(Robinson et al., 1989).
Gulfcast is an analysis and forecast system for the Gulf stream meander

and ring region consisting of the Harvard dynamical open-ocean model

inouinsin ind walstad, tetz; and an observarional network (Robinson

àt aL,lggg).The network is comprised of remotely sensed sea-surface tem-

p"ruior.r, obtained every other daya and of critically located air-dropped ex-

iendable'bathythermogiaph (AXBT) data, obtained once a week. The AXBT

àrops have thé dual ri" of verifying the previous seven-day forecast and of

i.ffii"g determine the initial state for the next forecast. The Gulfcast system

,o", ,"it.A under a wide range of circumstances. The phenomena predicted

by the forecasting procedure include Gulf Stream meander growth and prop-

aiution, straighténing out a previously meandering stream' ring formation'

uià.ing-rttàm inteiactions and movements. Figure 19 shows a character-

irii" fortur, experiment, with the 100-m streamfunction field used as initial

àaia 1pig. 19a) and the same field after a seven-day model forecast (Fie. 19b)'

Questlon (2), concerning the transfer of information by advection or wave

prolagation'from data loËafized in space to other regions of the ocean, has

b..n iOar.rsed in tropical oceanography by Miller and Cane.(1989)' who

assimilated real tide-gauge data from six island stations into a simple model





220 MICHAEL GHIL AND PAOLA MALANOTTE-RIZZOLI

hydrographic, or tomographic, sections in improving the model estimates for
ocean areas far away from the data region, but dynamically connected to
it. Malanotte-Rizzoli and Holland used a simple data insertion technique,
weighting observations by their distance from the grid point being updated,
as discussed in Section 6.3.2, and allowed for model errors in this OSSE-
type study.

They found that a local section can be quite effective in determining the
flow in far away regions if the model is very simple, steady, and quasi-linear
(Malanotte-Rizzoli and Holland, 1986) and that the most effective sections
are meridional,long and far away from the ocean's western boundary (see
also Parrish and Cohn, 1985, and Section 5.3.1 here). On the other side, for
fully time-dependent and eddy-resolving simulations, a simple data section
is completely ineffective, unless decade-long time series of measurements are
available (Malanotte-Rizzoli and Holland, 1988). In the latter case, a con-
siderable improvement in the estimate of the model's climatology, i.e., its
long-time average circulation is still obtained.

The question of the effectiveness of oceanographic data collected in sparse
localized clusters- of mooring arrays has been addressed by Malanotte-
Rizzoli and Young (1991). This question is motivated by the forthcoming
availability of three-year long time series of current velocities and tempera-
tures measured at two clusters of current meter moorings as part of the
already-mentioned SYNOP experiment, which focuses on process studies in
the Gulf Stream system. The two current-meter mooring arrays are located
one east and the other west of the New England Sea Mountain Chain
(Rossby, 1990).

Malanotte-Rizzoli and, Young (1991) simulate the two localized clusters
in a Semi-Spectral Primitive Equation (S.P.E.M.) model with active thermo-
dynamics originally developed by Haidvogel et aI.(1991). They use the nudg-
ing technique discussed in Section 6.3.2 to relax the prognostic variables
(u,u,p) towards their observed values with an identical-twin approach. The
results are quite encouraging even though the data are provided only at a
very small number of model grid points: the assimilation process is quite
successful in reconstructing the jet behavior of the control run, includ-
ing the bending of meanders and ring pinch-off, in the region downstream'of the mooring arrays, especially between the two clusters, after only two
months of continuous time assimilation. This is due to the advection of
the assimilated information downstream from the measurement points, pro-
vided by the strongly nonlinear, idealized mean flow representing the Gulf
Stream jet.

6.1.2. Trade-Off between Variables

Few investigations have been devoted until now in oceanography to the
problem of the relative usefulness of different variables for the data assimi-
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set is provided to the model, i.e., more data are used (see also Ghil, 1989,
Section 4.3.3). However, a rationalization can also be made in the context of
simple geostrophic adjustment theory. when providing baroclinic informa-
tion, the data insertion process must force the (unknown) barotropic mode.
The response time of the model will then be the short adjustment time re-
quired by the (fast ) barotropic component of the flow. That this is so emerges
clearly from Fig. 21, in which the baroclinic component is assimilated, and a
great percentage of nns error decrease occurs during the first two-to-three
days of assimilation. Alternatively, when only the barotropic mode is known,
the baroclinic componeht of the flow must be forced and the adjustment
time of the model will occur on the (long) time-scale of the (slow) baroclinic
modes. This is also clear in the much reduced rate of error reduction of
Fig. 22, when only Y, is assimilated, and comparable error decreases are
achieved only after one month of continuous assimilation.

6.2. Initialization Problem in Oceanography

The issue of-model initialization was addressed briefly in section 2 and
more extensively in Section 5.2, where meteorological applications were em-
phasized. we now summarize the oceanographic applications, referring to
Section 5.2for the details of the different procedures.

The problem of initial conditions for ocean GCMs in relation to data
assimilation and forecasting was first addressed in the tropics by philander
et al.(1987).Initialization in the tropical ocean was studied by Moore (1990).
The initialization problem rvas investigated systematically in the oceano-
graphic context for midlatitude systems by Malanotte-Rizzoli et at. (19g9),
who used the NNMI procedure introduced by Machenhauer (1977\ and con-
nected by Leith (1980) to quasi-geostrophic theory (see also Daley, l9g1).
The method applied by Malanotte-Rizzoli and colleagues represents a com-
putationally efficient, first-order approximation of Machenhauer,s NNMI,
using a QG streamfunction, and consists of the following two steps:

(l ) Geostrophic and hydrostatic initialization,

Yl1=e: \P{o)

,(o) _ _yr(o),  u(o):  +yg),  w(o):0

dl,=o: ô{ot - foYto'

for the pressure field, and

P l t = o :  P o  : (6.4a)-Lagt
g ' -
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between the surface and subsurface initial pressure fields is an important re-quirement for accurate ocean forecasting.
. In conclusion, the initiarization ùtË* does not seem to be as cruciar anissue in large-scare oceanography as it is in NWp. part of ttre.eason may beascribed to the difference betweln the two nuics, specific"iiy^rrr.i. differentcharacteristic Burger numbers and the rerated impriôations ror eiergy oistri_bution between waves, as discussed in Section 3.1.

6.3. Assimilation Methods

Two approaches to data assimilation are emerging in the oceanographiccommunity. The first is the deveropment and use oiroit irti.uteJassimilation
techniques. The computationar feàsibility of tti, "ppàu"r, rru, riÀir.a its useso far to relativery simpre dynamicar moiers, with^hundreariol-tourunds ofvariables. To this category belong (a) sequential estimation methods, intro-duced in section 4.r, of which the k-nt.r ir the prototype; unJilïuuriution"r
methods, introduced.in section 4.2, especiaily those b#; "ù;te use of theadjoint equations. The meteo_rorogicai apprications of thesË t*o approactreswere discussed in Sections 5.3 and 5.4, respectivery. Their oceanographiccounterparts wit be presented in the fotowing sections e.l.l iià a.s.+.
. The second approach focuses upon the ur. of more compl"* una realisticdynamical models, capable. of simùlating ocean processes in greater detail. Inthis approach, the data assimilation schJmes are, per force, riethoootogicallysimple and computationally efficient. Two important schemes in the lattercategory are the blending and the nudging methods discussed in sr"ûon o.:.2.The methods whose oceanographic alph-cationr "r. pÀ"ni.J;;;; are thosebased on optimal interpolati,on?or), una in generar on optimization schemes.The former stem most naturally from the'practice or ,o"troËogical fore_casting the latterfrom geophysiôd inverse theory(see section 1). The theoryunderlying oI was introduced in section 5.r. A short review of its oceano-graphic applicarions is also given by Webb (19g9)

6..3.1. Optimal Interpolation and Inuerse Methods

. optimal interpolation is a simplified version of the K-filter in which theinterpolation weights for observations are determined osing an approximateform of the forecast error covariance marrix, cf. Eqs. rs.îy-1t.;g optimarinterpolation is a practicar and internaily consistent upp.o*rr'ioi treating aIarge set of heterogeneous observations, and it is "t prrr.ni rrr" iectrniquethat produces the best results for objectlve anarysis ui oo. given iime revetin NWP. severar probrems occur, however, when this ..idJ;;ppried tothe temporal evolution of a nonrinear unstabre no*. rn ru.i ù.-pï""au.",
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Ftc.23. Surface circulation (ocean topography, OT) evaluated by a quasi-geostrophic 2-D
barotropic ocean model. (a) True six-months time mean OT from the control run. (b) Six-months
time mean OT reconstructed in the assimilation experiment when continuously updating both
the OT estimate and the geoid estimate. (c) Six-months time mean OT reconstructed in the as-
similation experiment when continuously updating the OT estimate, but not the geoid estimate
(from Marshall, 1985a).

Marshall (1985b)applied the method further to study the efficiency of dif-
ferent altimeter sampling strategies. White et al. (1990a,b,c) also used OI to
assimilate first simulated and then GEOSAT altimetric sea-level observations
continuously into a QG eddy-resolving ocean model. Multivariate statistical
objective analysis of the OI type was also applied by Carton and Hackert
(1989) to the circulation of the tropical Atlantic Ocean. Statistical regres-
sion techniques blended with a deterministic modeling approach and pro-
jection of the surface information onto the deep layers through vertical EOFs
have also been used by Robinson and collaborators in the studies quoted in
Section 6.1.1 in their use of the Harvard open-ocean QG model in different
regional domains of the world ocean. The domains are typically of the order
of 10 Rossby radii on the side, as the emphasis of the work of this group is
upon the real-time prediction of the mesoscale eddy field.

The 4-D data assimilation approach so successful in meteorology for
coping with data sparsity, which uses objective analysis techniques to blend
the model-evaluated variables and the observations, was first applied to
oceanographic problems in limited-ocean domains (Robinson and Leslie,
1985; Rienecker et a1.,1987). Clancy et al. (1988) applied the method to larger
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time-dependent ill-posed problems, see Wunsch (1989a). Here we shall give
a simple example of a problem best solved by an inverse method. Consider
the linear problem

Di. jPj:  bi, j :  1 , , . . , N (6.6)

with unknowns Pi, j : 1,..., M. Equation (6.6) has, in general, no solutions
if N > M (overdetermined case) and an infinity of solutions if N < M (under-
determined case). In the overdetermined case, if the N equations are linearly
independent, solutions can be defined only by discarding (N - M) equations.
In the underdetermined case, unique solutions can be found only by assigning
additional criteria for their selection from the infinity of solutions.

A powerful inverse method to solve this problem in both cases is singular
value decomposition (SVD) (Lanczos, 1961), widely applied to solve inverse
problems in geophysics as well as oceânography. For a review of SVD theory
and of inverse problems and methods, see Olbers (1989) and Wunsch (1989b).
In the latter referenee, a short history on the use of inverse methods in ocean
circulation studies is also given. They were pioneered by Wunsch (1977,1978)
to study the general circulation of the North Atlantic and solve the problem
of determining the classical level of no motion, i.e., to calculate reference-
level velocities for the thermal-wind equations of motion. These studies used
the SVD method, and further applications were later made by Wunsch and
Grant (1982) and Fiadeiro and Veronis (1984). A number of linear inverse
calculations of the ocean circulation in different ocean basins followed. A
nonlinear inverse method for the general circulation was also proposed by
Mercier (1986). The interested reader is referred to rilunsch (1989b) for a
complete review.

We conclude here by mentioning that inverse methods have been success-
fully applied to two other oceanographic inverse problems. The first one is
the tomographic problem introduced by Munk and Wunsch (1979), who used
SVD in their original study. Statistical inverses based on OI were constructed
and applied to acoustic-tomography data by Cornuelle et al. (1985). The sec-
ond oceanographic inverse problem is the tracer problem, also formulated
from this perspective by Wunsch (1988, 1989b). In Section 6.3.4, the tracer
problem is treated with the adjoint method.

6.3.2. Blending and Nutlging Methods

The blending technique is a highly simplified and localized version of O[,
with purely empirical weights. ,At assigned times, the observed or forecast field
variable / at a given grid point is replaced by a new variable /n'* which is a

M

ç/-/
J = 1
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The relaxation function G is in principle a function of en, the standard
deviation of the nth observation, of ôr, which is the separation between the
observation times fn and the model evaluation time r, and of ôr and ô2, the
horizontal and vertical distances, respectively, between the model grid point
and the observational point. In practice, however, G is assumed to be a con-
stant in all meteorological applications. Anthes (1974) noted that, from first
principles, one can expect G to be positive and decrease with increasing
observation error I, increasing horizontal and vertical distance separatio;
and increasing time separation. In practice, however, he chose

G : constant > 0 for 6r : 6z : 0

G : 0 i f e i t h e r ô r o r 6 z * 0

In the altimetric data assimilation carried out with a eG model by Holland
and Malanotte-Rizzoli (1989), Eq. (6.8a) specializes to

f :nns- r ( ( r - ( îb" )
where (, is the relative vorticity in the surface layer, which is related to the
quasi-g-eostrophic streamfunction û, (the direct altimetric measurement) by
Ç:Yzrl\.Holland and Malanotte-Rizzoli studied the sensitivity of the
assimilation experiments to different choices of r. They considered a general
shape for r given by

r  :  yog- lx2+t2l1t ! r -zt (6.eb)

(6.8b)

(6.8c)

(6.9a)

where ro is typically of the order of (2 days)-r. The Gaussian shape for
the horizontal dependence of r has a decay distance of the order of the first
Rossby deformation radius l* and the (empirically found) best value for the
decay time scale is a = (5 days)-'. The nudging method has been tested
successfully for the assimilation of altimeter data also in experiments car-
ried out with the Holland and Lin (1975) model (Haines et al., l99r) and
in the experiments carried out with the s.p.E.M. Gulf stream model when
assimilating localized data clusters (Malanotte-Rizzoli and young, 1991,
,and Section 6.1.1 here).

As remarked in Section 6.1.1, the direct insertion of altimetric data used by
Berry and Marshall (1989) causes an additional vertical velocity wl, between
the surface layer and the one immediately below. In the "u." ôf a'iwo-layer
lodel' w,.r is determined principally by tLr, the observed surface-pressure
field, because ry', tends to be small due to bottom friction. This is not true,
however, for multilayer models. In multilayer models, the stretchine induced
by the top two layers does not cause any immediate change in th-e current
structures, and alterations can only occur on much longer time scales.
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The method first solves for the Âry', using the definitions of potential vor-
ticity in layes2,...,N (in his case N : 4),

Y'(Lt) - yï.fl t) - (^,i3)l - y2r.r(Ltz): -rï,.r(Ltr) (6.13a)

Y'(ùL) - v3,zl( t) - @t)l - v?.ol,/t) - (Âûn)l :0

v'(Lto) - Y|s[/rtù - (^ûr)l : o
(6.13b)

(6.13c)

The right sideswould normally contain A4r, but these are assumed to be zero,
and ù!, in Eq. (6.13a) is known. The 1,i11 are the inverse Rossby defor-
mation radii for the interfaces. The resulting Â41 is given by

Lq, : Yt(Lt) - yzr.zl(Lt) - ( tr)l (6.13d)

Haines uses this method for intermittent data assimilation in an identical-
twin experiment and demonstrates rapid convergence to the control run in
all layers. A more recent manuscript uses a similar method in a shallow-water
model and compares the success with nudging (Haines et al.,l99l).

The attractivêness of the previously discussed methods lies in their sim-
plicity, since their implementation involves only fairly straightforward modi-
fications of existing dynamic models. A general disadvantage, on the other
hand is that these empirical schemes are not well suited to address issues of
consistency and errors in the estimated solution when applied to real situa-
tions. where the true reference ocean is unknown.

6.3.3. Kalman Filtering Applications

The theory of the K-filter lvas presented in Section 4.1, and its meteoro-
logical applications were presented in Section 5.3. The sequential nature of
the state estimation provided by K-filtering makes it particularly well suited
to the meteorological application of forecasting. In the oceanographic con-
text, however, data at different times are stored and used simultaneously.
Thus, time becomes a fourth coordinate, like space, and the K-filter can be
used as a smoother (Bennett and Budgell, 1989; Gaspar and Wunsch, 1989),
i.e., an optimal estimator that uses formally future data (see also Section 7 here).

The great advantage of sequential estimation methods is that they are
capable of providing explicit error estimates, such as the error bars or the
error covariance matrix of the obtained solution. More difficult, and this is
true for any methodology discussed here, is the identiûcation of systematic
model errors as distinguished from forcing errors.

The K-ûlter has been applied to oceanographic problems by Budgell
(1986a,b), Miller (1986, 1989), Webb and Moore (1986), Bennett and
Budgell (1987, 1989), Carter (1989), Gaspar and Wunsch (1989), Miller and
Cane (1989), and Miller and Ghil (1990). In most of these applications, re-
latively simple dynamical models were used, but Heemink and Kloosterhuis
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essentially the same results as Bennett and Budgell (1987), but slower con-
vergence. It follows that the K-filter does not overcome the problem of reso-

lution, but it does allow for a more rapid convergence of the assimilation for

the periods and wavelengths that can be resolved by the model. The suc-
cessful application of the K-filter by Carter (1989) for the assimilation of
Lagrangian data from 39 isopycnal RAFOS floats in the Gulf Stream shows,
on the other hand, that when the sampling is not on a regular time-space
grid, some of these difficulties may be overcome (cf. also Bube, 1981; Bube
and Ghil, 1981).

In the second part of their investigation, Bennett and Budgell (1989) ex-
amined methods for computing the Kalman smoother in an efficient way
feasible for practical calculations. They show that the computation of the
smoother may be completed in a well-conditioned way without having to
store error covariance matrices throughout the integration time interval, thus
' reducing considerably the computational effort.

Miller (1989) showed that the K-filter, using minimal information from an-
other source, can overcome the major problem of altimetric measurements,
namely that of relative measurements only: since orbit determination is not
sufficiently precise for an absolute measurement of sea level, difrerences in
space and time only are provided. The K-filter converges to an absolute sea-
surface height map from altimetric differences, provided absolute measure-
ments are provided at one point in space only, e.g., from one tide gauge, at
least in Miller's (1989) idealized setting.

Miller and Cane (1989) carried out the first application of the K-filter
to a real oceanographic problem, with the scientific objective of producing
monthly mean sea-level maps for the period 1978-1983 in the equatorial
Pacific. As already remarked, a sophisticated assimilation technique is used
in their application in conjunction with a simple dynamical model. This con-
sists of the linearized momentum equations on an equatorial p-plane with
the long-wave approximation (Cane, 1984). In the model, the motion is de-
composed into vertical modes. The amplitude of each vertical mode is then
expanded into the meridional normal modes of the equatorial wave guidg
the Hermite functions (Cane, 1984). Thus, the solutions obtained by classical
$eparation of variables talie the form:

(;J:w(hi.])
, ë rn,.(x, ) ((n + l)- 't ' t ,*, - n-tltûn- r\

r  L  2: l t iT  \ {n + t ; - t , tç , "  * ,  *  n- t t2 tn_r)
(6.14)

here (u^,h^) is the amplitude of the mth baroclinic mode for the zonal veloc-
ity component and the sea-level height anomaly, respectively, ax^(x,r) is the
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Frc.24. (a) Comparison of observations (dots), raw model output (light solid) and filtered

output (heavy solid) at four stations. Data from these stations are not used in the assimilation.
ordinate in crn (b) contour maps of expected rms error of ràw model output in crn. (c) contour
map of expccted rms error of filtered modcl output in crn (from Miller and Cane l9E9).
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Frc. 25. (a) Evolution of the estimated amplitudes (left panel) and phascs (riebt panel) of the

five dominant modes in the experiment with system'noise variane o2 = lO-6 m2. (b) The fivc

Rossby modcs found to carry a significant amount of energy that arc simultaneously consistent
with both data and model (from Gasparand Wunsch, 1989)'
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eachterm.Thef i rs t te rmis thesquared is tanceof theana lys is to the f i rs t
g".rr, ift. ttcond to climatology, t-he third is a measure of smoothness' and

it. turt two are kinematic constraints on the curl and divergence of the stress'

ir,"rort functional is minimized by using the conjugate-gradient method. Re-

*ii, fo, various weight combinations are presented and the optimal weight

.ornUinution is founÀ by comparison with a subjective analvsis--Àlpfi"ations 
of variaiional methods by the Mesoscale Air-Sea Interaction

ci"irî iùnslG) at Florida state university under the direction of J. J.

o,Brien'haveaddressedalsoparameterest imationinnumericalmodel.
ing of hydraulic systems (Panctiang and.O'Brien' 1990)' Usually these pa-
-.-"î"t.r, 

are optimized by empirical tuning of the model to observations'

eunrfrung and b'Brien (tgqO) useA the adjoint method to determine the fric-

tion factor for tidal rivers.- Inparal lelwork(Smedstad,1989),adjointequat ionsweredevelopedfor

a linear, reduced-gravity shallow-water model to assimilate island sea-level

data in the equatoriA Éacific. Due to the large latitudinal extent, spherical

coordinates aie used, with @ being the longitude and 0 the latitude:

!V - r r : -  "  = ! * t +Avz (J  ( 6 .16a )
ôt ' acosa oQ P

9L + ru :  -"  * *!  + Av2v (6.16b)
ô t ' r -  a ô 0  P

*.=' l ;W.�$tr ' .o,er] 
:o (6.16c)

(6.17)

here (4 V) are the eastward and northward components of the transport'

a is the earth,s radius, (rÔ,f) are the zonal and meridional components of

lfr" *inO stress, and thè winé data used are the pseudowind stress fields of

;;;;a and o'ûrien (1986). .4 is the horizo_ntal eddy viscosity coefficient,

l,tr] r, tif.in. py.noriin" interface, V2 is the Laplacian opeiator in spherical

coordinates, ,' : sH! is the reduced gravity wave speed' with Àp the
Po

density difrerence uetwe"cn the two model layers. The parameter to be esti-

;;r.d by the adjoint method is c2. The cost function to be minimized is

I(h,c2): 
|  É* 

- h') '  +le' -, ' \ ' )az

where à, represents an observation of the upperJayer thickness and c'2 is

an a prioribest guess of the phase speed' K, and K" are validity coefficients

and E represents the spatial ànd t"mpotal domain over whicb the model is

integrated.
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Frc.26. The longitudinal variation of the gravity wavo phaso specd c2 during tbc iterativc

process of the adjoint method when assimilaiing seaJevel data from three equatorial Pacific

island stations duhng the El Nifio year 1982-1983. (a) Distribution after one iteration; (b) after

threc iteratons; (c) after fivc iterations (from Smedstad' 1989)'
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way. rilith a simple sinusoidal curl î field, the steady Stommel-Munk solution
satisfies the nonlinear Eq. (6.19). This is shown in Fig.21a.In their final experi-
ment, friction parameters, wind forcing, and initial vorticity were all treated
as unknowns and simultaneously calculated by the optimization. Figure 27b
shows the curl ? field thus calculated. Notice the very strong, small-scale forc-
ing by wind stress curl in the western boundary current. This is necessary to
balance the dissipation due to the values of the friction parameters found by
the optim2ation, which were much too large. A typical number of iterations
for the process to converge uras on the order of 200, and a reasonable value
for the friction parameter was still not obtained.

An adjoint method for the Harvard quasi-geostrophic model has been de-
veloped and applied to GULFCAST data by Moore (1991). The use of the
adjoint approach for more highly resolved models is oceanography has
been pioneered by Thacker and collaborators (Thacker, 1987, 1988, 1989;
Thacker and Long, 1988; Long and Thacker, l989a,b). Thacker and Long
(1988) stress the advantage of deriving the adjoint equations in discretized
form. In fact, the discretized form of a continuous adjoint model is not the
adjoint of the forward model formulated in discretized form because of trun-
cation errors inherent in the numerical discretization (see Courtier and
Talagrand, 1987; Hall, 1986). Also, the duality between sequential estima-
tion and variational estimation methods is very transparent when writing
the adjoint in discretized form.

Long and Thacker (1989a) constructed the adjoint for a linearized equa-
torial ocean model. In a subsequent paper, Long and Thacker (1989b) as-
sessed the performance of the adjoint data assimilation scheme when the
different types of data sets are available, with particular emphasis on sea-
level observations. In their approach, sea-level data alone are not sufficient
and must be supplemented by subsurface information if more than a few
baroclinic modes are allowed in the model ocean.

Thacker and Long have undertaken the onerous task of developing the
adjoint code for the GFDL model documented by Cox (1984), the most
complete GCM for the ocean and the one used by the largest number of
oceanographic modelers. Using a model version with 20 points in latitude,
25 points in longitude, and 6 vertical layers, they spin up the model from
rest by wind-stress driving. Two preliminary identical-twin experiments rvere
carried out. The synthetic data set was the same in both cases: a full field
of n-velocity observations at time step 0, temperature observations at time
step 3, u-velocity observations at time step 6, and salinity observations at time
step 9, extracted from the model control run. The difference between the two
cases lies in the surface boundary conditions; in the first case, surface tem-
p€rature and salinity are prescribed; in the second, surface fluxes of heat and
moisture are specified.
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Figure 28a shows the behavior of the cost function for the first case, nor-

maliied by the cost at first guess. Convergence is very rapid; the cost is re-

duced by four orders of magnitude in one iteration and seven orders of

magnitude in 15 iterations. In the second case, convergence stalled after a cost

reduction of little more than one order of magnitude (not shown). To ex-

amine the reason for this, a cross-section of the cost function was evaluated

running through the point at which convergence stalled and through the un-

known model state being sought. The results are shown in Fig. 28b. The true

minimum being sought is at iteration 13. The descent method had converged

on a secondary minimum in the cost, a consequence of the nonlinearity of

the optimization problem. In fact, Miller and Ghil (1990) have shown that the

numbet of secondary minima increases with the length of the time interval

g
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Frc. 28. (a) Cost vs. iteration for the specified temperature and salinity case. (b) Cost section

between local and global minima in the case of specificd surfacc heat and water flux. Values are

scaled by the cost at first guess and are plotted on a logarithmic scate (courtesy of R. Long and

W. C. Thacker).
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where H represents the fact that the observations are partial and indirect

and that interpolation between the regular model grid and the irregular ob-

servational grid has to occur; v(t) is observational noisg representing both

instrumental and sampling error. Typically dim z = p << n = dim w.

t1ne filtering problem is that of determining the best estimate û(t) at the

end of the time interval over which data are provided, t : U. The solution
of this problem is provided, for a linear system, by the K-filter (Kalman,

1960; Sections 4.1, 5.3 and 6.3.3 here). For a nonlinear system IEq. (7.1)], no

solution which is both computable and truly optimal exists. Various near-

optimal, computable solutioris do exist (Sections 4.1,4.2,5.3.2,5.4.3 and 6.3).

The prediction problem is that of determining Û(t) at times after the

last available observation, t > +.Its solution for zero-mean system noise,

Eu(r) :0, is simply

û ' : N ( f r ) ,  t l t r

û(t1):  ût

here E is the- expectation operator (the ensemble mean), ( )' denotes time

derivatives, and Û, is the solution of the filtering problem for Eqs. (7.1) and
(7.2). Estimating the initial state of a forecast from data up to initial time and
paying no further attention to the data during the forecast itself is standard
practice in NWP and, as we see, makes perfectly good sense.

The smoothing problem is that of estimating û(t) optimally at interior
points, to 1 t 1t1. It is therewith the problem appropriate for climate-related
feature movies (Bennett and Budgell, 1989; Gaspar and Wunsch, 1989; Sec-

tions 6.3.3 and 6.3.4 here). One of its solutions involves computing a forward

K-filter estimator Ûr(r) for intervals (to, r) with t 3 \, a backward estimator
ûr(r) for the adjoint of Eq. (7.1) linearized about ût(r) for intervals (r'fy)

with ro S t, and finding the optimal linear combination between frr(t) and

f,r(r) at each t e (to,t). Thus, the Kalman smoother and the adjoint method
(pinenko and Obrazls ov,1976; I-e Dimet and Talagrand 1986; Sections 4.2,

5.4.3 and 6.3.4 here) of deterministic optimization theory exhibit certain

analogies. The difference is that the smoother of stochastic estimation theory

also provides automatically the requisite error bars on the estimated states,
wherias the adjoint is èasier to formulate.

While this chapter is already rather long, certainly longer than the authors

originally planned or expected, it is far from exhaustive. It is by-andJarge
restricted to the problem of state estimation, having touched only occasion-

ally upon the important problems of parameter estimation (in Section 6.3.4)

or noise estimation (in Section 4.1; see also Dee et al.,1985, and Ghil, 1990).

Still, the main points should be clear:

1. The use of dynamic models in a data-assimilation mode is essential to

(7.3a)

(7.3b)
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Thesemesoscaleprocessesalsohaveprofoundinfluencesinfar-awayre.
gi; "f the gyre, deiermining for instanc_e_the penetration scale of the rffest-

îriÉoonaury jet into the gyie interior (Holland and schmita 1985) or the

ùaro-clinic irrstuUitities of tÈi Sverdrup return flow (Holland, 1986). A simple

k;;;hdg" of the.eddy statistics is nàt sufficient to address these issues, but

frru." inio.,oation must also be provided, i.e., visualization and mapping of

ii-rrgl" rrafizations is important. i'hus, in rye1nic 
data-assimilation problems,

tfr."ct oi"e of a model and related data assimilation scheme and the definition

of success of the assimilation process itself depend crucially on the scientific

issue of interest as the starting point

Computational constraints impose, at present' a trade'ofr between the

pt ysicai complexity and spatial resolution of the model' on the one hand'

liâ ttt. sophisticaiion of ihe data assimilation method used in any given

r*AV, "",Ë. other, for both meteorology and oceanography' As raw compu-

iationaf speed increases, and parallel aichitectures' coarse- and fine-grained,

.uotu., wË should be abie to cbmbine both realistic models and advanced as-

similation methods into powerful4-D data assimilation cycles for the coupled

ocean-atmosPhere system.- 
fir. key issues for advanced data-assimilation methods, whether based on

."qo*tiui estimation or control theory' are (a) to reduce the computational

complexity of implementation algorithms; (b) to provide reliatle information

on the errors of the estimated fields; and (c) to deal adequately with strongly

nonlinear situations. It will be an exciting decade for data assimilation and

for the improvement of our ability to desiribe and understand atmospheric

and oceanic flows on global and local scales'
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