ADVANCES IN GEOPHYSICS, VOLUME 33

DATA ASSIMILATION
IN METEOROLOGY AND OCEANOGRAPHY

MicHAEL GHIL

Climate Dynamics Center
Department of Atmospheric Sciences and
Institute of Geophysics and Planetary Physics
University of California, Los Angeles, California 90024

PaoLA MALANOTTE-RI1ZZOLI

Center for Meteorology and Physical Oceanography
Department of Earth, Atmospheric, and Planetary Sciences
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

1. INTRODUCTION AND MOTIVATION

The atmosphere and oceans are in motion on time scales comparable to
those of human experience. By contrast, the solid earth—lithosphere, mantle,
and core—moves on the average much more slowly. Geophysical inference
for the solid earth has concentrated, therefore, on methods that interpret
the available data in terms of a stationary structure. Atmospheric data, on
the other hand, are routinely interpreted in the daily process of numerical
weather prediction by assimilation into nonstationary, dynamical models. In
oceanography, inverse modeling of the solid-earth type, as well as data
assimilation of the meteorological type, are trying to make the best of the
relatively limited, but rapidly-increasing data sets.

The oceanographic data revolution knocking at the door will bring the daily
practice of physical oceanography closer to that of dynamic meteorology.
Two major differences however must be kept in mind when discussing data
assimilation for the two geofluids. First, the oceanographic data set to become
available in the mid-1990s is expected to be considerably smaller than that
currently available in meteorology and will fall far short of complete, uniform,
and accurate coverage of the mass and velocity fields throughout the world
ocean’s width and depth.

The second major difference is in the motivation. Meteorological as-
similation has been driven largely, but not exclusively, by the crucial need to
forecast. This need is not as pressing at the present time for most oceano-
graphers, with two exceptions: In the tropical ocean the capability to
predict on seasonal and interannual time scales is being documented, and
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experimental forecasts are leading to quasi-operational ones. In mid-latitudes
and on the global scale, there is substantial interest in nowcasting and short-
range forecasting by the world’s navies, fisheries, and off-shore drilling
concerns: This interest is being met by a small, but very active segment of the
oceanographic community, especially on the regional and subbasin scale.

The most pressing motivation for a much larger number of physical
oceanographers is, however, the optimization of the use of the much-
expanded, but still insufficient data sets expected in the near future, for the
purposes of deepening and broadening our understanding of ocean circu-
lation on regional, basin, and global scales. This will require the blending of
actual current observations with the theoretical knowledge from past
observations, as incorporated into numerical models, prognostic or diagnos-
tic. Data sets from field programs will be archived and thus will be available for
imaginative use with different numerical models and data assimilation or
inverse methods, hence, the need to intensify the exploration and intercom-
parison of data assimilation methods in oceanography.

Numerical models can be used to assimilate meteorological and oceano-
graphic data, creating a dynamically consistent, complete and accurate
“movie” of the two geofluids, atmosphere and ocean, in motion. One key
problem for oceanographic applications is how to determine variables not
directly observed, such as the velocity components, from the observed
variables, such as surface height or wind stress. The other key problem is how
to use information in one part of the ocean, at the surface or in a western
boundary current, in order to infer the state of the other parts, at depth and
throughout a subtropical gyre. The answers to these two problems lie in the
dynamical coupling between variables for the one, and the propagation of
information with the flow for the other. This is the central role that dynamics
plays in estimating the state of the ocean, as well as that of the atmosphere,
from incomplete data. Numerical models, however, are not and never will be
perfectly accurate representations of the atmosphere and ocean’s large-scale
motions. Both models and data have errors; hence the need to balance dy-
namical and observational information properly.

Meteorological data usage can thus provide some guidance to oceano-
graphers. On the other hand, differences in the intrinsic properties of the two
fluids and in the nature of the available data sets imply that oceanographers
must proceed cautiously in building upon the experience accumulated by the
meteorological community. The existence of complex continental borders
and of narrow, intense currents along western boundaries and the equator, the
difficulty in defining unambiguously a mean quasi-steady circulation, the
importance of deep convective processes that are confined to very limited
ocean areas are all major differences from the global atmosphere. These
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differences and many others will oblige oceanographers to reinterpret, adapt,
and modify data assimilation techniques suggested by meteorology and other
disciplines, such as geophysics and control theory. The purpose of this chapter
is therefore twofold: (1) to provide a review of current operational practice
and of advanced data assimilation techniques in meteorology, and (2) to
illustrate the difference between the oceanic and atmospheric cases, showing
how the theoretical framework developed in meteorology can best be adapted
and modified for oceanography.

The chapter is organized as follows. In Section 2, the history of data usage
in meteorology is outlined, and a number of methods for combining data
with models are mentioned. In Section 3, we focus upon the differences and
similarities between the two geofluids, the atmosphere and_the ocean,
comparing their physics and dynamics as well as the current and expected data
sets for each medium and the available numerical models. In Section 4, the
mathematical framework of estimation theory is presented, emphasizing
sequential estimation and its connections with variational methods. Compu-
tational considerations are raised and the implications of model nonlinearity
for data assimilation are discussed.

Section 5 is devoted to meteorological applications of data assimilation,
starting with the currently most widespread operational technique, so called
optimal interpolation (OI). The initialization of primitive-equation (PE)
models is presented, and methods are outlined to eliminate the undesirable fast
gravity waves allowed by PE dynamics. Among the advanced techniques
currently under development, both variational and sequential methods are
reviewed. In Section 6, we discuss the rapidly growing field of oceanographic
data assimilation. We assess the important questions to be solved and their
dependence upon the forthcoming data sets, as well as dependence of data
assimilation methods on the model used. The existing literature is reviewed,
and specific examples of relevance are given. Section 7 concludes this review
with a critical discussion of results achieved so far and an outline of important
paths for future research.

New data sets are becoming available in many other fields of geophysical
fluid dynamics, such as planetary atmospheres or the earth’s stratosphere

‘(Panel, 1991). For the uninitiated readers, who need a quick overview of avail-
able methods for assimilating new data in their field of study, we recommend
the following path of reading on the first go around: Section 2, Sections 4.1
and 4.2, Section 5.1, Sections 5.4.2 and 5.4.3, Section 6.3.2, and Section 7. This
might turn you off foreover from data assimilation, or it might motivate you
to read other sections of the chapter. Alternatively, you might continue the
learning process by perusing additional references mentioned in these key
sections or by working out simple examples with the methods outlined.
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2. EVOLUTION OF DATA ASSIMILATION IN METEOROLOGY

We not only want to know and understand the climatological or current
state of either geofluid (the atmosphere or the ocean), we also want to predict
their future state. Beyond the qualitative understanding of either geofluid, a
quantitative estimate of its state in the past and present as well as quantitative
prediction of future states is required. The estimate of the present state is a
prerequisite for future prediction, and the accuracy of past prediction is
essential for an accurate estimate of the present.

How does the estimation of the present proceed in meteorology? The first
step along the road of quantitative numerical estimation in meteorology was
objective analysis, which replaced manual graphic interpolation of observa-
tions by automated mathematical methods, such as two-dimensional (2-D)
polynomial interpolation (Panofsky, 1949). Not surprisingly, this step was
largely motivated by the use of rapidly improving knowledge of atmospheric
dynamics to produce numerical weather forecasts (Charney et al., 1950). The
main ideas underlying objective analysis were statistical (Eliassen, 1954;
Gandin, 1963; Phillips, 1976). Observations are considered to sample a ran-
dom field with a given spatial covariance structure, which is predetermined
and stationary in time.

This generalizes, in fact, Wiener’s (1949, 1956) ideas on statistical estima-
tion and prediction (cf. Ghil, 1989) from a finite-dimensional system, gov-
erned by ordinary differential equations (ODEs), to an infinite-dimensional
system, governed by the partial differential equations (PDEs) of geophysical
fluid dynamics. In practice, these statistical ideas appeared too complicated
and computationally expensive at the time to be adopted as they stood into
the fledgling numerical weather prediction (NWP) process. Instead, various
shortcuts, such as the successive-correction method were implemented in the
operational routine of weather bureaus (Cressman, 1959).

Two related developments led to the next step, in which the connection
between statistical interpolation on the one hand and dynamics on the other
became apparent and started to be used systematically. One development was
the increasingly accurate nature of numerical weather forecasts; the other was
the advent of time-continuous, space-borne observing systems. Together, they
produced the concept of four-dimensional (4-D) space—time continuous data
assimilation in which a model forecast of atmospheric fields is sequentially
updated with incoming observations (Charney et al., 1969; Smagorinsky et al.,
1970; Rutherford, 1972). Here the model carries forward in time the knowledge
of a finite number of past observations, subject to the appropriate dynamics,
to be blended with the latest observations.

Combining the 4-D assimilation of the new satellite, aircraft, and drifting
buoy data with the usual objective analysis of the earlier conventional data
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FiG. 1. Meteorological observations available during one 12-hour period centered at 1200
GMT 9 January 1979. Each panel gives one type of observation with data type at the top
left; numbers in parentheses here are typical of measurements available for a 12-hour period:
(a) Drifting buoys, surface pressure p, (270); (b) cloud-drift wind vectors V (two velocity com-
ponents) from geostationary satellites, at one of two levels (2250 vectors); (c) V (two scalars) from
aircraft and constant-level balloons (1100); (d) surface temperature T,, wind V, and pressure p,
(four) from land stations and ships (3450); (€) temperature T from polar-orbiting satellites
(2050 x 5 levels); (f) V (two) from pilot ballons (660 x 10); (g) T, V and humidity g (four scalars)
from radio- and dropsondes (750 x 10) (from Bengtsson et al., 1981).
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from radiosondes, ships, and land stations (see Fig. 1) led to an interesting
realization. In fact, NWP operations had, of necessity, combined dynamics
with observations all along in determining the state of the atmosphere at all
times and in particular at those times from which forecasts had to be issued.
Any weather bureau carries out two processes in parallel: one is the numerical
forecast from a particular moment in time, or epoch, which we shall call initial
time; the other is the 4-D assimilation of incoming data in order to estimate as
well as possible the state of the atmosphere at the next epoch from which a
forecast has to be issued.

Figure 2 shows the process of intermittent updating, in which all data within
a certain interval, or window, are used together at the same epoch to update
the state of the system as forecast by the NWP model (Bengtsson, 1975).
Forecasts are typically started at so-called synoptic times, 0000 GMT and
1200 GMT, in which case a 12 hr assimilation cycle with +6 hr windows is
used. The subsynoptic times 0600 GMT and 1800 GMT also intervene when
using a 6 hr cycle with +3 hr windows. At analysis or update times, the
numerical forecast is first verified against the new data and then combined or
blended with them, i.e., the data are assimilated into the model. Finally, a new
forecast is issued from the newly estimated state of the atmosphere.

The intermittent updating process described above was entirely appropriate
as long as most data were taken, by international agreement, at the same time
in order to provide a “synopsis” of the global weather; hence the word
synoptic times and synoptic maps. With the advent of satellite data, time-
continuous data assimilation, i.e., in practice every model time step (Ghil et al.,
1979), became possible. Thus, considerable interest developed throughout the
1970s in objective analysis and data assimilation methods, in preparation for
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FiG. 2. Operational cycle of a weather service which combines the forecasting and data assim-
ilation process (from Ghil, 1989).
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the First GARP global experiment (F GGE), later relabeled the global weather
experiment (GWE). The different methods in use by 10 advanced weather
services at the end of that decade are reviewed by Gustafsson (1981) and by
Ghil (1989). They are discussed further in Section 5.

At this point, we note merely that noisy, inaccurate data should not be fitted
by exact interpolation, but rather by a procedure designed to achieve two
goals simultaneously: (1) to extract the valuable information contained in the
data, and (2) to filter out the spurious information, i.e., the noise. Thus, the
analyzed field should be close to the data, but not too close. The statistical
approach to this problem is linear regression. The variational approach is
minimizing the distance, (e.g., in a quadratic norm) between the analyzed
field and the data, subject to constraints that yield a smoother result. The
connection between these two approaches in a stationary, ergodic context is
intuitively obvious and is reflected in the fact that root-mean-square (rms)
minimization is used in popular parlance for both approaches.

The analysis method in widest operational use today in NWP is a partic-
ular form of statistical interpolation, commonly referred to as optimal inter-
polation (OI) (Lorenc, 1981; McPherson et al., 1979). Optimal interpolation
is described within the broader context of estimation theory in Section 5.1.
A particular implementation of variational methods, using the equations of
motion as a strong constraint, is also being considered at present by some
weather services (Courtier and Talagrand, 1987). This implementation by the
adjoint method is discussed in Section 5.4 via the well-known duality between
stochastic estimation and deterministic control (Gelb, 1974, Section 9.5).
Oceanographic examples of the adjoint method are mentioned in Section 6.
General reviews of meteorological analysis and assimilation methods are
given by Bengtsson (1975), Bengtsson et al. (1981), Daley (1991), Thiébaux and
Pedder (1987), and Williamson (1982). Brief unifying treatments are given by
Ghil (1989), Lorenc (1986), Phillips (1982), and Wahba (1982). While providing
its own unifying point of view, that of estimation and control theory, this
chapter also addresses specific issues of data assimilation not covered by the
preceding references, with a special emphasis on current and future appli-
cations to physical oceanography.

3. ATMOSPHERE AND QCEAN: Dynawmics, DATA SETs, AND MODELS

As discussed in Section 1, an important difference between oceanographic
and meteorological data assimilation is in the motivation. Meteorological
assimilation was driven at first by the need to forecast. At the present time and
for the near future, oceanographic assimilation is and will be driven more by
the need to understand better ocean dynamics through the blending of
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actually observed data with model-evaluated values of the same dynamical
variables. This second approach emphasizes model parameter estimation,
formal testing of the models against the data, and the need to calculate
solution errors arising from the errors inherent in the model, in the data, and
in their optimal blending. A discussion of these important aspects of ocean-
ographic data assimilation will be given in Section 6 in the context of specific
applications. Here we review the general similarities and differences between
the two geofluids in physics and dynamics, in current and expected data sets,
and in the numerical models used: for each medium.

3.1. Dynamics and Thermodynamics

The similarities between the two geofluids are well known, and a unified
theory is given by geophysical fluid dynamics (GFD). A number of books
address GFD from this broad point of view (Ghil and Childress, 1987; Gill,
1982; Pedlosky, 1987). Nevertheless, crucial differences exist between the
two fluid media. Hence, oceanographers cannot simply borrow the data
assimilation techniques developed in meteorology; they must reinterpret the
techniques and make them more suitable for oceanographic data sets.

Major similarities and differences are often paired. First, both atmosphere
and ocean are forced, dissipative systems (Lorenz, 1963; Ghil and Childress,
1987, Section 5.4), but the atmosphere is forced only thermally, by equator-to-
pole and land-sea temperature contrasts. Furthermore, this large-scale
thermal forcing changes slowly on the time scale of purely deterministic
prediction, 1 to 2 weeks.

By contrast, the major component of the ocean circulation on short time
scales is the wind-driven circulation. Hence, in order to model, understand,
and predict successfully oceanic currents, it is necessary to possess infor-
mation on the ocean’s internal dynamic variables, as well as on the surface
forcing functions that drive these variables. Scatterometry will provide the
wind-stress field at the sea surface with a space—time resolution adequate for
global ocean circulation modeling and with reasonable accuracy.

* The oceans’ thermohaline circulation exhibits most of its variability on the
much longer time scales of decades to millenia (Gill, 1982; Ghil et al., 1987).
But its short-term variability is also significant (Gill, 1982; Levitus, 1989), and
it does interact strongly with the wind-driven circulation. Unfortunately,
direct measurements of the heat and water fluxes, which drive the thermo-
haline component of the circulation, will not have adequate resolution and
accuracy for global ocean modeling. The global distribution of the incoming
solar radiation is relatively well known at the top of the atmosphere. At the
sea surface, however, the thermodynamic fluxes have been modified by the
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dynamical and physical effects of the intervening fluid, the atmosphere, and
are modified further by the reflecting and absorbing properties of the sea
surface itself. These fluxes include: (1) incoming, short-wave solar radia-
tion; (2) long-wave radiation reemitted at the sea surface; (3) sensible heat;
(4) latent heat; (5) evaporation of water vapor; and (6) precipitation of liquid
water. Their direct measurement, both remotely and in situ, is very difficult.

The heat and water fluxes are currently evaluated on a global basis through
bulk formulae which depend upon a number of empiricali coefficients, such as
surface drag for wind stress. These bulk formulae provide order-of-magnitude
estimates at best. Even in climatological studies, their sensitivity upon the
specific values used for the best-fit coefficients may be so great as to reverse the
sign of the total heat budget for a given basin (see, for instance, Bunker et al.,
1982). Hence, the oceanographic community will have to rely heavily upon
numerical modeling and data assimilation to infer the thermohaline cir-
culation, especially in the deep ocean layers where thermohaline processes are
dominant.

In both ocean and atmosphere, dynamics and thermodynamics of the
“pure” fluid, dry air or fresh water, interact through and are modified by a
minor constituent: water in the atmosphere and salt in the ocean. Conserva-
tion equations for water in its three phases (in the atmosphere) and for salt
(in the oceans) must be added to the equations of conservation of mass,
momentum, and energy of the pure medium. The hydrologic cycle is, in fact,
the most poorly observed component of atmospheric motions. Still, the
atmospheric equation of state, even in the presence of diabatic processes, is
relatively simple.

The ocean, on the other hand, is not a pure chemical solution with only one
solute, which would still imply the existence of a unique functional relation-
ship among three arbitrarily chosen thermodynamic variables, defining the
equation of state of sea water. In fact, there are about 30 substances dissolved
in the ocean, in quasi-steady relative proportions. These solutes are re-
sponsible for the “saltiness” of seawater quantified through the empirical
concept of salinity, defined as the quantity of dissolved material in grams
presentin 1 kg of scawater. Because of the number and diversity of solutes, the
equation of state for sea water is highly nonlinear and it is only available in the
form of an empirical best fit, with consequent difficulties for data analysis and
numerical modeling.

Another fundamental difference between the ocean and the atmosphere
is that the ocean is essentially opaque to electromagnetic radiation. The
atmospheric observational system is largely dependent upon radio and light
waves for probing the atmosphere in the vertical and sending information
back to the earth’s surface and for looking into the atmosphere’s interior from
satellites. This is not possible for the ocean: one cannot see into its interior or
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communicate through it by electromagnetic means, only by acoustic ones.
This major difference in the physics of the two fluids has had obvious and
profound consequences for the capability of collecting synoptic data sets with
global coverage, a capability not existing for the oceans and limited, even in the
future, to the ocean surface only (Munk and Wunsch, 1982).

Further complications in oceanographic modeling are due to the presence
of continents, which break the world ocean into major basins with complex
geometries. This has two effects. First, the break in the longitudinally periodic
configuration of the fluid makes it impossible to define a zonal-mean
climatological component of the circulation analogous to the atmospheric
subtropical jet. Many models and results for the atmosphere rely upon the
expansion and linearization of the equations of motion around this dynamical
mean state, which constitutes a considerable simplification. This powerful
simplifying approach is impossible for the ocean.

Second, oceanic horizontal and vertical boundary conditions are much
more complex. In the atmosphere, horizontal boundary conditions are
periodic, which makes relatively simple spectral models extremely useful and
efficient. At the upper boundary, a simple radiation condition suffices. In the
ocean, continents introduce great flow distortions and multiple, model-
dependent choices for the horizontal boundary conditions. At the surface,
accurate knowledge of two major surface forcing functions, heat and
momentum, is required, as previously discussed. Only the bottom boundary
condition may be simpler, not because the ocean’s bottom topography is less
complex than the earth’s surface topography, but because deep ocean motions
are very weak, and the bottom boundary conditions can often be linearized.

All the differences between the two geofluids just reviewed briefly make the
ocean system less easily tractable than the atmospheric one, with respect to
realistic numerical modeling or the capability for data assimilation. In one
respect, however, the ocean is simpler than the atmosphere, and this may
simplify the development and adaptation of assimilation techniques. The
ocean is a very stably stratified system with a time-constant, permanent
pycnocline. Mixing occurs mostly along isopycnal surfaces, rather than across
them. This stable stratification strongly inhibits vigorous vertical motions,
and vertical velocities are usually of the order of 10~° cm/sec compared to
1 cm/sec for the horizontal components. Unlike the atmosphere, where ver-
tical convection plays a crucial role in the dynamics, deep convection cells
in the ocean are very limited in horizontal extent; they are mostly confined to
the North and South polar regions of the Atlantic, where the major water
masses are formed.

The ocean’s strong stratification also helps determine the most energetic
scales and processes for the global ocean circulation. The counterpart of
synoptic-scale cyclones in the atmosphere is mesoscale eddies in the mid-
latitude ocean. Oceanic energy spectra (Wunsch, 1981) show a dominant
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mesoscale peak for the time and space scales of the general circulation, which
has no clear counterpart in a well-defined synoptic-scale atmospheric peak
(Boer and Shepherd, 1983). Energetic mesoscale eddies near the surface have
been shown to be, in all likelihood, the major internal driving force of the deep
ocean circulation (Holland and Rhines, 1980). The characteristic scale of
oceanic mesoscale eddies is two to three times the internal Rossby radius of
deformation, which is determined by the local stratification profile and in
midlatitudes equals typically 50 km. Hence, in the ocean, the Burger number B
satisfies B < 1 or B « 1 (Gill, 1982), while the most energetic, synoptic mo-
tions in the atmosphere have length scales comparable to or less than the
Rossby deformation radius, B > O( 1) (Ghil and Childress, 1987, Section 4.3).
Thus, we can expect, independently of the type of forcing (mechanical or
thermal), that the ratio of gravity-wave energy to Rossby-wave energy in
the ocean is smaller, and that the dissipation mechanisms of a stable numer-
ical model are much more effective in damping the gravity waves.

The dominance of the mesoscale energy peak allows a major simplification
in the oceanographic equations of motion, leading to the quasi-geostrophic
(QG) approximation, which automatically filters out gravity-wave noise. Even
when considering PE dynamics, the rigid-lid approximation is typically used
in ocean models, thus filtering out the most troublesome waves, the surface
gravity waves. This is done not only for reasons of computational economy,
but also because surface tides are basically a linear phenomenon, well
understood and highly predictable, and because the tides do not interact
significantly with the dynamical processes and energy exchanges of the
oceanic general circulation. We shall return to these simplifications of the
dynamics in the discussion of available oceanographic models, Section 3.3.

We suspect, for all the heuristic reasons given previously, that the
initialization “shocks” observed in some atmospheric PE models in the
absence of appropriate initialization procedures will not constitute as
important a problem in oceanic PE models, as long as surface gravity waves
are not present thanks to the rigid-lid approximation. This inference is
supported in fact by the results of Thompson (1986) and Malanotte-Rizzoli
et al. (1989). In Section 6.2, we show that strongly unbalanced initial data
are in fact required to produce strong internal gravity-wave noise in an.
oceanic PE model endowed with realistic stratification. -

3.2. Data Sets in the Atmosphere and Ocean

To measure the distance with respect to availability of data between
physical oceanography and dynamical meteorology at present, let us compare
Fig. 1 with Figs. 3 and 4. Figure 1 represents the data typically available at
present over one synoptic period, i.c., over 12 h for the global atmosphere.
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3 and 4 represent the distribution in space and time of all oceano-
data up to 1978, archived by the National Oceanographic Data

Center (NODC), Washington, D.C.
In Fig. 1, the total number of scalar measurements of the atmospheric mass
and velocity fields over 12 hr is of the order of 10° (Ghil, 1986, 1989). This




FiG. 4. Horizontal distribution of oceanographic observations at the sea surface: one-degree
squares containing 1-4 observations (small dot) or 5 or more observations (large dot) from the
merged NODC data set (SD + MBT + XBT). (a) Temperature for Northern Hemisphere (NH)
winter (Feb., March, April); (b) temperature for NH summer (Aug, Sept., Oct); (c) salinity for
NH summer (from Levitus, 1982).
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number is essentially adequate for a description of large-scale atmospheric
fields, by using the methods of data assimilation into weather prediction
models, which are currently operational in major weather bureaus. The test of
adequacy here is relatively accurate prediction for a few days or a few synoptic
periods.

The total number of archived oceanographic mass-field measurements over
a period of 80 years or so is of the order of 107: (a) temperature T and salinity
S from Nansen casts at about 500,000 hydrographic stations: (b) T from about
785,000 mechanical bathythermograph (MBT) and about 300,000 expendable
bathythermograph (XBT) soundings, each with its own vertical distribution
of individual measurements (Levitus, 1982). The situation for the ocean’s
velocity field is rather worse than for the mass field.

On the face of it, taking the number of atmospheric observations as the
yardstick, there are 102 times more oceanic observations for a period of 10°
times longer, i.e., 10° times fewer observations. This first estimate has to be
corrected by allowing for the different time and space scales of the basic
phenomena to be observed and predicted in the atmosphere and in the ocean.
The Rossby radius of deformation, which is the characteristic length scale in
both geofluids, is O(10?) km in the ocean vs. O(10*) km in the atmosphere,
thus requiring an observational density 10? times higher. This is compensated
only partially by the longer characteristic time in the oceans, requiring a fre-
quency of observation 10 times lower than the atmosphere. The corrected
estimate is therefore of 10* times fewer observations in the ocean.

Not only have oceanographers been accustomed to very few observations,
but these are even more unevenly distributed in space and time. Figure 3 shows
the distribution in time of MBT and XBT casts. The XBT is a more accurate
and convenient instrument than the MBT, which it has essentially replaced.
Unfortunately, the number of XBT casts has actually decreased, and there is
also a lag in the entry of some XBT measurements into the NODC files. The
distribution of observations in space, horizontally (Fig.4) and with depth
(Fig. 5), is also very uneven. Most data are in the Northern Hemisphere (NH,
dotted line in Fig.5), and there is further concentration of data in western
boundary currents and along shipping lanes. The amount of data below the
permanent thermocline is a tiny fraction of the total, and decrease of
information with depth is quite rapid in the upper ocean as well.

In contrast to this situation, valid until just a few years ago, there are already
about 40,000 satellite sea-surface temperature measurements daily. In ad-
dition, in the early 1990s, about 50,000 sea-surface height measurements and
180,000 surface wind vectors will be available daily (Halpern, 1987). Thus,
the daily number of measurements in oceanography will become comparable
to that currently available in meteorology. Even so, two problems remain;
first, this is still a factor of 10 smaller, due to the difference in characteristic



(Z861 'smIAST 12fe) sajess JuszayIp aaey Jaued yoes ui essiosqe ay)
pueaj2UIpIC 3Y3 Yi0q 1Y) 300N, (Paysep) (HS) ssaydsiwap uIdYInog pue (panop) (HN ) aseydsiwapy UIYON ‘(p1jos) 3qoi8 ay3 soa0 yidop yum uonnginsip
3y} smoys joued yoey s X (0) 'sLAW (9) (gs) Blep uonelg (k) "saAlydse DQQN Ul S[3A3] piepue)s je suONEA135qQO aInjesaduId) Jo uonnquIsiq ¢ 'o14

(w) yadag
008 00L 009 00S 00V 00F 00Z 00L O 0SZ 00Z 0SL 0OL OS5 O OOSE OOOE 00SZ 0OOZ 00SL 000L 005 O
o ~I_T 1 1} T T T —1° e ooy Al P gy e I

~ ____ HS >
- ov ———— } 05 £
3
- 08 |- —ooz - oL §
=4

= ozt b oSt
o]
- 09 oov |- w0z &
®
S
= 00z = 0sz o
)
e
" ore 009 |- oo
=
- 08z - ose o
)
=
= —oze | —{o0s - Hoov &
. =
a
- ~ ose = v &

SR ) BT N N N .. | 9 Y T S S R R N -| (OO




156 MICHAEL GHIL AND PAOLA MALANOTTE-RIZZOLI

scales; and second, the additional data mentioned are all surface data. It is
hoped that the number of vertical soundings will increase somewhat, due to
acoustic-tomography arrays and other advanced systems. But it is unlikely
that this increase will be anywhere as dramatic as that for the surface.
Furthermore, the data for the interior water mass, and especially the deep
layers, will still be very unevenly distributed.

3.3. Oceanographic Models

Due to the smaller number and more uneven distribution of oceanographic
data, a proportionately heavier burden will rely upon numerical models
and data assimilation techniques to provide the dynamical interpolation of
the circulation to data-poor water volumes and from observed to unobserved
variables. Oceanographic models have followed their meteorological counter-
part with a lag of about 10—20 years. As a result, most of them are still at the
stage of craft rather than technology: each has been designed with a specific set
of questions in mind or for limited domains; hence they are not portable in
general and cannot be used for general-purpose global assimilation and
prediction. Most numerical models in oceanography can be divided into four
major categories:

(1) Quasi-geostrophic models, a prototype of which is discussed by
Holland (1978).

(2) Layer models, based upon PE dynamics that use the adiabatic
approximation. Examples are the subtropical gyre models of Holland and Lin
(1975), models by Hurlburt (1986) and Thompson (1986) for the Gulf of
Mexico, and, more recently, for the Gulf Stream system (Thompson and
Schmitz, 1989); the equatorial models developed by Busalacchi and Picaut
(1983), Luther and O’Brien (1985), Cane and Paden (1984) for different tropical
oceans; and the Bleck and Boudra model (1986) in isopycnal coordinates.

(3) Primitive Equation models endowed with active thermodynamics, the
most complete prototype of which, known as the Geophysical Fluid
Dynamics Laboratory (GFDL) model, has been developed by Bryan (1969)
and Cox(1984). It is the only ocean general circulation model (GCM) made
available to scientists all over the world and is presently used for a vast variety
of modeling and data assimilation studies. A Semi-Spectral PE (SPEM) model
has been constructed by Haidvogel et al. (1991) and is being used in a variety of
applications.

(4) Intermediate Models (IM) based upon different forms of the balance
equation have been proposed by Gent and McWilliams (1984). They are not
yet in widespread and standard use, but rather are in the development stage.
Portable QG and PE versions of a limited-area, open-boundary regional
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model have been developed by the Harvard group (Robinson and Walstad,
1987) and made available to other users.

Oceanographic QG models have been quite successful in simulating the
mesoscale eddy field, the basin-wide, wind-driven general circulation, and
the interactions between the two scales. This success reinforces the point
made earlier about the QG approximation being even more appropriate in
the ocean than in the atmosphere. The oceanic inertial-gravity wave and
mesoscale bands of the spectrum appear to be sufficiently well separated so
that little energy leaks from the one to the other. The mesoscale peak is
moreover two orders of magnitude greater. Outside of relatively small regions
characterized by systems endowed with strong curvature, like jet meanders
and ring structures, the oceanic Rossby number is small enough for QG
dynamics to model adequately mesoscale and planetary scale processes and
reproduce their energetics accurately.

Still, PE models are needed to represent the thermohaline circulation and its
interaction with the wind-driven circulation. Even in the more advanced PE
models, however, including the complete GFDL model with active thermody-
namics, the rigid-lid approximation is commonly used. This is Jjustified by
surface gravity waves, e.g., barotropic tides, being unimportant in the energy
budgets and fluxes of the large-scale circulation. The rigid-lid approximation
filters out the fastest component of the gravity-wave noise, and the model
dissipation mechanisms suffice to damp out the much slower internal waves.
Thus, ocean dynamics allow major simplifications in the governing equations
without impairing the realistic representation of oceanic motions and of their
energetics.

4. ESTIMATION THEORY AND DATA ASSIMILATION

In this section, we give a brief review of the theoretical framework of
estimation and control theory that provides the foundation of data as-
similation techniques. Meteorological applications of the theory will be
discussed in Section 5; oceanographic applications in Section 6. Statistical
methods are closer to the estimation aspects of the theory, variational
methods to the control aspects. The connections between the two aspects
should become clear. The basic mathematical concepts of estimation and
minimization can be given quite simply. :

Take two measurements y and z of an observable x. The simplest estimat
of the variable x, X, is sought as a linear combination of yand z:

.i = aly -+ azz (418)
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We assume that the two measurements are unbiased,
Ey=FEz=Ex 4.1b)

E is the expectation operator, the mean or average of a theoretically infinite
number of measurements, and Ex is not known a priori. Requiring the
estimate itself to be unbiased, EX = Ex immediately implies that a, + o, = 1
and hence Eq. (4.1a) can be rewritten as

X = y+ 2z —y) (4.2a)
We also assume that the measurement errors are uncorrelated,
E(y — Ex)z — Ex) =0 ' (4.2b)
and that their variances % and ¢ are known
o?=E(y— Ex)®, %= E(z - Ex)? (4.2c,d)

The optimal linear unbiased estimate of x is given by choosing «, and
a; = 1 — a, so as to minimize the variance

2 =E(x — x)? 4.3
of the estimation error. The required minimum is achieved by choosing
q, =56l o, 2 (4.4a,b)

here 6 is just the variance of the optimal estimate given by
6 2=0,"465" (4.4¢)

The weights a; and «, thus reflect the relative uncertainties in y and z,
respectively, and 2 is smaller than both ¢ and 2. In fact, it is convenient to
define as accuracy A = o~ ? the inverse of the variance of a random error. With
this terminology, Eq. (4.4c) states that the accuracy of a linear unbiased
optimal estimate equals the sum of the accuracies of unbiased mutually

uncorrelated measurements.
Formally, the variational approach would have required here to minimize

J o J(x; ﬂl’ﬁz)’
J = Bilx = y)? + By(x — 2)? 4.5)

with respect to x for arbitrary weights 8, and f,. The result will be the same,
Eq. (4.1) with (4.4), provided

e B=ua, (4.6a,b)

or, eliminating 62,
_2 o
B =017 B, = 03? (4.6¢c,d)
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Equation (4.5) appears to be simpler, since no explicit statistical assumptions
(4.2a-d) need to be made. But Eq. (4.6) shows that implicit access to infor-
mation similar to that given in Eq. (4.2c,d) is required.

As discussed by Lorenc (1986), Wahba (1978, 1982), and their references,
this information can also be retrieved variationally, given a distribution of
observations in space or time which by ergodicity is equivalent to a dis-
tribution in probability space. The variational problem has to be reformu-
lated for these purposes as minimizing

J=(x—p)?+(x —z)* + ix? 4.7

and the regularization or smoothing parameter 2 has to be determined from
the data. This can be done by a resampling scheme (Efron, 1982), such as the
(i) bootstrap, (ii) (generalized) cross-validation, or (iii) the jackknife. The re-
sults should still be the same to within sampling error.

Thus, it is clear that preference for the statistical approach [ Eqs. (4.1, 44)]
or the variational approach [Eq. (4.7)] hinges on computational considera-
tions. The relative efficiency of numerical algorithms derived from either ap-
proach cannot be determined from the previous pedagogical example, but
only within the context of specific applications (Sections 5 and 6).

4.1. Sequential Estimation and Optimal Data Assimilation

Estimation theory deals with the solutions of randomly perturbed systems
of differential equations, ODEs or PDEs, as determined from noisy data
distributed arbitrarily in space and time. For our purposes, it is sufficient to
consider the ODE, or lumped parameter case, in discrete time since any
numerical model of the atmosphere or ocean has to be presented in such a
finite form to modern computational devices (Ghil ez al., 1981).

With the insight gained from the previous example, a linear unbiased data
assimilation scheme for the geofluid can be written as:

wi =Y wi_, (4.8a)
wi = wi + K (w$ — H,wi) (4.8b)

The state vector w represents all model variables, such as temperatures and
velocity components, at a set of grid points or in the form of spectral or finite-
element coefficients. The forecast model [Eq. (4.8a)] is advanced in discrete
time steps At, w, = W(t,), t, = kAt. Superscript f stands for the forecast, o
for observations and a for the analysis. ¥ is the system matrix describing
its dynamics, which are linear at first, and H, is the observation matrix. Ex-
tension to nonlinear models is addressed in the following discussion.
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In the applications we are interested in, the system matrix ‘¥ represents
the discretized version of a partial differential operator. In principle, the
discretization can be made by finite differences, spectral transform, or finite
elements. In the case of finite-element or of implicit finite-difference methods,
Eq. (4.8a) becomes

Phwl — w2 wi_, (4.82")
The matrix W is in either case band limited and invertible, so that (4.8a") can
be reduced to (4.8a) by writing

g 4.82")

In the examples given in Section 5 and in Ghil (1989), we use for simplicity
explicit finite-difference methods. It is obviously desirable in data assimilation,
as well as in numerical prediction and simulation to use stable discretization
methods (but see Miller, 1986). ,

The observation vector wg has dimension p, « N, where N is the dimension
of wf and w2. The matrix H, represents the fact that only certain variables
or combinations thereof are observed at a set of points much smaller than
the total number of grid points (Figs. 1, 3, 4, and 5). For instance, remote
soundings of radiance by polar-orbiting satellites combine atmospheric
temperatures, or tomographic soundings of acoustic travel times combine
oceanic densities. H, also represents the interpolation of grid values to data
location for a grid-point model and (inverse) spectral transforms to physical
space for a spectral model. The vector m = wy — H,wt contains the new
information provided by the data. It is called innovation vector in the
engineering literature and observational residual in the meteorological
literature.

Equation (4.8b) has the form of Eq.(4.2a) with y = w},z = w},and a, = K,.
The conceptual difference between Egs. (4.8) and (4.1) is that wj represents past
observations, and the practical difference is that p, # N, i.e., H, is not square,
and it may have a different size at each time step. In fact, all operational data
assimilation schemes have the form of Eq. (4.8b), whether the model in
Eq. (4.8a) is linear or nonlinear. Existing assimilation schemes differ from
each other by the weight matrix K, and we wish to find the optimal K, in a
precise sense to be defined forthwith; in the engineering literature, K, is often
called the gain matrix.

Optimality is defined in the context of the following assumptions. First the
true evolution of the geofluid, w;, is governed by

e t t
wi=%_,w,_, +b_, (4.9a)
where b}, is a (Gaussian) white-noise sequence, i..,

Eb}, =0, Eb,(b)T = Q.04 (4.9b,c)
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dy; being the Kronecker delta, and superscript T indicates the transpose (of a
column vector, in this case); b; is called system noise by engineers and
oceanographers and model error by some meteorologists. No difficulty arises
by adding a deterministic forcing b, to the governing equation (4.8a), in which
case Eq. (4.9b) would become

Eb, =b, #0 (4.9b")

As discussed in Section 3, forcing is more important for oceanic than for
atmospheric flows. But in a linear problem, one can always separate the
particular forced solution from the homogeneous one. It is the lack of
complete initial data for the latter which we wish to compensate for by
observations distributed in time. Deterministic forcing is not considered
further here, but it will be introduced when considering the duality between
deterministic control and stochastic estimation in Sections 5 and 6.

Current NWP models are in fact close to perfect in the sense that their error
is almost white. Balgovind et al. (1983) have shown that the potential vorticity
error of the second-order accurate NWP model then in use at the NASA
Goddard Laboratory for Atmospheres (GLA), verified at 24 hr and 36 hr
against a special set of satellite and conventional data comparable to that in
Fig. 1, is essentially random, stationary in time, and nearly white in space.
Numerical models of the ocean are not at all at this stage, but systematic errors
can be eliminated by physical insight, numerical trial and error, and by
applying systematically estimation and control theory.

The second assumption used in optimizing the weight matrix K, concerns
the error model for the observations

wp = Hw; + b} (4.10a)

where b} is the observational noise or measurement error. One assumes that bg
is also a (Gaussian) white-noise sequence,

Eb=0,  Eb(b)T = R,J,, (4.10b,c)

for convenience and without any real loss of generality, it is assumed that
system noise and observational noise are uncorrelated with each other,

EbL(b2)T =0 . @.11)

The assumptions given by Egs. (4.9)-(4.11) permit us to derive the evolu-
tion in time of the error covariance matrices

Pi* = E(wi* — wi)w* — wi)T (“.12)

of the forecast w; and the analysis w2, respectively. This evolution follows from
Egs. (4.8), (4.9a), and (4.10a), using (4.9b,c), (4.10b,c), and (4.11), and it is
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governed by
Pi=Y_(Pi Wi 1+ Qe (4.132)
Pz = (I T Kka)Plt;(I oo Kka)T S KkRkKZ (4.13b)

Hence, by advancing Pf? along with w2, one can know how well the true
state w}, is estimated for any weight matrix K,. This in turn permits one to
determine the optimal K, [cf. Eq. (4.15)].

There are two problems which arise at this point. First and foremost, one
must consider the computational complexity of advancing in time the error
covariance matrices. While Eqgs. (4.8a,b) represent O(N) computations per
time step, Egs. (4.13a,b) represent at face value O(N?2) computations. This
is quite tolerable for typical engineering applications with N < 1000, but
prohibitively expensive for atmospheric and oceanic prediction or simula-
tion models with N > 10°. However, by exploiting special features of the
dynamics matrix ¥ and the covariance matrix P, which arise in the latter
applications, the operation count can be reduced to O(N), i.e., it can be
made comparable to that for currently operational, less sophisticated data
assimilation methods (Parrish and Cohn, 1985; Todling and Ghil, 1990; and
Section 5.3).

Second, the noise covariance matrices Q, and R, are assumed to be known
in the subsequent derivation of the optimal K. This is not so in practice,
and finding the actual magnitude of model errors and observational errors
is an important function of the data assimilation process. An adaptive filter
to achieve this in GFD was formulated by Dee et al. (1985). It was tested
only for the linear, one-dimensional (1-D) shallow-water equations, and sub-
stantial future work on this problem is necessary.

The optimal weight matrix K, at each time step is obtained by minimizing
the expected mean—square (m-s) estimation error

J =trP2 = E(w2 — wi)T(wd —w}) (4.19)

This is done by using Eq. (4.13b) for the matrix P and setting the derivative
of J with respect to each element of K, equal to zero. A unique, absolute
minimum is attained for

K, =K¥= PLH{(H,PSHT + R,)™* (4.15)

The linear unbiased data assimilation schemes Eq. (4.8a,b) with the optimal
gain matrix K} in Eq. (4.15) is called the Kalman filter (Kalman, 1960). Its
continuous-time counterpart [see Table IV(A) in Section 5.4] is often called
the Kalman—Bucy filter (Kalman and Bucy, 1961).

To complete the analogy between the Kalman filter (K-filter) and the two-
measurement example given at the beginning, it is useful to rewrite Egs. (4.13b)
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and (4.15) as
(PO =(PY)™" + H{R; 'H, (4.16a)
K¥ = PHTR]! (4.16b)

It then becomes clear that Eq. (4.16a,b) is the counterpart of Eq. (4.4a—c),
Le., the weight given to the current observations is inversely proportional to
their variance, and the accuracy of the analysis is the sum of the accuracies
of the forecast, based on the past observations, and of the current observa-
tions. Note that H, = 0 and hence K¥ = 0 when no observations are avail-
able at time k.

The formula for P} [Eq. (4.13b)] can be simplified when K, = K¥, and
the entire filter with this simplification is rewritten here for easy reference:

wi=W,_ w_, (4.17a)
Pi=YW Pi_ ¥, + 0, (4.17b)

¥ = PLHI(H,P{HT + R~ @4.17¢)
Py =( - KtH,)P! (4.17d)
Wi =W, + K¥ws — Hw!) (4.17¢)

It must be noted that the K-filter minimizes the estimation error variance
not only at every time step, but over the entire interval over which data are
provided. This fact, and connections to deterministic variational methods via
control theory, are also discussed in the next subsection. Moreover, the filter
[Eq. (4.17)] is sequential or recursive, i.e., current observations are discarded
as soon as they are processed or assimilated. This is due simply to the filter’s
extracting all useful information from the innovation vector at each time step,
by an application of Bayesian ideas in a dynamical context (Kalman, 1960;
Lorenc, 1986; Ghil, 1989). The sequential nature of the K-filter [Eq. 4.17)]
makes it conceptually easy to grasp, and it has great practical advantages
as we shall see in the following discussion. It is probably the major reason
for the astounding success of the K-filter, and of its various computational
modifications (e.g., Bierman, 1977; Budgell, 1986a), in engineering applica-
tions. For the application of the K-filter to a 1-D linearized barotropic model
of geophysical relevance, see Ghil et al. (1981), Miller (1986), Ghil (1989), and
Section 5.2.1 here; a 2-D application is given in Section 5.3.1 here.

Various extensions of the optimal filter [Eq. (4.17)] to nonlinear models
are possible (Jazwinski, 1970). A promising approach for GFD appears to
be the extended Kalman filter (EKF) (Ghil et al., 1982; Budgell, 1986b). It
proceeds by successive linearizations in time of the nonlinear dynamics

Wi =N (wi_,) (4.18)
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Here Eq. (4.18) replaces the linear evolution of Eq. (4.8a), while Eq. (4.8b)
is still used at analysis time to update the model with incoming data. The
explicit, nonautonomous dependence of N on time ¢ is indicated by the
subscript k.
The EKF is defined by using Eq. (4.17) with ¥, being given by the Jacobian
matrix
ONL(w

(By=—50r. . 4.19)

With this ¥,, the error evolution in Eq. (4.13a) is still correct to first order
in w, — wi. Operational experience with suboptimal filters in NWP, OI in
particular, suggests that the linearization of Eq. (4.19) need in fact not be re-
computed at every time step. ‘¥, can be kept fixed over time intervals over
which the flow does not change dramatically. The problem of filter diver-
gence, common in engineering applications, is likely to be encountered for
planetary flows only in the presence of strong instability combined with
strong nonlinearity of the flow (cf. Budgell, 1986b, for nonlinearity, and Miller,
1986, for instability). This is because nonlinearity in GFD is essentially qua-
dratic and, while of paramount importance in long-term behavior (Ghil and
Childress, 1987; Pedlosky, 1987), is typically well behaved over the short time
spans involved in data assimilation. Nonlinear estimation and the EKF are
discussed further in Section 5.3.2.

4.2. Variational Methods: Fundamentals and Variants

The point of view taken in the previous section is that of optimizing as-
similation techniques [ Eq. (4.8)] developed since the mid 1970s in NWP for
the purposes of assimilating satellite data (Ghil et al., 1979; Lorenc, 1981;
McPherson et al., 1979). A point of view which at first appears to be more
general is to minimize the distance between a given trajectory € = {w(z):
0 <t <t*} and a set of data z(r) = H(t)w'() + b°(¢) over the time interval
0 <t < t*, subject to a dynamical or smoothness constraint S = S(w, t) = 0,
i.e., minimize the functional J,,,,

i
Jone[W] = f (")) AW + STTOS} dt (4.20)

Here we use for simplicity (Bennett and Budgell, 1987) continuous-time
‘notation, but still let vectors stand for spatial dependence to retain some sim-
ilarity with the notation in the previous section. The vector n(t) =z — Hw'
is the observational residual mentioned already in the previous subsection,
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and A(2) is typically zero, except at discrete times between 0 and t* when
observations are available. The variational formalism was introduced by
Sasaki (1958) into dynamic meteorology and by Provost and Salmon (1986)
into physical oceanography. S(w; 1) can represent the equations of motion
with or without time dependence (Sasaki, 1970) or a smoothness constraint,
such as the second derivative in one or more space dimensions or powers of
the Laplacian in the geometry of interest (Wahba, 1982).

The matrices A(t) and I'(#) are p(t) x p(t) and N x N, respectively; they
should be symmetric and positive definite. Both can be prescribed a priori or
be computed adaptively from the data. If S is linear in the model variables
and represents the dynamics, then the minimizing trajectory ¥ is given by
the Kalman-Bucy (1961) filter, which is the continuous-time extension of
Egs. (4.17) [e.g., Bucy and Joseph, 1987; Gelb, 1974; Table IV(A) here]. In
this case, subject to a suitable generalization of the assumptions in Egs. (4.9~
4.11), the matrices A(t) and I'(t) are proportional to the accuracies of the data
and of the model, i.e., proportional to R™*(t) and Q~!(¢), with an obvious ex-
tension of the discrete-time notation of Eqs. (4.9¢) and (4.10c). The analogy
with Egs. (4.5, 4.6) in the simple example at the beginning of this section
should be obvious.

In the oceanic case of data distributed very sparsely in time and space
(Figs. 3-5), a steady-state form of Eq. (4.20) can be regarded as the general-
ized inversion of the rectangular matrix H* = H§O H(t,) summing over all

observations at distinct times (and noncoincident locations). Various regu-
larization constraints S have been used by Wunsch (1978), Fiadeiro and
Veronis (1984), and Bennett and McIntosh ( 1982).

In the absence of statistical information like Egs. (4.9-4.11), there are two
standard formulations of the minimization problem in Eq. (4.20). Using the
terminology of Sasaki (1970), the case in which S = 0 is required to be satis-
fied exactly is that of a strong constraint. Requiring S'T'S to be minimized,
not necessarily to zero, but only along with 74y is called imposing a weak
constraint. For a weak constraint, A(t) and I'(¢) have to be prescribed inde-
pendently of solving for w(t). In this case, the matrices 4 and I are typically
chosen to be constant in time and have a very simple structure (e.g., A = al,
and I" = yly) with I, and Iy identity matrices of suitable dimensions; « and
7 are scalars that have to reflect, however crudely, the relative confidence in
model and data, respectively. For a strong constraint, I — co, which is con-
ceptually equivalent to letting the model error vanish, Q — 0; A(f) = al, as
before, in most applications.

There are two general approaches to the minimization problem of
Eq. (4.20). One is to compute the first variation of J with respect to w(t), 6J,
and obtain the extrema of J by setting J = 0. To be a little more explicit,
let us switch from vector notation to spatial dependence in a simplified, but
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typical case:
J[d)’ V] = J; J‘z{a(x’ t)hda(x’ t)[d)(xa t) e ¢0(x, t)]z

+ B(x, t)h,(x, t){V(x,£) — V°(x,)]*
+ 7(x,1)s"(¢, V; X, 1)} dZ dt (4.21)

Here ¢ is geopotential and V horizontal velocity, X is the position vector of
horizontal and possibly vertical coordinates within the area (or volume) Z,
a(x, t) and B(x, t) take the place of the matrix A(z), with y(x, t) playing the role
of I'(¢) and s(¢, V; x,¢t) that of S(w; t). The functions h, and h, are sums of
Dirac delta functions at the discrete points (x;,¢;) at which observatlons of
¢ and V, respectively, exist. Their presence highlights the need for the con-
straints s, in order to obtain smooth fields ¢(x,) and V(x,t) from discrete
observations ¢°(x;, ;) and V°(x;,t;.). The exponent v equals 1 for a strong
constraint and 2 for a weak constramt

The classical variational approach of 6J = 0 leads to the Euler—Lagrange
equations for Eq. (4.21). This approach is particularly suited for the strong-
constraint formulation, since y(x,t) becomes a Lagrange multiplier, while «
and p are prescribed a priori. A system of Euler—Lagrange PDEs is then ob-
tained for the unknown functions ¢, V, and y. The form of this PDE system
depends on the functional form of the constraint s(¢, V) and on the geom-
etry; in general the system will be neither elliptic nor hyperbolic, but of
mixed type (Stephens, 1970). Certain PDE systems of mixed type lead to
well-posed initial boundary value problems and can be solved numerically
with reasonable computational cost (Ghil ez al., 1977, and references therein).
In most cases of real interest, however, this approach has not proved par-
ticularly useful or promising.

In the case of weak constraints, with «, §, and y prescribed, dJ = 0 can also
lead to a set of PDEs for the minimizing solution (Bennett and Mclntosh,
1982; Bennett and Budgell, 1989; Miller, 1987, pp. 18-23). Considerable
numerical and regularity problems arise in all but the simplest problems, in
* this case as well.

The second approach of direct minimization by an iterative numerical
algorithm is more in tune with modern computational tools. This approach
circumvents the Euler—Lagrange equations and minimizes J in Eq. (4.21)
directly with respect to the trajectory {¢(x, t), V(x,t)} yielding, if the constraint
is strong, also y(x,?). If «, B, and y are given, positive constants (i.e., in the
simplest case of a weak constraint) and s is linear, the functional J is quadratic
in the solution and hence will have a unique minimum. This can be computed
by discretizing Eq. (4.21) in space and time and minimizing the discretized J
with respect to all the components ¢(x;, t;) on a regular grid (Hoffmann, 1982).
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A particularly efficient method for direct minimization of the distance
between a trajectory ¢ and data z over 0 <1 < t*, subject to the strong
constraint of flow equations, is the adjoint method. The functional to be
minimized is

Jaalw] = f , F(w(t);)dt 4.22)

where ¢ = "4y, as in Eq. (4.20) for instance. The equations of motion are
taken as the continuous-time form of Eq. (4.18), i.c.,

w = N(w) 4.23)
with () = d( )/dt.

The method proceeds to find the initial vector w, = w(0) for which the
solution w(t) of Eq.(4.23) will minimize J, 4 in Eq. (4.22). To do so, one takes the
first variation 6J with respect to dw,. An excellent derivation of the method is
given by Talagrand and Courtier (1987). We summarize here only the steps of
the algorithm.

(1) A first-guess trajectory w')(t) is computed from some w{", and J¥ =
J[wM] is calculated for it.

(2) The gradient of J with respect to w,, VaoJ> is obtained in three steps:

(1) The flow Egs. (4.23) are linearized about w(t) = w)(z),

ow = L _(t)ow (4.24a)
where L,, is the Jacobian matrix
L) (4.24b)
ou |, w(t)
(i) Onecomputes the adjoint L¥ of L., and the data-forcing function M, (1),
0f(u; 1)
M, (1) = -Z—— 4.25)
all a=w(t)

(iii) The inhomogeneous adjoint equation

—d'w = L*5'w + M, (1) (4.26)

isintegrated backward in time from final data §'w(t*) = 0. The solution of this
problem, 6'w(0) is the required gradient V,, J.
(3) The initial value w” in Step (1) is corrected in successive descent steps,
n=12,...,
W8'+ V= Wg') - ann (427)

D, is a descent direction determined from V, J™ and p, is an appropriate
scalar, the step length in the given direction.
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If D, and p, are properly chosen, the sequence w,™ will tend to a w,(®,
which leads to the trajectory ¥ minimizing J,4[w], at least locally in phase
space. Various descent algorithms, including in particular steepest descent,
conjugate gradient, and quasi-Newton (QN) are described by Gill et al. (1982).

This method was introduced into GFD by Marchuk (1975). Its most general
form for the related problem of sensitivity analysis was presented by Cacuci
(1981) and applied to a general circulation model by Hall (1986). Assimilation
results with a 2-D version of the inviscid barotropic vorticity equation and
24 hr of radiosonde observations over the Northern Hemisphere were ob-
tained by Courtier and Talagrand (1987). The slightly different problem of
recovering wind stress in the tropics from oceanographic data was treated by
Thacker and Long (1988).

Data assimilation for fully nonlinear problems such as Egs. (4.18) or (4.23),
in GFD and elsewhere, is incompletely understood, and no algorithms
satisfactory in all cases exist so far. Multiple minima of the cost functional
[Egs. (4.21) or (4.22)] and rapidly changing growth rates of instabilities along
a trajectory approximating a minimum are only some of the difficulties
encountered (see Sections 5.3.2 and 6.3.4). Linearization is necessary in both
the sequential estimation approach (Sections 4.1 and 5.3.2) and the direct
minimization approach (Section 5.4). The EKF [Egq. (4.19)] and its gen-
eralizations proceed by successive linearizations in time along a given
trajectory, while the adjoint method and its variants proceed by successive
linearizations in function space over the entire time interval in question. In
neither case is the optimal solution of the problem guaranteed a priori.

The adjoint method has no direct access to statistical information, and it
is not clear at this point how model errors can be taken into account, while
the K-filter imposes a very large computational burden in order to provide
the necessary error estimates. The relative advantages and disadvantages of
statistical and variational methods are a matter largely of numerical and
practical considerations (Lorenc, 1986). These are all changing rapidly in a
climate of intense research and of swift improvement in the computing
environment of GFD.

S. CURRENT STATUS OF METEROLOGICAL DATA ASSIMILATION

This section is devoted to the meteorological applications of the estimation
and control theory discussed in Section 4. Meteorological data assimilation is
a mature subdiscipline, characterized by the following features:

(1) Well-developed numerical prediction models with forecasts validated
on a daily basis against observations;
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(2) A large number of observations, albeit distributed irregularly in space
and time and possessed of considerable variety in their statistical properties;
(3) A relatively broad consensus on operational assimilation methods,
along with an active program of exploration into more advanced algorithms.

The emergence of this situation over a period of 40 years was described in
Section 2. The theoretical basis of data assimilation methods was outlined in
Section 4. We start this section with a description of the statistical, sequential
data-assimilation method in broadest operational use today, optimal inter-
polation (OI). This is followed by a description of the initialization problem
and of some of its solutions. The section concludes with research im-
plementations of two classes of advanced methods described in Sections 4.1
and 4.2, the Kalman filter of sequential estimation theory, and the adjoint
method of control theory, respectively.

5.1. Optimal Interpolation

Within the general framework of sequential estimation theory (Section 4.1),
OI (Rutherford, 1972; Schlatter ez al., 1976; McPherson et al., 1979; Lorenc,
1981) is a particular suboptimal filter in which intermittent updating is used
and the true forecast error covariance matrix P§, defined in Eq. (4.12), is
replaced by an approximation, S§. This approximation is computed (Cohn
et al, 1981; Ghil et al., 1982; Marshall, 1985a) as the product of a time-
independent correlation matrix C and a diagonal variance matrix Df,

Sk = (DY 2C(D))”? (5.1

The matrix C is based on assuming that the mass field errors are
homogeneous, isotropic, and that their correlations have a Gaussian de-
pendence on distance in a horizontal tangent plane

CH? = exp{—|Ix; — x,||*/s3} (5.2a)

or on the surface of a sphere of given radius, ie., at a given height. Here
IIx; — x;|i is the usual (linear or spherical) distance between the two points
x; and x; and s, is a decorrelation distance, chosen typically as 500 km <
So < 1000 km (Ghil et al, 1979; McPherson et al, 1979; Lorenc, 1981;
Hollingsworth et al., 1985), i.e., comparable to the Rossby radius of deforma-
tion and hence to the characteristic size of synoptic systems in the medium.
The additional assumption used to determine C is that the geopotential and
velocity forecast errors are geostrophically related, and hence the cross-
correlations between the velocity and mass fields and between the velocity
components themselves are derived from Eq. (5.2a) by partial differentia-
tion with respect to the eastward and northward horizontal coordinates,
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x! and x?,
o = 24 — xB)fso} CF = —Cir* (5.2b,0)
Ci* = {1 - 2x! — xh)*/s5} C§? (5.2d)
Cir*e = 2{(x} — x)(x! — xf)/s3}CE* (5.2¢)

Here the Greek subscripts « and f correspond to eastward (1) or northward
(2) components, and a # f (i.e, if « = 1 then f = 2 and vice versa).

The geostrophic assumption for the forecast errors breaks down, obviously,
near the equator, and relations (5.2b—e) have to be modified there. Vertical
correlations are treated at present differently from the horizontal correlations
(Lonnberg and Hollinsworth, 1986; Baker et al., 1987), since the analysis is
done separately on pressure or sigma-coordinate surfaces. A unified, truly 3-D
treatment of forecast error correlations would be an important step in the
direction of true optimality; indeed, baroclinic instability affects strongly
short-range forecasts and has a fully 3-D structure.

The evolution of the forecast error variance matrix Df between update times
k' =(J — 1)r and k" = Jr is prescribed,

Di. =D +D (5.3a)

where D is an empirically determined approximation of mean forecast error
growth over r model time steps (6 h or 12 h, cf. Section 2). At update time, the
new Dj, is obtained by using Egs. (5.1, 5.2) and

St = — K,H)St(I — K. H)" + K,R, KT (5.3b)
D; = diag(S}) (5.3¢c)

with k = k”. Thus Egs. (5.1-5.3) are the OI counterparts of Egs. (4.13a,b) of
sequential estimation, and (4.15) is still used, with Pf replaced by S¢,

K?'= SLH{(H SLH} + Ry)™! (5-4)

The OI procedure uses exactly the same forecast and update equations as
the general linear unbiased data assimilation scheme [Eqgs. (4.18, 4.8b)],

wi = Np_ (wi_)) (5.5a)

wi = wi + K2Y(wp — H,wi) (5.5b)

Equations (5.1-5.5) describe completely, in compact vector-matrix notation,
the OI assimilation procedure.

In a practical assimilation cycle, beside the operations implied by Egs. (5.1,

5.3a—c, and 5.5b), considerable work is expended on the related problems
of quality control and data selection (Gustafsson, 1981; Gandin, 1988;
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Lorenc and Hammon, 1988; Hollingsworth, 1989). The selection and quality
control of data in OI aim at reducing the computational burden, severely
limiting the number of measurements used to update any given grid point
value, and aim at eliminating altogether outliers, i.e., data with very large
apparent errors (Ghil, 1989, Section 6). The total computational expense of a
typical 24 hr assimilation cycle exceeds considerably the expense of a pure
forecast for the same period of time; it is comparable to that of a 3-5 day
forecast issued every day (L. Bengtsson, personal communication, 1989).

Still, OI is obviously much less expensive than a straightforward im-
plementation of the full K-filter, with its O(N?) operations. It is in turn much
more expensive than other data assimilation methods, such as direct inser-
tion or the successive-correction method (Bergthorsson and Do6ds, 1955;
Cressman, 1959). The variety of methods in operational use at the end of
the 1970s is illustrated in Table I.

A comparison of three data assimilation methods and variations thereof
was carried out by Ghil et al. (1979) in the context of maximizing the impact of
satellite-derived temperature observations on the accuracy of numerical
weather forecasts. The three basic methods were direct insertion, successive
corrections, and OI. All three methods were applied in a time-continuous
rather than intermittent mode to- the temperature retrievals, while con-
ventional data were all assimilated at synoptic times by the same method,
successive corrections. It should be noted that temperature observations from
polar-orbiting satellites exceed at present in number any other class of
observations, and are comparable to all others combined (see Fig. 1).

The results of this comparison are shown in Table II. The data are
designated as NoSat, i.e., conventional data only, or Sat, i.e., all data available
during the Data System Test (DST-6) conducted by the U.S. National
Aeronautics and Space Administration (NASA), January—March 1976. The
methods are designated as DIM for direct-insertion method, SCM for
successive-correction method, and SAM for statistical assimilation method;
the latter is essentially a time-continuous version [see especially Fig. 1 and
Eq. (16) of Ghil et al., 1979] of OI.

The impact of the satellite data was also determined by careful con-
sideration of the changes in initial states and by the subjective evaluation of
the quality of the forecasts. These results (not shown) are consistent overall
with the numerical measures of impact given in the table. Listed are the
improvements in S,-skill score, which is a nondimensional measure of
accuracy for gradients in the height field, and in the root-mean—square (rms)
difference from a validating analysis, both given for the 500 mb height field.
Statistical significance is measured by the average difference divided by the
standard error for the set of forecasts; values of 0.5, 1.0, and 2.0 correspond to
confidence levels of 69%;, 849, and 98%;, respectively.
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TABLE I. CHARACTERISTICS OF DATA ASSIMILATION SCHEMES IN OPERATIONAL USE AT THE
END OF THE 1970s®

Organization
or country

Operational analysis
methods

Analysis area

Analysis/forecast

Australia

Canada

France

F.R. Germany

Japan

Sweden
United Kingdom

US.A.

US.S.R.

ECMWF?

Successive correction
method (SCM)

Variational blending
techniques

Multivariate 3-D statistical
interpolation

SCM; wind-field and mass-
field balance through first
guess

Multivariate 3-D statistical
interpolation

SCM. Upper-air analyses
were built up, level by level,
from the surface

Variational height/wind
adjustment

SCM

Height-field analyses were
corrected by wind analyses

Univariate 3-D statistical
interpolation

Variational height/wind
adjustment

Hemispheric orthogonal
polynomial method

Univariate statistical
interpolation (repeated
insertion of data)

Spectral 3-D analysis

Multivariate 3-D statistical
interpolation

2-D¢ statistical
interpolation

Multivariate 3-D statistical
interpolation

SH*
Regional
NH*

Regional
NH

Regional

NH

NH
Regional

NH

Regional

Global
Global
Global
NH

Global

12 hr
6 hr
6 hr

(3 hr for the surface)
6 hr

12 hr
(6 hr for the surface)

Climatology only as

preliminary fields
12 hr

12 hr

3hr

6 hr

6 hr
12 hr

6 hr

¢ After Gustafsson (1981).
® European Centre for Medium Range Weather Forecasts.
¢ 2-D is in a horizontal plane.
4 Southern Hemisphere and Northern Hemisphere, respectively.
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TaBLE II. IMPROVEMENT IN THE MEAN ACCURACY OF 11 48-hr FORECASTS AS A FUNCTION
OF ASSIMILATION METHOD®

Percent impact Statistical significance
Experiment Data Method S, rms S, rms
NO No Sat (SCM) 0 0 - -
DN Sat DIM 0.21 243 0.13 0.94
C2i Sat SCM, 2.79 3.28 1.75 133
intermittent
C2t Sat SCM, time- 5.01 9.31 2.10 234
continuously
S2u Sat SAM 4.09 12.09 1.99 4.08

“ Due to the use of satellite data (after Ghil et al., 1979).

It is clear from the table that use of the satellite data does provide an
improvement in the short-range forecasts. While negative impacts were
present on certain days (Tables 2 and 4 of Ghil et al., 1979), and on other days
the improvements were not synoptically significant (Section 4¢ of Ghil et al.,
1979), the average impact is positive and it is dominated by a number of large,
synoptically significant cases of improvement in the initial states. These
results, while hotly debated at the time (Tracton et al., 1981), are generally
accepted today, and satellite data are in broad operational use.

But it is also apparent from Table II that a relatively unsophisticated
method such as DIM does little to extract the information content of the data.
For the same method, SCM, time-continuous assimilation (C2t) is much more
efficient than the intermittent version (C2i) at extracting information from
the continuous datastream. A number of operational and research centers
are considering at present 3-hr updating intervals, as recommended by Ghil
et al. (1979), instead of the 12-hr cycles still largely in use at the end of the
1970s (Table I) or the 6-hr cycles in prevalent use now.

Finally, the time-continuous OI method designated as SAM in Table II
provides a further substantial improvement over time-continuous SCM.
This is, however, less dramatic than that of SCM over DIM and, in fact,
Bratseth (1986) has shown that SCM can be formulated iteratively so that,
in the limit, it converges to an OI method (see also Seaman, 1988).

What is the computational cost of these improvements? For the numerical
model and the computer used by Ghil et al. (1979), a 24-hr forecast took
40 min of CPU, a 24-hr NoSat assimilation ran in 48 min, a 24-hr time-
continuous SCM assimilation ran in 59 min, and a 24-hr time-continuous Ol
ran in 96 min. As sufficiently powerful computers became available at the turn
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of the decade, most weather bureaus who could afford them implemented
one or another version of OI.

As much more powerful computers are likely to become available during the
coming decade, should we be content with OI and with increasing simply the
numerical resolution of our forecast and assimilation models? A strong case
can certainly be made for the positive impact of increased resolution on both
assimilation and forecasting accuracy (Atlas et al., 1982; Hollingsworth et al.,
1985). But the rather crude approximation of forecast error covariance
evolution in OI has certain deleterious effects on assimilation results. This
might require us to use some of the increase in computing power to improve
and modify OI in the direction of a better approximation to the K-filter or to
replace it by a variational method.

Figure 6 shows the estimated analysis errors [cf. Egs. (5.3b,c)] of a 6-hr
assimilation cycle at the U.S. National Meteorological Center (NMC)
(McPherson et al., 1979). The errors in the mass field (upper panel) as well as in
the wind field (lower panel) have large inhomogeneities, with local maxima as
large as 6°C in temperature and 30 m/sec in zonal velocity. Some, but not all
of these maxima occur in regions of data sparseness, and most exhibit strong

FiG. 6. Estimated analysis error at 250 mb for 0000 GMT 14 December 1977. (a) Temperature
error; contour interval is 1°C. (b) Eastward wind component error; contours are 5 ms™ ! apart
(from McPherson et al., 1979).



-

DATA ASSIMILATION IN METEOROLOGY AND OCEANOGRAPHY 175

gradients (see for instance the maxima over South America, North Africa and
the Arabian Sea in Fig. 6a and those over South Africa and the Maritime
Continent in Fig. 6b). These inhomogeneities and strong gradients in analysis
errors contradict the basic assumption of homogeneity in mass field errors
made in Ol and the derivation of cross correlations involving velocity
components without paying attention to these gradients (Cohn and Morone,
1984). In OI, there is no way to estimate reliably and separately forecast
errors per se, but a comparison of Egs. (4.17) with Egs. (5.1)—(5.5) strongly
suggests the existence of inhomogeneities in forecast errors induced by those
in analysis errors, and vice versa.

These inconsistencies in OI do not greatly affect its results in regions where
data are plentiful and relatively accurate, such as the continents of the
Northern Hemisphere. But they do lead to severe problems in the neighbor-
hood of isolated data (see bull’s eyes in Figs. 6a,b over islands in the South
Atlantic) and at the boundaries between data-dense and data-sparse regions
(Cohn et al., 1981; Dee, 1991). Thus, the pursuit of more advanced statistical
and variational methods seems certainly justified, and we shall consider these
in greater detail in Sections 5.3 and 5.4.

5.2. Initialization Problem

5.2.1. Fast Waves, Initialization, and Projection

Many aspects of synoptic-scale atmospheric and (mesoscale) oceanic mo-
tion are well approximated by relatively slow Rossby waves. These are the
only type of waves described by the (linearized) QG equations. In NWP,
however, PE models have replaced QG models at all major operational
centers. {Linearized) PE models also describe relatively fast inertia-gravity
waves, which carry a much smaller, but nonvanishing amount of the total
energy of the flow.

In terms of describing and predicting the slow, meteorologically and
oceanographically significant flow features, such as midlatitude storms or
meanders and eddies and rings, the faster waves would seem at first to be more
of a nuisance than a help; hence, the inspired use of the QG approximation in
early NWP (Charney et al., 1950) and its continued use in theoretical studies of
long-term behavior (Pedlosky, 1987; Ghil and Childress, 1987), and also the
attempt to justify rigorously the QG approximation by the existence of a
slow manifold in the PE system (Leith, 1980; Lorenz, 1980).

In practice, PE models were adopted in NWP because of the need to extend
the model domain to the tropics and the entire globe in order to extend the
range of validity of the numerical forecasts. This tropical extension required
the use of more elaborate nonlinear balance equations in the QG system,
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leading to loss of ellipticity of the Monge-Ampére equation in question (€.g.,
Miyakoda, 1956). While a generalized Monge-Ampére equation can be
solved efficiently in the mixed-type case (Ghil et al., 1977), the PE system
proved much easier to use in an operational setting.

On the theoretical side, it turns out that the slow manifold does not existina
rigorous mathematical sense (Vautard and Legras, 1986), and that inertia-
gravity waves are an inseparable part of the total behavior of the synoptic
scales (Errico, 1982; Lacarra and Talagrand, 1988). In oceanography, global
or basin-wide PE models are necessary to account correctly for the interaction
between the thermohaline and the wind-driven circulation (Bryan and
Sarmiento, 1985), and they are the only models available for the description
and prediction of tropical phenomena (Gill, 1982).

In the process of data assimilation, NWP experience has shown that the
discrepancy between current data, with their random errors, and model first
guess, with its errors, can excite a spuriously large amount of inertia-gravity
waves in 2 PE model. These fast waves are damped out over 12-24 hr and
have been shown not to affect 24—48 hr forecasts substantially (.g., Balgovind
et al., 1983). However, in an assimilation scheme without proper built-in error
estimation, they can lead to a rejection of data at the next subsynoptic update
time, being too different from the first guess (see also Daley, 1981, for
additional undesirable features of the fast waves).

Therefore, a long-standing approach in NWP has been to eliminate entirely
or reduce as much as possible the amount of inertia-gravity waves at initial
forecast time. The minimization of the fast-wave energy at initial time goes by
the name initialization in NWP. In other disciplines, including sometimes
physical oceanography, initialization often means just the assignment of
initial values, whatever their properties otherwise, to a forecast field (e.g.,
Robinson et al., 1987, 1988, 1989). The word is used in its narrow technical
NWP meaning throughout this chapter.

The optimal compromise between statistical minimization of the errors in
the initial state, on the one hand, and dynamical minimization of the fast
components in this state, on the other, is a topic of considerable current
interest in NWP, as witnessed by an entire volume of contributions dedicated
to it (Williamson, 1982; see also Ghil, 1980). The relevance to oceanographic
data assimilation is discussed in Section 6.2.

A reasonable recipe for this compromise can be given in a simple linear
shallow-water model (Ghil et al., 1981; Cohn, 1982). In this model, the Rossby
waves form a linear subspace, denoted by Z in Fig. 7, and the inertia-gravity
waves form a complementary subspace, denoted by ¢ in the figure.

In the standard formulation of slow manifold theory (Daley, 1980, 1981;
Leith, 1980), the two linear subspaces # and % are presented as orthogonal to
each other. This is only the case if the linear system under study is normal, e.g.,
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/ Myw

FiG. 7. Schematic representation of the slow subspace # of Rossby waves and the fast sub-
space ¥ of inertia-gravity waves. Three projections onto & are shown: the parallel projection IT,
(dash-dotted), the perpendicular projection I, (dashed), and the E-perpendicular projection ITy
(solid: from Ghil, 1989).

skew-symmetric, in particular if the full governing equations are linearized
about a state of rest. In practice, GFD flows have large shear and lin-
earization about a particular solid-body rotation is not a good approxima-
tion for the purposes of data assimilation. Linearization about nonzero
mean flow, cf. Eq. (4.19), yields an associated linear operator which is not
normal, i.e., does not commute with its adjoint.

As a consequence, projection onto the slow subspace & of the state w' or w®
can be carried out in more than one way. The parallel projection I eliminates
the fast modes of w without changing the slow ones. The perpendicular
projection operator I1, minimizes the distance between w and its projection
onto &, I1, w, in the usual Euclidean metric of the phase space. The oblique or
A-perpendicular projection I, minimizes this distance in a modified metric,
with nonnegative semi-definite weight matrix A > 0,

J = E(W; — w))TA(W} — w}) (5.6)

The simple model to which these distinct projections have been applied is
governed by a linearized, spatially 1-D version of the shallow-water equations

u+Uu, +¢,— fr=0 (5.7a)
v, +Uv,+ fu=0 (5.7b)
¢+ Ud, + Pu,— fUr=0 (5.7¢)
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The features that make this system worthy of interest, in spite of its great
simplicity, are the presence of advection, of the Coriolis acceleration and g-
effect, and of two physically distinct types of waves, slow Rossby waves and
fast inertia-gravity waves. Non-stationary Rossby waves arise in this constant-
f model from the equivalent S-effect due to the -fUv term in the continuity
equation (5.7c). The equivalent f is given by B, = f2U/® (Phillips, 1971).

As usual, the coordinate x points eastward, u and v are perturbation
velocities eastward and northward, while ¢ is the perturbation geopotential.
The parameters are chosen with meteorological midlatitude applications in
mind. Thus, the mean zonal velocity is taken to be U = 20 m sec™ !, the mean
geopotential is ® = 3 x 10* m? sec”?, and the Coriolis parameter is f =
10™* sec™!. The resulting equivalent B, is 6.7 x 1072 m™! sec™!, so that
B, = B/2 with B having the usual value at 45° latitude.

The components of the state vector w, are the values of (1, v, ) on a space-
time grid (jAx, kAt) over which Egs. (5.7) are discretized by a finite-difference
approximation (Ghil et al, 1981). The approximation in question is the
Richtmyer two-step version of the Lax—Wendroff scheme, which is second-
order accurate in both space and time. The number of pointsused, 1 < j < M,
is M = 16,so that N = 3M = 48. A spatially 2-D version of system (5.7), with
N =3 x 60 x 61 = 10,980 is discussed in the next section.

The time step, chosen close to the Courant—Friedrichs—Lewy stability
limit, is At = 30 min. In this simple case, the dynamics matrix ¥, is constant
in time, ¥, = V. But the reason for using U # 0 and the equivalent f-term
in the first place is the desire to build towards a satisfactory solution of the
data assimilation problem for nonlinear models. The EKF and its adap-
tion to GFD problems requires successive linearizations about realistic flows
(Ghil et al., 1981, 1982) [cf. Egs. (4.18, 4.19) here and the accompanying dis-
cussion]. It was shown (Budgell, 1986b; Lacarra and Talagrand, 1988) that
the estimation can still proceed quite successfully in this more general and
realistic case (see also Sections 4.1 and 5.3.2).

Details about the linear subspaces #2 and ¥ in the continuous system (5.7),
as well as in the actual discrete system used in the numerical examples, can
be found in Cohn (1982). The different projections are written down expli-
citly there as matrix operators for the discrete system. The projection used
in the following numerical example has some physical justification, being the
minimum-energy projection, or E-perpendicular projection, which minimizes
the expected energy of the analysis error, ITg. In this special case, the weight
matrix A will be denoted by E; it is positive definite, diagonal, and the diag-
onal entries are, at each grid point, unity for the velocity components u and v
and 1/® for the geopotential ¢.

With these dynamical facts in mind, we can address the issue of the com-
promise between minimum errors and minimum fast waves by modifying the
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standard K-filter K¥. The modified filter minimizes the error functional in
Eq. (5.6) subject to the constraint that

w,eR (5.8)

at all update times k. It is assumed that w € %, i.e., that initialization has
been performed at the outset.

The solution of this constrained minimization problem (Cohn, 1982; Ghil
et al., 1982) is to take for the gain matrix

K, =K =TII,K¥ (5.9
where I1, is the A-orthogonal projection matrix onto %, defined by
Range T1 = # (5.10a)
Mm=n (5.10b)
(ATDT = AT (5.10¢)

The (dynamically) modified K-filter, or TTK-filter, is the data assimilation
scheme based on the choice of gain matrix K.

For any given choice of A, the ITK-filter also has the property that it
minimizes the functional

Ji = E(wi — w)"A(w) — W) (5.11)

subject to the constraint (5.8), where w2 denotes the analyzed field that
would be produced by using the standard K-filter at time k. In fact, we have

w2 = [Tw? (5.12)

Thus, the ITK -filter combines the standard K -filter with variational normal
mode initialization (Daley, 1981; Tribbia, 1982), i.e., with variational projec-
tion onto &#; W} is an objective analysis, w2 is the initialized field, and the
elements of A are the variational weights. The ITK -filter, though, minimizes
not only the A-distance of Eq. (5.11) between the final initialized field w? and
the analyzed field w2, but also the A-distance of Eq. (5.6) between wi and the
true field w;, which is a measure of the actual analysis error.

When using the standard K-filter, the estimated state at any grid point
(Fig. 7 in Ghil, 1989, not shown here) is given by the superposition of small-
amplitude, rapidly evolving inertia-gravity waves upon large-amplitude,
slowly-evolving Rossby waves. The former are excited by the system noise,
Q # 0, at every time step and by the discrepancy between estimated state
and noisy observations at synoptic times.

When using the ITK-filter instead, the evolution of the Rossby waves is
the same as before, while the fast waves are completely eliminated (Fig. 8 of
Ghil, 1989, not shown here). In particular, fast waves are no longer excited
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at update time, even when the analysis wj differs markedly from the first guess
wi. Changing the type of projection to IT, or IT, does not secem to make too
much of a difference in the estimate (Ghil, 1989).

At what cost to the estimation error are the fast waves eliminated? It
is obvious that constrained optimization, Egs. (5.6, 5.8), can only yield a
minimum larger than or equal to the result of unconstrained optimization
[Eq. (5.6)]. In Fig. 8, we see side by side the expected rms errors for the
K-filter and ITK -filter. :

The excess estimation error of the ITK-filter over the K-filter, for all the
components of the energy as well as for the total, increases with time in the
assimilation cycle, but is still quite small in the asymptotic regime at day 10.
So the loss of accuracy in estimation is not too great. But what is the gain?

As pointed out earlier, inertia-gravity waves are an inseparable part of the
geofluid’s behavior. They are essential in tropical phenomena, and in fact
their suppression in operational NWP practice by nonlinear normal-mode
initialization (Daley, 1981) has led to serious estimation errors in tropical
analyses (Kanamitsu, 1981). The correct amount of fast-wave energy could
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is shown (after Ghil et al., 1981).



DATA ASSIMILATION IN METEOROLOGY AND OCEANOGRAPHY 181

be determined from the observations by using optimal or nearly optimal
filters as suggested by the preliminary results of Dee er al. (1985). But large
errors in the fast waves are very harmful to the correct estimation of the
energetic slow waves in an assimilation scheme that is far from truly optimal,
such as OL Thus, initialization, albeit easy, is neither necessary nor parti-
culary useful when a nearly optimal data assimilation scheme is implemented,
but it is very helpful as an improvement to the highly suboptimal assimila-
tion schemes in current NWP use (Cohn et al., 1981). We turn therefore to a
description of the initialization scheme in widest operational use at present,
nonlinear normal-mode initialization. While of less interest for oceanographic
data assimilation (see Sections 3.1 and 6.2), it turns out to provide consider-
able theoretical insight into the reasons why Rossby waves dominate in fluid
systems governed by the full nonlinear primitive equations.

5.2.2. Nonlinear Normal-Mode Initialization

The development of nonlinear normal-mode initialization (NNMI) (Baer
and Tribbia, 1977; Machenhauer, 1977) was strongly motivated by the prac-
tical desire to remove the spurious inertia-gravity waves generated by initial-
ization shocks in PE models for NWP. Its actual application to the models
of most leading NWP centers in the world today encountered substantial
difficulties of three kinds: (i) the lack of time-scale separation between the
relatively slow internal inertia-gravity waves with small equivalent depth, on
the -one hand, and Rossby waves, on the other; (i) the close connection,
throughout the atmosphere, between vertical velocities and hence precipita-
tion, on the one hand, and horizontally divergent motions projecting signi-
ficantly onto inertia-gravity modes; and (iif) the dominance of divergent
motions in the tropics, with its ascending branch of the Hadley cell and
massive latent-heat release. These three problems are clearly related to each
other and have generated a substantial literature attempting to cope with
the effect of cloud processes, diabatic heating, and divergent motions on the
research and operational practice of NNMI (Donner, 1988; Kitade, 1983;
Krishnamurti et al., 1988; Rasch, 1985).

As seen earlier in this section, initialization might no longer be necessary
in order to prevent data rejection once a more advanced form of data assim-
ilation, i.e., one closer to true optimality than OI, has been implemented.
The practical issues of initialization are also less critical in oceanography,
cf. Section 6.2. On the other hand, NNMI has provided considerable theo-
retical insight into the structure of the nonlinear primitive equations, and
helped researchers understand and justify at a deeper level the QG approxi-
mation. It is from this dynamical perspective that NNMI is reviewed here.
The presentation follows Leith (1980) and Tribbia (1979).
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Consider the discretization, spectrally or by finite differences, of a typical
system of flow equations

W+ iLw = eM(w,w) (5.13a)

Here the generic nonlinear operator N of Eq.(4.23) has been decomposed
explicitly into a linear hermitian part L* = L and a quadratic part M,

N(w) = —iLw + eM(w,w) (5.13b)

L is assumed to arise by linearization about a state of rest, hence the char-
acteristic skew-hermitian character of iL, which is associated with classical
tidal operators. M is quadratic and represents advective nonlinearities. Other
nonlinearities arising from physical processes, such as convection and its
interaction with radiation, have been mentioned before and are beyond the
treatment of NNMI given here. The small parameter ¢ is typically a Rossby
number; ¢~! measures the (nondimensional) time scale over which nonlinear
effects are significant.

L has n real eigenvalues that are the frequencies of the system and are
assumed to fall into two distinct ranges such that, without loss of generality,

0<0 < L0, K04 << 0, (5.14)

o, = 0(1) for kg + 1 < k < n and g, = 0(¢) for 1 < k < ko; typically n = 3k,
in PE systems. The eigenvectors associated with the small frequencies span
a slow subspace #; the others span a fast subspace 4. Due to the linearization
about a state of rest and the resulting skew symmetry of L, all eigenvectors
are mutually orthogonal, and so are ¢ and £, in contradistinction from Fig. 6.

Changing by an orthogonal transformation from the arbitrary basis of Egs.
(4.23) or (5.13) to that of the eigenvectors of L yields a system

% + igA,x = eN,(z,2) (5.15a)
y + iAy = eN,(z,2) ' (5.15b)

Here the matrices A, and A, are diagonal, having respectively the k, small
frequencies (rescaled explicitly by ¢) and n — k, large frequencies on the diag-
onal. The vector z = (x", yT)T is the vector w expressed in the new basis.

For ¢ = 0, i.e,, no nonlinearity and complete scale separation, a solution
starting from initial data y(0) = 0, x(0) = x, # 0 would stay forever in Z.
For 0 < ¢ « 1, this is not the case: nonlinear interactions between x and y
will lead over time O(¢™') to significant fast components. Thus we wish to
determine, for any given X,, a y(0) =y, # 0 such that no high-frequency
oscillations arise over time 0(s™?).

Slightly different solutions to this problem were proposed by Baer (1977),
who applied his procedure to a nonlinear version of the 1-D shallow-water
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model of Egs.(5.7), and by Machenhauer (1977), who applied his to a
nonlinear shallow-water model on the sphere. Both procedures are iterative
and agree to first order in &. Machenhauer’s procedure is simpler and has
therefore been applied more widely in operational practice. Baer’s, as further
clarified and elaborated by Baer and Tribbia (1977) and by Tribbia (1979), is
more consistent and more systematic, involving an asymptotic expansion in &.
The nonlinear balance condition of Machenhauer (1977) is that § = 0. This
condition yields, from Eq. (5.15b), the implicit nonlinear equation for y:

Yo = —ieA;'Ny(zq,2,) (5.16)

where z§ = (Xg,¥eo). Eq. (5.16) can now be solved iteratively, starting with the
natural first guess y§ = 0.

Baer and Tribbia (1977) carried out a two-time scale expansion of
Eq. (5.15a,b), with fast time t* = r and slow time 7 = &t, and required that the
solution be free of fast motion, i.e., of t* derivatives. They showed that, to
first order in ¢, this will happen for y{"’ given by the first Machenhauer itera-
tion of Eq. (5.16) with the natural first guess y§’, yi’ = —ieA; !N,z z{).

Even assuming that the Machenhauer iteration converges, yi™ — y{*, to
a solution of Eq. (5.16), this does not in fact guarantee that a solution of
Eq. (5.15) with initial data 2(0) = z5™ (x,) will stay free of fast motions for
t > 0. To second order in ¢, Baer and Tribbia (1977) showed that the initial
data for the ¥-component should satisfy

Yo = —ieA [NED + 20,28 + 287) + ieA; N, (6, 0) + v (5.17a)

Here z{ has #-component x,, arbitrary and prescribed, and %-component
y6' =0, while z§’ has components 0 and y§", respectively; furthermore, {
has a null fast component and a slow component

{ =xo + e[—iA, Xy + Ni(Zo,20)] (5.17b)

Leith (1980) has shown that, to the first order to which the two procedures
agree, it is possible to define, for relatively simple nonlinear PE models, a
slow manifold .#, on which the dynamics is quasi-geostrophic in the follow-
ing sense: (i) 4, is tangent at the origin to # and hence perpendicular there
to ¢; (ii) given a point in # away from the origin diagnostic equations can
be found to determine the corresponding point on .#,; and (iii) the motion
of points within .#, is governed by QG equations. These results, however,
can only be expected to hold in an ¢ neighborhood of the origin in phase-
parameter space, i.e., for nearly-geostrophic motions deviating slightly from
a state of rest. It is not clear whether a global manifold invariant under
the PE equations for large-amplitude motions with substantial ageostrophic
components exists and is totally free of fast motions (Lorenz, 1986; Vautard
and Legras, 1986). For a review of the theory and applications of nonlinear
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normal mode initialization, see Errico (1989) and Daley (1991, chapters 6,
9, and 10).

5.3. Kalman Filtering Applications

As indicated in Section 4.1, two major issues in the practical application of
the K-filter to GFD problems are its computational cost and its reliable
extension to nonlinear systems. In this subsection, we show ways to address
these two issues. :

5.3.1. Efficient Implementation

The key feature of the K-filter [Egs. (4.17a—e)] is its estimating optimally
the state of a dynamical system as well as the error in this estimate due to
observational and system errors. The computation of the forecast and analysis
error covariance PL* requires O(N?) operations for a state vector with N
variables, in the absence of any simplifications. Even with the expected rapid
progress in computing speed and memory devices, given N = 0(10° — 10°%)
for state-of-the-art meteorological and oceanographic models and 0(107) in
the near future, the full implementation of such an algorithm would be out
of the question for the 1990s.

The computational burden in the forecast step [Eq. (4.17a,b)] can be
reduced in a number of ways, all of them involving simplifications in the
algorithm along with some loss of optimality. The trade off is between
computational cost and degree of optimality. To evaluate the best possible
trade off, it is still necessary to have, at least for development purposes, a full
implementation of the K-filter for a smaller size test problem in order to
evaluate the performance of the proposed suboptimal algorithm (e.g., Cohn
et al., 1981; Ghil et al., 1982; Section 5.1 here).

The approaches proposed or under study include various improvements to
Ol, such as taking into account the inhomogeneity of forecast errors (Cohn
and Morone, 1984) or advecting mass-field error variances by Ol-estimated
winds (J. Pfaendtner, personal communication, 1990). Another approach
would simply use a lower resolution model for the assimilation than for the
forecasting, possibly tuning some of the coefficients of the lower resolution
model to match as closely as possible its forecast fields to those of the higher
resolution one. Still another approach is to assume a certain spectral dis-
tribution of model errors, e.g., restricted entirely to slow modes (cf. Phillips,
1986) and with the energy decreasing with wave number among the latter (cf.
Balgovind et al., 1983; Bennett and Budgell, 1987). Cohn and Parrish (1991),
making such simple assumptions, obtained for a linear barotropic 2-D
shallow-water model much better results with the K-filter than with OI, given
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a number of realistic as well as hypothetical data distributions. Yet another
interesting simplification of the K-filter is that of Dee (1991), who chooses to
advect the covariance matrix of height-field errors only, with the height-wind
and wind-wind errors computed as in Ol by Egs. (5.2b-d). Clearly this is an
active field of research and all these ideas need to be tested in more and more
realistic settings with regard to model complexity and data distribution.

We present one approach here in further detail to give a better feel for the
computational issues involved. In this approach, the computational com-
plexity of the forecast step can be reduced from O(N2) to O(N) by exploiting
special features of the dynamics matrix ¥, and covariance matrix P,, which
arise in the GFD applications of interest here. The crucial feature is that both
¥, and P, are sparse, rather than full matrices. In any finite-difference explicit
form of the governing evolution equations, values of each variable at a given
grid point and time step depend only on the variables at a few adjacent points
and at the preceding time. Hence ‘¥, can be written as a banded matrix or as a
block-banded matrix with banded blocks. The band width is given by the
finite-difference stencil, i.e., by the relative position of adjacent grid points
involved, whose number is typically 4-8 for 2-D problems and second-order
accurate schemes,

The covariance matrix P, is also banded or block banded to very good
approximation, since forecast and analysis error correlations decay to zero
over a distance comparable to the Rossby radius of deformation. For the
large-scale and synoptic-scale problems to which discussion is restricted in
the present review, a few grid points per Rossby radius are sufficient to resolve
the motions of interest. Hence, in fact, the bandwidth of nonnegligible entries
for P, is comparable to that for \¥,.

The computational device for exploiting this bandedness is to actually write
and store ¥, as a matrix, rather than as a finite-difference scheme, and to use
an algorithm for multiplication by diagonals (Madsen et al., 1976; Parrish and
Cohn, 1985) on a vector processor with parallelism in calculating Eq. (4.17b),
which is rewritten for this purpose as

Piiy = H(EPYT + Q, (5.18)

Equation (5.18) makes use of the symmetry of F, and requires only pro-
gramming the multiplication by ¥, from the left, which occurs twice.
Substantial computational savings in the analysis step [Eq. (4.17¢,d,e)] can
be obtained by avoiding the p x p matrix inversion of Eq. (4.17¢) through the
use of a device called sequential processing of observations (Ho, 1963; Gelb,
1974, pp. 304-305; Bierman, 1977; Rodgers, 1977; Parrish and Cohn, 1985).
The idea is to view multiple observations, even when they arrive at the same
update time, as a string of individual observations separated by zero-time
intervals. Thus, Eqs. (4.17a,b) are not used to advance the state w, and
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covariance P{ from one pseudo-time step to the next, while Egs. 4.17cd,e)
yield, by using the Woodbury formula [(cf. also Eq. (4.16a)],

(PR~ =(P)™" + H{R{'H, (5:19)

The second term on the right-hand side of Eq. (5.19) can be decomposed
further into smaller batches of observations or to individual observations.

In fact, this sequential processing could also be applied to reduce the com-
putational cost of the OI analysis step [Egs. (5.3b,c) and (5.4)] by replacing
B, with S, in Eq. (5.19). Sequential processing is ideally suited conceptually
to the unified treatment of time-continuous remote-sensing data, on the one
hand, and of synchronous synoptic conventional data on the other. The only
hitch is that, since OI does not provide a reliable estimate of the analysis
error, separate empirical procedures for quality control, such as buddy checks
within batches of data had to be developed in NWP operations [see discus-
sion following Eq. (5.5), and references there].

The algorithmic simplifications to the forecast step and the analysis step
outlined previously, i.e., multiplication by diagonals of ¥ and P and sequential
processing of observations, have been applied to a two-layer shallow-water
model in a 2-D domain:

OVi/0t = —(Vi- VIV; — fk x V, — Voo, + ] (5.20a)
0¢/0t = =V - ($V,) (5:20b)

k = 1,2 are the upper and lower layers, respectively; V, = (u,v) is the veloc-
ity vector, ¢, is the geopotential, f = f, + By is the Coriolis parameter and
the as are constants, a, = 1,a, = p,/p,, where p is density. The implemen-
tation of Parrish and Cohn (1985) was for a one-layer barotropic version
of Eq. (5.20) in a 6000 km x 6000 km square domain, extending approxi-
mately between 15°N and 75°N, with free-slip conditions at the northern and
southern boundaries and periodicity in the zonal direction. The equations
were linearized about a state with constant zonal velocity U, = 20 ms™!.

These authors carried out computations with resolutions of 20 x 21,
40 x 41, and 60 x 61 grid points on a Cyber 205 vector processor. The latter
resolution of 100 km is quite comparable with that of state-of-the-art global
and even regional NWP models. Experiments with different bandwidths b for
P}, were carried out: the total number of nonzero entries in any row or column
is 2b + 1. Table III shows the results of these experiments. It is clear that the
computation is feasible, and that the efficiency of the algorithm increases with
increasing resolution.

Parrish and Cohn (1985) showed that in the absence of model errors
(Q = 0), it suffices to have observations of velocity and geopotential along a
single line of grid points every 12 hr to reduce the analysis error to a level
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TaBLE III. CPU SECONDS REQUIRED BY THE FORECAST STEP
OF THE K-FILTER, EqQs. (4.17a,b), IN A 2-D SHALLOW-WATER
MODEL As A FUNCTION oF BANDWIDTH AND MobEL

RESOLUTION®
Resolution
Bandwidth b 20 x 21 40 x 41 60 x 61
1 0.11 (93) 0.27 (154) 0.52 (178)
3 0.48 (94) 1.10 (153) 2.15(176)
5 1.05 (93) 3.51(152)
7 1.84(93)
full 3.24 (89)

“Numbers in parentheses are the observed megaflop
(MFLOPj rates for each computation. Computations carried
out on a CYBER 205 with a peak rate of 200 MFLOPS (from
Parrish and Cohn, 1985).

below that of the observational error, diag(R), over most of the domain for
all variables in a few days. In the presence of model errors (Q # 0), the
reduction of initial error is still dramatic, and the asymptotic error level of
the analysis, achieved in a few days, agrees in its dependence on Q and R with
the theory of Ghil et al. (1981). In both cases, with and without model errors,
analysis errors are symmetric about the midchannel latitude of 45°N for u
and v, while they are larger towards higher latitudes in ¢.

In the more realistic case of Q # 0, it was shown that a cross-stream
meridional measurement line is substantially better than an along-stream
zonal line of observations in reducing analysis error (compare Malanotte—
Rizzoli and Holland, 1986, 1988, and Section 6.1.1 here). For a meridional
line, errors are smallest in the southeastern quadrant of the domain for geo-
potential (Fig. 9) and in the eastern half for wind, suggesting that the f-effect
affects differently the propagation of ¢-information than of V-information.
Comparison of panels (a), (b), and (c) of F ig. 9 shows, and other results con-
firm, that the banded approximation does not affect greatly the analysis error
in either magnitude or spatial distribution. Thus, computational feasibility
is achieved at no great detriment to the K-filter’s performance. On the other
hand, the ¢—¢, -~V and V-V correlations (not shown here) differ markedly
from those assumed by OI [Egs. (5.1, 5.2)], by being neither homogeneous
nor symmetric (see also Cohn et al., 1981, and Ghil er al., 1982, for the 1-D
case, and Balgovind et al., 1983, for the 3-D, semi-operational case).

Todling and Ghil (1990) implemented the K-filter for a two-layer ver-
sion of Eq. (5.20) linearized about a zonal flow with strong shear (Fig. 10a)
for which front-like patterns (Fig. 10b) develop as a consequence of baroclinic
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FIG. 9. Forecast error standard deviations in the height field at 10 days for a K-filter experi-
ment with observations along the N-S symmetry axis of a periodic $-channel, perpendicular to
the basic zonal flow. (a) Full error covariance matrix used in forecast step; (b) banded approxi-
mation of P§, with b = 5; (c) bandwidth b = 3 (from Parrish and Cohn, 1985).
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FiG. 10. K-filter experiments for a two-layer shallow-water model in a B-channel. (a) Velocity
profile of the basic zonal flow in lower layer (solid) and upper layer (dashed). (b) Surface pressure
at 10 days for a density ratio between layers a, = #1/p2 = 09 (after Todling and Ghil, 1990),

instability. Miller (1986) had already shown the ability of the K-filter to track
intentionally induced numerical instabilities in the barotropic vorticity
equation. The study illustrated in Fig. 10 concentrates on the observability of
the front-like patterns in the presence of various error levels, at resolutions
from 16 x 17 through 64 x 65, and comparison with OI performance for the
same phenomena and parameters.

The fully nonlinear version of Eq. (5.20) on the sphere, with topography, was
used by Keppenne (1989) in a study of low-frequency atmospheric variability
(Ghil and Childress, 1987, Ch. 6). He examined in detail the dependence of
model solutions on viscosity, dissipation, and zonal-jet forcing for spectral
resolutions as high as T15, which corresponds to about 1500 real scalar
variables. D. Boggs and C. Keppenne (personal communication, 1990) are
implementing the K-filter’s banded approximation for a higher-resolution,
finite-difference version of this model and will carry out observing systems
simulation experiments (OSSE), real-data assimilation, and comparisons with
OLI. The thrust of this work is to remove the loss of positive definiteness of PL*
due to the banded approximation, as noted by Parrish and Cohn (1985). This
loss is a well-known computational problem for covariance matrices in
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general (e.g., Kerr, 1990) and can be corrected by the use of stabler square-root
filters (Bierman, 1977).

5.3.2. Strong Nonlinearity

No closed-form solutions to the estimation problem for stochastically
perturbed, nonlinear systems exist, at least not in any form that is com-
putationally realizable for large systems. Hence, there are many approaches to
obtaining approximate, more-or-less suboptimal solutions. One of these is to
renounce the physically realistic assumption of an imperfect model and
replace it with that of a perfect model, i.e., reduce the stochastic minimum-
variance estimation problem to a deterministic least-squares problem (Gelb,
1974, Section 6.3). A computationally efficient implementation of the latter is
the adjoint method (see Sections 4.2, 5.4.3, and 6.3.4).

The quadratic advective nonlinearities of GFD, albeit small, are well known
to have important consequences for long-time behavior (Lorenz, 1963; Ghil
and Childress, 1987; Pedlosky, 1987). But in data assimilation, it is only the
short-term behavior that counts, and neither these advective nonlinearities,
proportional to the small Rossby number, nor other nonquadratic non-
linearities, associated. with small-scale thermodynamic processes, affect
greatly the short-term behavior.

Lacarra and Talagrand (1988) studied in detail the contribution of linear
and nonlinear terms to flow evolution in an f-plane barotropic shallow-water
model, as a function of wave number. They showed that for initial pertur-
bations in total energy per unit mass not exceeding 100 m? sec 2, the linear
terms dominate error growth up to 24 hr, more so in the large-scale Rossby
modes than in the gravity waves and the shorter scales. Their results are in
agreement with those of Daley (1980), for a nonlinear shallow-water model
on the sphere, and of Balgovind et al. (1983) for a semi-operational NWP
model. Lacarra and Talagrand showed further that a constant-coefficient
approximation of linearizations about an arbitrary state reproduces rather
faithfully the behavior of the fastest-growing, large-scale waves for up to 48 hr.

These results confirm that a promising approach to nonlinear estimation in
GFD is the extended Kalman filter (EKF), which proceeds by successive
linearizations of the flow equations about the current estimate of the flow field
[cf. Eqgs. (4.18) and (4.19)]. In most engineering applications, linearizations
are performed at every update time. The theoretical results just discussed
and practical experience with OI imply that updates of the linearization
[Eq. (4.19)] should only be necessary every 12—-24 hr in meteorology and
at increasingly larger intervals in midlatitude and tropical oceanography.

This still leaves the question of whether the EKF can track successfully the
flow when its evolution is not smooth, but shifting from one type of behavior
to another, e.g., from zonal to blocked flow in the atmosphere (Charney and
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DeVore, 1979; Ghil and Childress, 1987, Ch. 6) or from a small meander to a
large meander state in the Kuroshio (Taft, 1978; Chao, 1984; Miller and Ghil,
1990). To illustrate the issues which arise in tracking such transitions between
different attractor basins, we give a prototypical minimal example. Stochast-
ically perturbed motion in a double-well potential has been used as an example
of the interaction between nonlinearity and random perturbations in long-
term climate theory by Sutera (1981), and a careful extension of such ideas to
the Charney-~DeVore model has been given by De Swart and Grasman (1987,
and references therein).
In its simplest form, the example can be written as

X = f(x)+ on(t) (5.21a)

where n(t) is Gaussian white noise of unit variance, so that o2 is the variance of
the random forcing, and

f)=-V(x), V(x)=x}x?*-2) (5.21b,c)

Here V is the potential, having the minima of its two wells at x = + 1, and
a (local) maximum at x = 0, with V' = + 00 as x - +00. The two minima
are stable equilibria of Eq. (5.21), and the origin is an unstable equilibrium
(see also Ghil and Childress, 1987, Section 10.3). The random forcing pushes
the point x(t) away from the stable equilibria, and a succession of pushes
in the same direction will effect a transition from the left into the right well,
Or vice versa.

Miller and Ghil (1990) implemented the EKF for (Eq. 5.21). The results are
shown in Fig. 11. It is clear that the estimated position x£* will follow the true
position x; from one well into the other, provided the observations are ac-
curate enough or frequent enough or both. Miller and Ghil are also carrying
out EKF studies for the Lorenz model and for a finite-element barotropic
model of the Kuroshio, similar to that of Chao (1984).

5.4. Applications of Variational Methods

5.4.1. Duality

As mentioned already at the end of Section 2, the beginning of Section 4,
Egs. (4.5-4.7), and many times since, variational methods and sequential
estimation methods have strong connections to each other. The basis of these
connections is the duality principle established by Kalman (1960) between
deterministic control and stochastic estimation. Using the continuous-time
notation introduced in Section 4.2, a linear deterministic control problem can
be written as

w=F(t)w + H(tju (5.22)
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FIG. 11. K-filter experiments for stochastically perturbed motion in a double-well potential,
Eq. (5.21); 0% = 0.24. (a) Observational noise variance r? = 0.01, observations taken at time
intervals At = 1; (b) r* = 0.04, At = 1; (c) ™= 0.04, At = 0.25 (from Miller and Ghil, 1990).

The idea is to use the control u(z) so that the state vector w(t) reach a pre-
scribed value w; at final time ¢; from an arbitrary state at initial time. In a
linear system, one can choose, without loss of generality, the final state to be
zero and the initial time to be zero. A simple GFD example is for Eq. (5.22)
to be a linear, say tropical, ocean model, and for u() to be an arbitrarily

prescribed

wind stress. We shall have to restrict ourselves here to the open-
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loop case, in which u() is independent of the state w(t). The closed-loop
case, in which u depends on w, is treated in the extensive control literature
(e.g., Wunsch, 1988, and references therein).

The objective of driving w(t) to zero in finite time is stated more precisely
by requiring that u(r) minimize a performance index or cost functional, J[w, u],
measuring the size of w(t), subject to the intuitively obvious additional con-
dition that the control energy spent in the process be also minimized,

Jiw,u]l = wiQw, + f lr[wT(t)Q(t)w(t) + uT()R(t)u(r)] dt (5.23)
0

The formal similarity between Eq. (5.23) and the functional Eq. (4.20) for
variational data assimilation should be obvious.

The key assumption in solving the minimization problem given by Eq. (5.23)
is that the solution u(t) should be sought in the linear form

u=—K(@w() (5.24)

K remains to be determined. The Ansatz of Eq. (5.24) is similar to that of lin-
ear unbiased data assimilation, Egs. (4.2a), (4.8b), or (5.5b). With this analogy,
Eq. (5.22) looks much like the time-continuous version of the data assimila-
tion step of the K-filter [Eq. (4 17e)], with the control u replacing the obser-
vational residual # = w® — Hw' and K replacing the Kalman gain matrix K*.
Intuitively, this similarity of Egs. (5.22) and (4.17e) corresponds to the idea
that data can force the model to the correct solution. The simplest expression
of this idea in practical data assimilation is given by the nudging method
(Anthes, 1974; Holland and Malanotte-Rizzoli, 1989; Section 6.3.2 here).

The analogy has in fact a solid mathematical foundation in the duality
theorem proved by Kalman (1960) in the discrete-time case and by Kalman
and Bucy (1961) in the continuous-time case. It states, roughly speaking, that
the optimal control problem in Egs. (5.22) and (5.23) and the optimal esti-
mation problem given by the time-continuous form of Egs. (4.9) and (4. 10)
are dual to each other, i.e., their solutions u(t) and w(f) are both obtained
by solving analogous evolution equations. The equivalence includes solving
a Riccati equatlon for P(z), the quadratic performance under optimization,
subject to P(f;) = 0;. In fact, final time t; in the deterministic control prob-
lem is equivalent to initial time ¢, in the stochastic estimation problem.

The complete list of equivalences is given in Table IV and is restricted
to linear systems and observations. Optimal control for a system (5.22) with
cost (5.23) goes back to the Bolza problem of the calculus of variations,
requiring minimization of a functional in the presence of differential equa-
tion constraints. A review of the mathematical literature on problem (5.22)
with (5.23) is given by Berkovitz (1974, pp. 294-297). Important contribu-
tions were made by J. P. La Salle and E. J. McShane in the 1940s and early
1950s and by Soviet mathematicians (A. F. Filippov, R. V. Gamkrelidze, and
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TaBLE IV. DUALITY RELATIONSHIPS BETWEEN STOCHASTIC ESTIMATION AND DETERMINISTIC

CoONTROL"
A. Continuous (linear) Kalman Filter
System Model Wwi(t) = F(t)w'(®) + GOb'(), b'(t) ~ N[0, ()]
Measurement Model wO(t) = H(e)w'(t) + b°(), b°(t) ~ N[0, R(¥)]
State estimation wi(e) = F(tyw*(t) + K(@®)[w°() — Hew*(®)], w?(0) = wj
Error covariance B(t) = F(®)P(t) + POF T(t) + G()Q)G' (1)
propagation —K@®R®OK™®), PO=PF
(Riccati Equation)
Kalman Gain K@) = POH"(®)R™'(t)
Initial conditions E[w'0)] = w5, E{[w'(0) — wo] [w'(0) — CHRESN
Assumptions R™!(¢) exists
E{b®)[b°e)]"} =0
Performance Index pa(t) = E{[w"* — ww' — wl"}
B. Continuous (linear) Optimal Control
System Model wi(¢) = F(t)w() + H()u(@)
Measurement Model wO(t) = w(t) (all system variables are measured)
Performing control |£(t) = —Ii(t)w(_t) s o < itig
Performance propagation B(t) = —FT(t)P(t) — P(t)F(t) — Q(t) + P()H (t)K(t)
(Riccati Equation) & » ki
Control Gain K(t)= R™'()H(@)P(®)
Terminal conditions w(t) =0
P(t;) = Or y
L i~ ~
Cost function Jw,u] = wO;W; + J. W) Q(e)w(r) + u'(R()u(r)] dt
o
C. Estimation-Control Duality
Estimation Control
t, initial time t, final time
w(r) unobservable state variable of random w(t) observable state variable to be
process controlled
wO(t) random observations u(t) deterministic control
F(t) dynamic matrix F T(t) dynamic matrix
Q(t) covariance matrix for the model errors 0(t) quadratic matrix defining acceptable
_errors on model variables
H(t) effect of observations on state variables H (¢) effect of control on state variables
P(t) covariance of estimation error under P(t) quadratic performance under
optimization i optimization
K(t) weighting on observation for optimal K(t) weighting on state for optimal control

estimation

4 (A), Kalman filter as the optimal solution for the former problem; (B), optimal solution for
the latter problem; (C), equivalences between the two (after Kalman, 1960, and Gelb, 1974,

Section 9.5; courtesy of R. Todling).
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L. S. Pontryagin) in the late 1950s. A brief review of the engineering litera-
ture, including other connections between recursive least squares, least vari-
ance, and control as well as nonlinear results is given by Jazwinski (1970,
pp. 151-158). Of particular interest for nonlinear problems are Bellman’s
quasi-linearization and invariant imbedding techniques (e.g., Bellman et al.,
1966). The optimal control work of Lions and his associates in France (e.g.,
Lions, 1971) clearly motivated and influenced the development and applica-
tions of the adjoint method by Le Dimet, Talagrand, and their associates (see
Section 5.4.3). The solution of the so-called linear quadratic tracking prob-
lem in discrete time had been derived previously by Kalman and Koepcke
(1958). Notice that for a truly optimal solution of this problem, the number
of operations for the adjoint Riccati equation yielding P(t) backward in time
is still O(N 2).

Various forms of the well-known linear duality between deterministic con-
trol and stochastic estimation have been given in the GFD literature (e.g.,
Thacker, 1986; Wunsch, 1988, and references therein). In particular, the ad-
Joint method for variational minimization of the distance between a perfect-
model trajectory and given data is closely related to the optimal control
problem (5.22) and (5.23), although it is not the exact dual of Eq. (4.17).

To allow for errors in model and data, one has to consider the stochastic
control problem. In this case, one does not assume that the model is perfect
nor that the trajectory is known, as in Egs. (5.22) and (5.23), but allows instead
for system noise Q # 0 and an observation model [Eq. (4.10)]. For linear
systems, this problem is solved by the separation principle (e.g., Gelb, 1974,
pp. 361-365).

One still wishes to minimize Eqg. (5.23), but w(z) is no longer known with
certainty, only via incomplete and noisy observations [cf. Table IV(a)]. The
crucial observation is that w*(t) is still determined by a K-filter, independently
of the control u(t), which is assumed to be known, and that minimization of
the modified cost function for the control does not depend on the noise co-
variance Q. Thus, the optimal control in the stochastic problem can be ob-
tained by the cascading of two steps: the state w?(t) is estimated first by a
K-filter; then the control u(y) is calculated from Eq. (5.24) by determining the
appropriate gain K(z) from the deterministic procedure in Table IV(b).

The actual application of stochastic optimal control ideas to variational
data assimilation with weak constraints in meteorology and oceanography
is an open research problem and hence beyond the scope of this review. But
the separation principle discussed earlier suggests the following approach:
First determine the statistically appropriate weights A(t) and I'(t)in Eq. (4.20)
by a sufficiently long application of the adaptive K-filter (Dee et al., 1985),
as A=~ R 'and T = Q™! (cf. Section 4.2). Then, keep A and I fixed and con-
tinue assimilation by using the adjoint method. Reapply the adaptive K-filter
when the large-scale flow, and hence its subgrid-scale manifestations, have
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changed substantially to modify A and I and so on. This could combine some
of the advantages of both methods in terms of the error estimates provided
by the K-filter and the relative simplicity of the adjoint method.

With this theoretical background, we are prepared to consider actual ex-
amples of variational data assimilation in meteorology.

5.4.2. Direct Minimization

As indicated in Section 4.2, it is desirable for the purposes of data assimi-
lation to circumvent the classical variational approach of deriving and solv-
ing Euler—Lagrange equations for a given quadratic functional [ Egs. (4.20),
(4.21), and (5.23)]. Instead, modern computing devices permit the use of direct
minimization for sizable state vectors and data sets. In particular, such an
approach might be desirable for novel types of satellite data, for which the
empirical statistics required by linear regression methods, such as OI, are
difficult to accumulate.

This idea was applied first by Ghil and Mosebach (1978) to temperature
retrievals from NASA’s DST-6 experiment (see Section 5.1). The functional

chosen was

JIT,V,p,] = fol L{a(T = DT BV s g

+ 8(3p,/0)?} dZ do (5.25a)

using notation similar to that of Eq. (4.21). The volume over which minimi-
zation was carried out extended over several grid points and model o-levels;
within this volume lay a number of vertical temperature profiles derived from
a polar-orbiting satellite. Direct measurements used were satellite-retrieved
temperatures 7° and surface pressures p?, with pseudo-observations of wind
V3 derived from the former by the geostrophic relationship. The weak con-
straint used was the continuity equation in o-coordinates,
1

op,/ot = —V . J p.Vdo (5.25b)
0
a, B, y, and & were all prescribed positive constants. Equation (5.25b), along
“with the geostrophic relation between V° and T°, couple all the variables in
Eq. (5.25a).

A conjugate-gradient algorithm was used to minimize Eq. (5.25a) subject
to Eq. (5.25b). Substantial changes from the forecast model’s first guess for the
wind field were obtained over the otherwise data-void southern oceans, with
convergence of the algorithms in a few iterations. Complete implementation
of the method for semi-operational use was not feasible at that time because
of its computational cost.

Direct minimization for a local patch of satellite data was applied by
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Hoffman (1982) to the interesting problem of dealiasing wind data from
the Seasat-A satellite scatterometer (SASS). The SASS instrument provided
surface winds from wave backscatter with reasonably accurate magnitudes,
but with directions having to be selected from 1, 2, 3, or 4 possible values,
called aliases. Hence the need for an objective method of directional ambiguity
removal, or dealiasing.

Hoffman (1982) used a quadratic functional based on the sum of four
terms, penalizing errors separately with respect to SASS wind vectors and
wind speeds, as well as and with respect to conventional data and a forecast.
He applied a multistep procedure in which the four weights are changed
gradually from emphasizing the first guess, in this case the forecast, to em-
phasizing the SASS velocity data. The procedure was applied to a region in
the North Atlantic surrounding the storm that damaged the luxury liner
Queen Elizabeth II (QE II) on 10 September 1978 and which had been under-
predicted by forecasts not using the SASS data. The region contained about
1000 grid points and about 6500 data points. The resulting objective analysis
was satisfactory, with the multistep procedure providing a lower minimum
than a single-step procedure. But the aliases of the SASS winds still showed
meteorologically unrealistic small-scale features.

Hoffman (1984) added smoothness and vorticity-advection constraints
and analyzed again the QE II storm, as well as an additional one centered
south of Japan on 6 September 1978. The constrained analysis was more
robust to various changes in parameters, but it still had difficulties in ac-
commodating systematic errors in various data sources and in defining sharp
fronts. Both types of problems are common to all objective-analysis methods
not incorporating data-adaptive error structures.

Both variational analyses of SASS data (Hoffman, 1982, 1984) used only
data lumped together at one synoptic time, 1200 GMT for the Atlantic QEII
storm and 0000 GMT for the Pacific storm south of Japan. Harlan and
O’Brien (1986) applied a simpler variational method for the assimilation of
SASS winds over 24 hr, centered at 1200 GMT for the QE 1I storm; their
emphasis was on modifying NMC’s surface pressure field analysis for the pur-
poses of ocean prediction. Direct minimization with respect to simulated
data distributed over a 42-hr time interval in 6-hr steps was carried out by
Hoffmann (1986) using two versions of a two-layer spectral model on an
f-plane. The PE version was used to generate the data, and the QG version
was used to assimilate them on the interval —t* <t < 0 and forecast for
t > 0 (see also discussion of observing system simulation experiments in Sec-
tion 6). The weights given to the data decreased monotonically in time from
t =0tot = —t* The results are shown in Fig. 12.

The variational 4-D assimilation method produced the best estimate of the
atmospheric state towards the middle of the interval over which data are
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FIG. 12. Rms global error {A%)'/2 of an ensemble of 50 independent analysis-forecast cycles,
as a function of time: ODF (dotted line), ordinary dynamic forecast, using data at t = 0 only;
PIF (solid line), perfect initial-data forecast; 4DAF (dashed and dash-dotted lines), 4-D analysis
and forecast (using slightly different weights for data at different times). The rms measurement
error is shown by the solid line with plus signs (from Hoffman, 1986).

available, in contradistinction from the K-filter which produces it towards the
end (e.g., Fig. 8). The exact position of the minimum rms error in Fig. 12
depends slightly on the weights given to the data: it shifts to the right as more
weight is given to the most recent data (dash-dotted line in the figure). But in
any case, the forecast started at ¢t = 0 using the 4-D variational estimate is
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better than the forecast using exclusively data at t = 0 only for a short
while—about 36 hr.

Since this result does not appear to depend on the distribution of weights,
it is also unlikely to depend on the particular minimization method used:
direct or adjoint. Still, the adjoint method is computationally more efficient
for the 4-D assimilation of data over a large domain, using the time-dependent
model equations themselves as a strong constraint.

5.4.3. The Adjoint Method

As outlined in Section 4.2, this method provides simply an efficient way for
computing the gradient of a quadratic functional [ Eq. (4.22)] with respect to
the initial data for the exact solution of an evolution equation (4.23), which
minimizes the distance to the data over an interval 0 <t < t*. The com-
putation of this gradient involves linearizing about the current iterate of the
trajectory and solving the adjoint of this linearization backwards in time.

The adjoint method falls within a broader class of methods for solving
constrained minimization problems. In the meteorological literature these are
reviewed succinctly and clearly by Le Dimet and Talagrand (1986). Using W
for the meteorological fields discretized in space and time as w, before, one
wishes to minimize the cost functional

J[W]= J W — Wo||2dx (5.26a)
>

where ||-]| is a suitable norm, subject to the dynamical constraint
F[W]l=0 (5.26b)

The latter is a strong constraint in the terminology of Sasaki (1970). In the
mathematical optimization literature, minimization with a weak constraint is
still referred to as unconstrained optimization. The class of methods reviewed
by Le Dimet and Talagrand (1986) reduces, in fact, a constrained to an
unconstrained minimization problem.

Introducing an inner product {:,-} compatible with the norm |[|-|| into the
function space appropriate for W, one defines the Lagrangian functional

Z5[W,A] = J[W] + 6{A,F[W]} (5.27)

for the problem in Eq. (5.26a, b), where A is the Lagrange multiplier and 6 = 1;
compatibility of the norm and inner product simply means that {W, W} =
[[W|{%. The augmented Lagrangian %, s1s then

1
Ls=%+ ZIF[W]I2 (5.28)
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where 0 < ¢ « 1is the control parameter while W is the control variable. The
solution W* of the constrained problem in Eq. (5.26) is sought as the limit
W, — W* of a sequence of unconstrained problems [Egq. (5.28)], as follows:
Given a triplet (W;, A,,¢,), W, . 1 is determined by minimizing & [W,A.],
with W, as a first guess; A, and & are updated by

1
Arrr = Ay + —|F[Wi 4]l (5:29)
k

Bes1 = Cuti (5.30)

with 0 < ¢, < 1. Bertsekas (1982) gives a proof of the convergence of this
augmented Lagrangian algorithm and practical indications for choosing
the sequence of c¢,’s. The latter are valuable in accelerating convergence,
because in practice one always stops short of ¢ = 0, and hence one never
satisfies Eq. (5.26b) exactly. The use of a sequence ¢, is somewhat analogous
to Hoffman’s (1982) shifting the weights of the summands in the cost func-
tional from emphasizing the first guess to emphasizing the SASS data.

This algorithm is the most efficient and general of its class. The penalty
algorithm is obtained from Eq. (5.28) by letting 6 = 0, ie, A = 0, while the
duality algorithm follows by letting ¢ — co. The latter is unrelated to the duality
principle discussed in Section 5.4.1; it involves instead the alternate use of
ascent and descent steps in determining the saddle points of the Lagrangian
£ in Eq. (5.27). The augmented Lagrangian algorithm avoids the ill con-
ditioning that occurs in the penalty algorithm as ¢ becomes very small and
provides greater freedom in choosing the first-guess A than in the duality
algorithm, avoiding the problems the latter encounters when the Lagrangian
£ [W,A] is not globally convex with respect to W. Many practical consi-
derations on the convergence and relative efficiency of optimization algo-
rithms can be found in Fletcher ( 1987) and Gill et al. (1982).

The augmented-Lagrangian algorithm was used by Navon and De Villiers
(1983) to maintain global energy and enstrophy constraints in the time
integration of a shallow-water model. Le Dimet and Talagrand (1986) applied
.it to the minimization of the functional (4.21), with the constraint s = 0 being
the steady-state form of the shallow-water equations, using a one-layer ver-
sion of Eq. (5.20). The weights « and B in Eq. (4.21) were chosen as a(x, ) =1
and f(x,t) = const. # 1. The domain X for which they sought a variational
analysis was a square with a side of 2500 km centered at 45°N and 5°W, and
observations of both ¢ and V were provided at all points of a 25 x 25 grid
covering Z. The purpose of the minimization was thus to reduce the error in
the observations, rather than to fill data gaps.

The results are shown in Table V. The quantities E,, E,, and E, listed
are rms values of the residual dynamic imbalances in the right side of
Eq. (5.20a,b), in m sec™ and m sec™!, respectively. Convergence to rms
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TABLE V. VARIATIONS OF THE RESIDUAL IMBALANCEs E,, E,, E, WITH THE
ITERATION NUMBER k OF THE AUGMENTED-LAGRANGIAN ALGORITHM®

k 1 2 5 10

E, 0.29 x 1073 0.19 x 1073 042 x 107% 0.18 x 1073
E, 0.12 x 1073 0.11 x 1073 0.24 x 10™% 024 x 1073
E, 0.13 x 107! 0.10 x 107! 0.61 x 1073 021 x 1073

“ From Le Dimet and Talagrand (1986).

values smaller by two orders of magnitude than the initial imbalances oc-
curred in 10 steps. The changes in the geopotential heights and the velocity
components during the adjustment were 2m and 1 m sec™!, respectively,
i.e., they stayed within the accuracy of the original observations.

The main feature that renders the adjoint method computationally more
efficient than the class of optimization methods described so far in this section
is that it works with a smaller number of discrete variables. This reduction of
the dimension of the control variable is obtained by applying the following
key observation of control theory: The minimizing solution W* is determined
uniquely by its initial and boundary values over the generalized boundary, in
time and space, of the domain of interest, say £ x [0,¢]. Thus, instead of
minimizing with respect to W, one can minimize with respect to the ap-
propriate initial values. It is this observation that yields the algorithm sum-
marized in Egs. (4.24)-(4.27).

The adjoint method for solving time-dependent constrained minimization
problems [Egs. (4.22) and (4.23)] was introduced into the meteorological
literature by Penenko and Obraztsov (1976). Concrete examples were worked
out simultaneously and interdependently by Lewis and Derber (1985) and by
Le Dimet and Talagrand (1986). The latter used a purely 1-D (v = 0), non-
linear version of the shallow-water equations and simulated observations
of geopotential at two times, ¢, and t,, to obtain a reduction of the cost
functional by a factor of two per iteration step. The former used both simu-
lated and real data.

The simulated-data studies of Lewis and Derber (1985) considered the
advection equation

q,+uq, =0, t>0, 0<x<2n (5.31a)
with periodic boundary conditions and initial data chosen as a pure sine wave
q(x,0) = sin x, 0<x<2rn (5.31b)

The advection velocity was taken first as constant

u = ¢ = const. (5.32a)
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then as variable but given,

6x

G @n = (5.32b)

u(x) =

and finally the nonlinear equation with
u(x, 1) = q(x,t) (5.32¢)

was studied. The constant-velocity case [Eq. (5.32a)] can be analyzed
completely and solved in a single forward—backward iteration step to yield
50% rms error reduction in the limit of small separation between the two
observations times. In this case, the transition matrix is orthogonal, yielding
these very simple but also very special results (cf. Miller, 1987). The linear,
variable-coefficient case [Eq. (5.32b)] requires multiple iterations, and the
error reduction for finite separation is less than in the constant-coefficient case.
In the nonlinear case [Eq. (5.32c)], the possibility of multiple solutions had
to be avoided, and rms error reduction of 20% only was obtained.

Lewis and Derber (1985) also used real data from six analyses over the
central United States, three hours apart, from the Atmosperhic Variability
Experiment, 6—7 March 1982. The analyses were generated separately from
a special network of rawinsonde observations (RAOB) at 2100,0000, and
0300 GMT and from temperature retrievals of the VISSR Atmospheric
Sounder (VAS) at 2030, 2330, and 0230 GMT. There were about 35 RAOB
and 180 VAS data available for each of the analyses, corresponding to an
average spatial separation of 250 km and 100 km, respectively. The dynamic
constraint of single-level geostrophic potential vorticity conservation was
applied separately to each set of three RAOB and of three VAS analyses,
at 700 mb and at 250 mb. The results are shown in Fig. 13.

There are clear differences between the input RAOB and input VAS
analyses. The rms discrepancy in geopotential heights was 14 m at 700 mb
and 42 m at 250 mb, respectively. Variational adjustments to the heights using
the conjugate-gradient method for Eq. (4.27) resulted in rms changes of 3.7 m
:for the RAOB and 7.9 m for the VAS analyses at 700 mb; the corresponding
changes at 250 mb were 13.5 m and 22.0 m, respectively. As a consequence,
the rms difference between the RAOB and VAS analyses was reduced to 12 m
at 700 mb and increased to 53 m at 250 mb. In particular, a systematic positive
bias of 6 m in the VAS versus the RAOB analyses at 250 mb was not re-
moved by the adjustment. This problem of warm biases in satellite tempera-
ture retrievals was treated, for instance, by Ghil et al. (1979) in the context of
combining conventional and remote-sounding data during a sequential esti-
mation process. Similar biases, resulting in nonzero values of long-range
correlations for OI also occur in the operational data assimilation systems
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F1G. 13. Height analyses at 700 mb on 6-7 March 1982. Solid lines are contours of the input
analysis; dashed lines are contours after adjustment by the adjoint method. Both input and out-
put analysis are on a 1° lat. x 1° long. grid. (a)—(c) based on RAOB; (d)~(f) based on VAS
retrievals (from Lewis and Derber, 1985).

f

at ECMWF and the French Direction de la Meétéorologie Nationale
(P. Courtier, personal communication, 1990).
Talagrand and Courtier (1987) used the barotropic vorticity equation

L=JC+1.P) (5.33a)
(=AY (5.33b)
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on the sphere to study the adjoint method for simulated data. They truncated
at total wave number n = 21 and kept only the N = 231 real components
antisymmetric about the equator for both vorticity { and streamfunction ‘¥,
which were hence symmetric for the zonal velocity and antisymmetric for the
meridional velocity. The test case was a Rossby—Haurwitz wave with n = 5
and zonal wave number m = 4, propagating eastward without change of
shape by 9.55° per day. Minimization of the quadratic distance between the
analyzed vorticity {(x,t) and the observed vorticity (°(x,t) over a 12 h time
interval in the Northern Hemisphére was started from a state of rest,
{©Xx, t) = 0. When complete data {° were provided every time step, the initial

FIG. 14. 500 mb height field for 0000 GMT 26 April 1984. (a) Variational analysis minimizing
distance to data over 24-hr intervals; (b) differences between this variational analysis and the
operational analysis of the Direction de la Météorologie Nationale. Units are dam, and the con-
tour interval is 4 dam (from Courtier and Talagrand, 1987). :
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FiG. 14. (Continued)

vorticity field {°(x,0) was reconstructed to within an accuracy of 10™%sec™!
after five iterations. When only {°(x, t;) at t, = 12 hr was provided, the initial
field was reconstructed to within 1078 sec™! in eight descent steps.

Courtier and Talagrand (1987) applied the same constraint of Eq. (5.33) to
operational 500 mb data from a 24 hr interval, 0000 GMT 25 April 1984
to 0000 GMT 26 April 1984. The data contained 1653 geopotential and
2 x 1913 horizontal velocity components for a total of p = 5479 scalar ob-
servations over the Northern Hemisphere; all but 11 reports were from radio-
sondes. The cost functional was a sum of quadratic residuals for the wind
and geopotential observations, with model streamfunction being transformed
into geopotential by solving the nonlinear balance equation in the easy
direction (from ¥ to ¢).

Figure 14a shows the height field produced by the minimization process
at the final time, 0000 GMT 26 April 1984; Fig. 14b shows the difference
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between this variational analysis and the operational analysis of the French
weather service. The rms difference between the variational analysis and the
observations is 29.1 m for the heights and 8.0 m sec”! for the winds, com-
pared to values of 185 m and 17.6 m sec”! for an atmosphere at rest. Using
wind observations only yields 33.5 m for heights and 7.7 m sec”! for winds;
height observations only yield 28 m and 8.8 m sec”!. These values are much
smaller than the corresponding climatological standard deviations, and the
variational analysis also reconstructs certain features not observed directly
over the data-sparse Pacific Ocean. This work was extended by Courtier and
Talagrand (1990) to the nonlinear shallow-water equations at 500 mb, with
truncation n = 21 and n = 42.

Using a shorter update interval of 4 hr reduces the cost functional in the
highly overdetermined, p » N, problem [Eq. (5.33)], but reconstructon of
unobserved features is no longer possible. Courtier and Talagrand (1987)
noticed that in the adjoint approach, advection of information occurs not
only downstream, as in sequential estimation (Ghil et al., 1981, 1982; Ghil,
1989), but also upstream with the forced adjoint in Eg. (4.26). The reach of
this advection, however, is still limited by its speed of propagation. The use
of longer time intervals over which to minimize the distance between model
trajectory and the data obviously increases the computational burden. It
also leads to increased difficulties caused by the instability of the flows, the
consequent divergence of forward and backward trajectories, and the ap-
pearance of multiple minima of the cost functional (F. Gauthiez, personal
communication, 1990; Miller and Ghil, 1990).

Derber (1989) also noted the discontinuity, created by variational methods
using multiple levels in time, between analyses based on successive 4-D assim-
ilation intervals. In particular, in the adjoint method, the state at timet =0
determined from data over the interval [0, t*] is substantially different from
the state obtained from a forecast started at t = —t*, using data over [ —¢*,0].
In fact, Courtier and Talagrand (1987) attributed to this clash of disjoint sets
of observations much of the differences between their variational result and
the operational one (Fig. 14b).

To circumvent this difficulty in the context of variational methods, Derber
(1989) proposed a variational continuous assimilation (VCA) technique. This
technique also tries to move away from the perfect-model assumption of
constrained optimization approaches by rewriting Eq. (4.18), which is the
discrete-time version of Eq. (4.23), as

Wi = Nu(Wi) + 4o (534
where A, is a sequence of scalars determined a priori, and ¢ is a spatially

dependent vector of the same dimension as w, determined in the VCA pro-
cess. Minimization of the mean—square observational residual with respect
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to ¢ replaces in VCA minimization with respect to w, in the adjoint method.
The determination of ¢ in VCA can be thought of as that of a constant bias,
Eb! = ¢, in the sequential estimation formulation [Egs. (4.9) and (4.10)] to
which VCA is much closer in spirit than the adjoint method.

Derber (1989) used three guesses for the sequence {4, }: (1) 4o = 1, with
all other 4, = 0; (ii) 4, = 1/K, where K is the total number of model time
steps over which the minimization is done; and (iii) a parabolic profile, with
Ao = Ax—; = 0 and its maximum at the middie of the assimilation interval,
normalized like (i) and (ii) so that

K-1
Z )‘k=1
0

Derber’s model was a ten-level QG model discretized on a 25 x 30 grid with
200 km spacing. His data were four FGGE analyses from GFDL’s level I11b
cycle, 12 hr apart, over the time interval 0000 UTC 18 February to 0000 UTC
20 February 1979, covering the development of the extensively studied
President’s Day storm.

The results in Fig. 15 compare VCA over a 12 hr interval, using each one
of the three choices of {4,} just shown, with a model forecast from the ini-
tial FGGE analysis and ¢ = 0 (solid line), on the one hand, and the adjoint
method (dashed line) on the other. The first choice of Ay = 1 (dashes and
double dots) behaves almost like the adjoint method, as expected, and better
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F1G. 15. Rms height differences between FGGE analyses and VCA solutions for a 12-hour
assimilation interval. Three variants of VCA, differing by their prescription of 4, in time, as well
as an adjoint-method solution, are shown (from Derber, 1989). (—), Forecast from FGGE
analyses; (- — -), adjoint; (—-—) parabolic 4; (—--—), delta function 4; (.- ), constant 1.
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than the pure forecast, obviously. The constant (dotted) and parabolic (dash-
dotted) choice of 4, give mutually similar results, both of them much better
than the adjoint method, which also leads to an initial jump in the solution.
Forecasts from the adjoint assimilations (not shown here) were considerably
less accurate than any of the others.

The ideas, methods, and results reviewed in this section show, aside from
the maturity of meteorological data assimilation, a host of remaining prob-
lems. The emergence of new observing systems per se will aggravate rather
than solve these problems by the complexity of the different observing pat-
terns, the novelty of the distinct error characteristics, and the necessary ex-
tension of numerical models to domains and scales little explored so far. At
the same time, it will be possible to test and compare much more fully the
wealth of new ideas, from optimization and sequential estimation theory, due
to rapidly increasing computing power and memory size.

6. CURRENT STATUS OF OCEANOGRAPHIC DATA ASSIMILATION

As mentioned in the introduction, the 1990s will mark a profound
revolution in the history of oceanography as new technology will for the first
time provide oceanographers with large synoptic data sets. Specifically, three
new techniques will be of crucial importance. First, altimetry will provide
global maps of sea surface height that, in the case of the oceanographically
designed Topographic mission Experiment (TOPEX/POSEIDON), starting
in 1991) will have a horizontal resolution of about 300 km x 300 km in
midlatitudes, corresponding to a 10-day orbital period. The importance of
satellite altimetry lies in the fact that the surface elevation of the ocean relative
to the geoid can be shown to represent closely the pressure distribution
produced by the large-scale general circulation, assumed to be in quasi-
geostrophic balance (Pedlosky, 1987).

Second, scatterometry will provide one of the two major surface forcing
functions of the ocean circulation, the wind stress field, with a horizontal
resolution of 1° longitude x 1° latitude for two-day vector-averaged velocities
[World Ocean Circulation Experiment (WOCE), 1989]. Third, ocean acous-
tic tomography, even though projected further into the future, has the
potential of providing a 3-D picture of the interior density and velocity fields
of the ocean. The most important potential use of tomography lies in its
integrating properties. The tomographic measurement per se is an integral
performed over long paths at the sound speed of ~1.5 km/sec. Thus, it is
capable of averaging out the energetic mesoscale eddy field and measure
averages over the large space and time scales of motion. .

This capability of tomography to measure integral properties has already
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been proved for the total transport (or average velocity) over long distances
(Howe et al., 1987) and for relative vorticity (Ko et al., 1989; Chester et al.,
1991). However, tomography associated with inverse methods also has the
capability of mapping the mesoscale eddy field (Cornuelle et al., 1985). Meso-
scale mapping over areas 1000 km x 1000 km is presently being tested in
experiments where acoustic moorings have been augmented with a movable
ship-based receiver (Cornuelle et al., 1988). Thus, an unprecedented synoptic
data set will become available at the end of the 1990s with which to interpret,
understand, and predict the evolution of the ocean general circulation.

Numerical models of the ocean general circulation will play a key role in
this process. Until now, with a few noteworthy exceptions (Clancy, 1987,
Leetmaa and Ji, 1989; Robinson et al., 1989), oceanographic modeling has
proceeded rather independently from observations, mainly due to the
inadequacy of the observations in providing effective tests for model de-
scriptions and predictions. The lack of effective data feedback has resulted
in ocean models that are rather less realistic and sophisticated than their
meteorological counterparts, with respect to the parameterizations of internal
physics, as well as in the inclusion of realistic geometries and forcing functions.
The two previous parallel paths of modeling and observations are, however,
on the threshold of converging, thanks to the data sets just described. The
models will become more realistic and consequently will provide more reliable
estimates of the fields of interest where data sets are sparse.

The process of combining data with models, that is the process of model
initialization and data assimilation, is relatively new to oceanographers. As
discussed in Sections 1 and 3, the difference in emphasis, applied or theoretical,
between the meteorological and oceanographic data assimilation process, as
well as the differences between the two geofluids, will oblige oceanographers to
reinterpret and adapt assimilation techniques and not simply borrow them
from engineering, meteorology, or geophysics. Moreover, even the anticipated
synoptic data sets will be very different from those available in meteorology.
Meteorological data sets consist by and large of pointwise measurements that
are sparse and have an irregular density coverage. They are collected on a
global scale at varying vertical levels and at a high sampling frequency as
discussed in Section 3.2.

Altimetry will give a global, very regular horizontal network of sea-level
height, i.e., of the surface pressure. Apart from the problem of removing the
earth’s geoid from the altimetric signal, it is still unclear how to make the best
use of the altimetric data set, i.e., whether to use the data in pointwise fashion
along the actual tracks and sequentially in time or, alternatively, to construct
optimally interpolated maps for each complete global coverage. Specific
examples related to this question will be discussed in the following paragraphs.
Moreover, it is rather uncertain to which degree the surface elevation is tied
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to the interior flows. A crude scale analysis based upon quasi-geostrophic
balance suggests that a horizontal pressure gradient at the sea surface over
mesoscale length scales (~ 100 km) should reflect interior movements down to
the depth of the main thermocline (1500 m; Wunsch, 1989a). Even if this were
the case, the deep oceanic layers will not be seen by altimetry and will remain
void of measurements over almost the entire world ocean.

Tomography has the potential of providing 3-D imagery of the interior
water mass. Exploiting the integrating nature of the tomographic measure-
ment implies filtering out the mesoscale eddy field considered as noise, thus
seeking estimates only of the large-scale, long-time component of the cir-
culation. However, it is theoretically well known, and demonstrated at least
in numerical experiments (Holland and Rhines, 1980), that eddy-momentum
fluxes are capable of giving rise to large-scale, quasi-steady components of
the circulation, especially in the deep layers. Thus, the question is how to
reconstruct a filtered-out eddy field or at least its statistics. Obviously this
must be done by using a dynamical tool, such as a dynamical model.

Moreover, the concept that the mesoscale eddy field is noise may be very
misleading in specific examples. There are major and very energetic regions of
the world ocean, for instance the western boundary currents of which the Gulf
Stream system is the prototype, where the dynamics is dominated by the range
of complex interactions between the mean flow (the current jet) and the
associated Rossby wave radiation. In such systems, the mesoscale is the
essential part of the signal one seeks to measure. Entire experiments such as
Synoptic Ocean Prediction (SYNOP) are devoted to map and predict the
mesoscale in such systems. There, however, tomography is not the best
experimental tool because, in a traditional middepth tomographic con-
figuration, the acoustic rays are not capable of penetrating the swift core of the
current. Bottom-mounted configurations that might overcome the acoustic
problem have not yet been proved successful (Agnon et al., 1989). And even in
more quiescent parts of the ocean, such as the Sverdrup interiors of the gyres,
the acoustic wave guide usually prevents the acoustic rays from sampling
layers below 3000 m or 4000 m depth. Thus, the deep oceanic layers, those still
most unknown, will remain unprobed even by tomography that may fail also
in important oceanic regions such as the western boundary currents.

Other important data sets available through forthcoming experiments such
as the World Ocean Circulation Experiment (WOCE) will consist mainly of
long hydrographic sections, highly localized in space and very asynoptic in
time. Wide regions of ocean will remain unmeasured between such sections.
Thus, in the foreseeable future, oceanographers will still have to rely heavily on
very localized and sparse clusters of moorings for long time-series measure-
ments of currents, temperature, and pressure. The previous constraints,
imposed by the nature of the existing and expected oceanographic data sets,
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define the two most challenging dynamical issues to be attacked by the
oceanographic data assimilation problem, namely the question of advection
of information (Thompson, 1961} and the trade-off between different
measured variables (Charney et al., 1969). These two issues were reviewed in
the meteorological context by Ghil (1989) and are discussed here in the next
section.

6.1. Role of Dynamics in Oceanographic Data Assimilation

6.1.1. Propagation of Information

The limitations of oceanographic data sets discussed earlier will give to the
numerical models of the ocean circulation a much more critical role than their
meteorological counterpart. The numerical model used must act as a dy-
namical interpolator or extrapolator from the vertical layer, or the volume
where data are available, to the other vast regions of the ocean interior void of
measurements. Advection and propagation of information in physical space
produces exchange of information in the frequency—wavenumber domain
between different time and space scales, ranging from the mesoscale, the
weather of the ocean, to the quasi-steady component of the ocean circulation,
or ocean climate. Thus, the following two major questions must be addressed
through data assimilation:

(1) Can information provided only at the sea surface be transferred
dynamically into the deep oceanic layers, thus reconstructing the deep
circulation?

(2) Can information provided only locally, in limited oceanic regions, be
transferred to ocean areas far away from the data-dense region, but dy-
namically connected to it? Which time and space scales are better estimated
through the assimilation of local data?

One wishes, of course, to answer these questions before the actual observing
systems, scheduled to be implemented in the early to mid-1990s, are in place.
A systematic approach to doing so is provided by observing systems simula-
tion experiments (OSSE). Such OSSE were developed and conducted by
meteorologists in preparation for various field experiments of the Global
Atmospheric Research Program (GARP; see Section 2 here and Bengtsson,
1975, Chapter 5). In OSSE, a model run is used to provide a history tape of
nature. From this simulated history, measurements are taken, in accordance
with the observing pattern—in space and time—of the system or systems
under consideration. These observations are then assimilated into a model
run with different, erroneous initial data. If the assimilation of these obser-
vations is done with the same model as the one used to produce the nature
run, one speaks of an identical-twin experiment.
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The purpose of OSSE experiments is to answer the observability question
of estimation theory for the fluid system in hand: do the observations provided
determine the state of the system, asymptotically in theory and over a
reasonable amount of time in practice (Bucy and Joseph, 1987; Cohn and Dee,
1988; Ghil, 1980; Miller, 1989)? If not, can the observing system be modified
at an acceptable cost so as to yield an affirmative answer? Identical-twin
experiments are only a first step in the right direction: meteorological
experience tends to indicate that their results are overly optimistic. Since the
actual data from nature are not available at the time an OSSE is conducted, it
is desirable to use at least a history tape from a different model than the one
with which the data assimilation is carried out. This provides a simulation of
the discrepancy between any model and nature and its effects on forcing the
model with data towards the right solution, the one that nature provides.

Most OSSE carried out so far in oceanography have been of the identical-
twin type. Still, their results provide valuable information on the benefits of
various observing systems and data acquisition rates. Question (1), about
propagation of surface information to depth, was first addressed in the pio-
neering works of Hurlburt (1986) and Thompson (1986), who made use of
two-layer models of the Gulf of Mexico. The method used in the two stud-
ies just discussed was direct insertion of the observations into the numerical
model (see Sections 5.1 and 6.3.2), and the simulated altimetric data were
provided at every grid point in space. Kindle (1986) assimilated simulated
altimeter data along the satellite tracks in a one-layer model of the same
region.

In the active, two-layer PE model with a free surface, the surface-layer
pressure p, provided by the altimeter is simply related to the sea level n by

Py =4n (6.1)

Using this two-layer model, Hurlburt (1986) focused on the dynamic trans-
fer of information from the surface to the deep layer, demonstrating the suc-
cess of the numerical ocean model used in recreating the deep circulation.
" An extensive series of simulations was carried out, covering a wide variety
of dynamical regimes. In Fig. 16, we show the evolution in time of the global
normalized rms difference between the assimilation experiment and the con-
trol run (the reference ocean) for the pressure of the surface layer p;, the
pressure in the second layer p,, and the pycnocline depth anomaly h, (ie.,
its deviation from the overall spatial mean) for an experiment with strong
baroclinic instability. Three update intervals were considered: 40 days (upper
panel), 30 days (middle panel), and 20 days (lower panel).

If the assimilation is successful, it forces the dynamic evolution to con-
verge to the reference ocean and the degree of success is measured by the
rate of decrease of the rms errors. The initial error is not decreased when



DATA ASSIMILATION IN METEOROLOGY AND OCEANOGRAPHY 213

15 T

by
o

NORMALIZED RMS ERROR
n

P

15 T

W = = = = = = = — = = - - -

) S WO B (S T T B |

Fi1G. 16. Normalized rms error versus time for py, p,, and h, (dashed lines) forecasts of model
experiment T1 initiated at day 1080 and with update intervals (a) 40 days, (b) 30 days, and
(c) 20 days. The temporal mean (climatology) was used as the initial state for p,. The rms error
is for the whole domain and the normalization factor is the standard deviation of the true field
at the same time. The dashed lines at 1 and 2'/? indicate the error for a flat field having the true
areal mean (zero over the whole domain) and the error for an uncorrelated field with the same
variance as the true field, respectively (from Hurlburt, 1986).




214 MICHAEL GHIL AND PAOLA MALANOTTE-RIZZOLI

updating every 40 days, since the error growth rate due to baroclinic insta-
bility is larger than the convergence rate due to data forcing. The dominant
time scale for baroclinic eddies in the model was of 57 days, and the impor-
tant result emerging from Fig. 16 is that approximately two updates per
eddy cycle are required for the assimilation to be successful and provide
convergence to the reference ocean; the convergence is clearly accelerated
further when updating every 20 days. More recently, Hurlburt et al. (1990)
have used statistical inference to determine weakly correlated subthermocline
fields from surface altimeter data.

Kindle (1986) addressed the sampling strategies for a satellite altimeter
using a one-layer, reduced-gravity, shallow-water model of the Gulf of
Mexico. The major limitations of this model are the absence of baroclinic
instability and the fact that there is a one-to-one correspondence between
sea-surface height and pycnocline depth. He examined the spatial sampling
requirements for the accurate resolution of oceanic eddies. The main result
is that an oceanic eddy can be adequately mapped when the altimeter-track
spacing equals the radius of the outer contour, and when both ascending and
descending tracks are used. The study, however, deals with a single stationary
eddy, circular or irregularly shaped, and not with a turbulent mesoscale field
where eddies are rapidly moving and interacting.

Thompson’s (1986) study focused instead on the geoid error as it affects the
assimilation of altimeter data for mesoscale ocean prediction. Assimilation
of simulated altimeter data into a quasi-geostrophic eddy resolving ocean
model was also carried out by Marshall (1985b), DeMey and Robinson (1987),
Verron and Holland (1989), and by Holland and Malanotte—Rizzoli (1989).
In QG dynamics with a rigid lid, the surface height variations Jh provided
by altimetry are related to streamfunction variations 6'¥ by

y=25 :
0 7 h 6.2)

Holland and Malanotte—Rizzoli (1989) examined the space-time resolution
to be provided by the forthcoming Topographic Experiment (TOPEX) altim-
etry according to the two alternatives proposed originally, of a 10-day or
20-day repeat period. These choices correspond to global coverages with spa-
tial resolution in midlatitudes of roughly 2.8° of latitude and longitude, for
a track separation of 280 km in the case of a 10-day repeat orbit, and 1.4°,
with track separation of 140 km for a 20-day repeat orbit. The decision has
now been made to adopt the 10-day repeat period.

When the altimetric data are assimilated along the actual tracks, that is
only at the track grid points and at the actual time of arrival, by a nudging
technique (see Section 6.3.2), assimilation results achieved with the satellite
repeat periods of either 10 or 20 days are about equally unsatisfactory for
improving the model estimates of the circulation. The residual rms errors
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after six years of time-continuous assimilation are between 60 and 709, of
their initial values for both repeat periods. The results for this assimilation
method show that under the best of conditions, of a perfect model and error-
less data, a single satellite makes only small improvements in rms field esti-
mates, and it cannot reconstruct the details of the mesoscale eddy field. This
is clear when comparing Figs. 17 and 18 in which altimetric data are inserted
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FiG. 17. Results of a TOPEX-type assimilation experiment in which the data are inserted on
tracks separated by 140 km in a realistic time sequence, each track repeated every 20 days. The
along-track component of vorticity is assimilated using a Gaussian time function to weight the
data symmetrically about the actual time of arrival. A decorrelation time constant t = 2 days
has been used. The upper, intermediate, and lower layer results are shown from top to bottom,
(i) left panels: the controi-run streamfunctions at day 2160; (ii) middle panels: the assimilation
run streamfunctions at day 2160; (iii) right panels: the time evolution of the global rms differ-
ences between the control- and assimilation-run streamfunctions (from Holland and Malanotte—
Rizzoli, 1989).
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FiG. 18. Asin Fig. 17, but for a track separation of 280 km and a repeat time of 10 days (from
Holland and Malanotte—Rizzoli, 1989).

“on tracks separated by 140 km, according to a 20-day repeat period (Fig. 17),
and by 280 km, according to a 10-day repeat period (Fig. 18).

Holland and Malanotte—Rizzoli also examined the space-time resolution
issue by providing altimetric data as a gridded map to the model (in the real
case, one optimally interpolated map every T days, if T is the repeat period).
Two strategies were followed. First the gridded map had the same space re-
solution as the model, i.e., data were assimilated at every model grid point,
but the time interval between successive maps was changed from 2 to 10 and
then to 20 days. Second, gridded maps were assimilated continuously in time
but the spatial resolution was progressively coarsened, passing from track
spacing of 42 to 99 km, and to 198 km. The results are much better when
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a gridded map is assimilated; in this case, a finer spatial resolution is more
critical for the success of the assimilation than increased time sampling.

Some cautionary comments are in order at this point. First, one must dif-
ferentiate among oceanic regions with different dynamics in order to assess
the prospective usefulness of single-satellite coverage. In the previously men-
tioned experiments, the gyre situation is enlightening since it is clear from
visual examination of the streamfunction fields that the relatively smooth
Sverdrup interior is sampled reasonably well, with the space-time sampling
strategies discussed earlier, and can thus be reproduced reasonably well by
the assimilation. The Gulf Stream system, on the other hand, is not well
sampled, being characterized by relatively small-scale and rapidly-changing
mesoscale phenomena.

Still, an equally energetic mesoscale eddy field, but with different statistics,
can be adequately sampled and thus successfully mapped through assimila-
tion even with a single satellite. Altimetric data from GEOSAT during the
period of 18 December 1986 to 18 September 1987 were assimilated by
Holland (1989) for the Agulhas Retroflection Region south of South Africa.
There the mesoscale eddy field, characterized by longer space and time scales,
is adequately sampled by GEOSAT, and the assimilation experiments were
quite successful. Verron (1990) has investigated the issue of sensitivity to
orbital parameters when assimilating altimeter data into ocean models.

The assimilation of altimetric data, i.e., surface pressure, has been carried
out mainly using two types of techniques, nudging and direct insertion (see
Section 6.3.2). Holland and Malanotte~Rizzoli (1989), Holland (1989), and
Verron and Holland (1989) used the nudging technique. Direct insertion of
top-layer streamfunction information was used by Berry and Marshall (1989),
who describe the dynamical mechanism transferring the surface information
into the deep layers in a quasi-geostrophic (QG) two- and three-layer model.
They show that the correction made to the surface-layer streamfunction
through the direct insertion of the observed values provides an additional
interfacial velocity w between the top two layers that acts like a wave-maker
for the second layer and forces the deep circulation to converge towards the
true, but unobserved pattern of the reference ocean. This dynamical mecha-
nism is quite efficient for a two-layer model, since the corrected value of the
surface streamfunction appears directly as a forcing term on the right side of
the w equation for the interfacial vertical velocity w,,. In multilayer models,
however, such a correction term does not force directly the interfacial veloci-
ties w;; 4, of the deeper layers, i > 2. These, accordingly, spin up to the refer-
ence ocean very slowly, and rms errors decay over a multiyear time scale
(Berry and Marshall, 1989).

The nudging technique, however, provides an immediate response of the
deep layers to the constraint imposed by the knowledge of the surface pres-
sure and hence relative vorticity; it is limited, therefore, only by the time
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taken to nudge the surface fields towards the observations. The rms differ-
ences between the assimilation experiments and the control run show the
same e-folding decay time scale of roughly six months in a multi-layer, as in
a two-layer model (Holland and Malanotte—Rizzoli, 1989). Thus, for multi-
layer models, the nudging technique seems to be much more efficient, given
surface data only, than direct insertion of these data in the upper layer only,
at least in QG models. We shall return to the dynamical mechanisms under-
lying the nudging versus direct blending techniques in Section 6.3.2. An ex-
planation for the differences given by Haines (1991) is discussed along with
a new method of direct insertion, which has important similarities to the
nudging technique.

A different type of transfer of information from the surface to the deep
layers is that exploited in the assimilation studies of Robinson and collabo-
rators (Robinson and Leslie, 1985; Robinson et al., 1986, 1987, 1988, 1989;
Robinson, 1987; Mooers et al., 1987; Robinson and Walstad, 1987; DeMey
and Robinson, 1987). In these studies, sea-surface infrared temperature images
are used as initial and update data for an open-boundary regional QG model
through the process of reconstruction of ocean features (feature model), such
as the Gulf Stream mean path and warm- or cold-core rings. The surface
information is projected along the vertical onto the deeper layers through
the Empirical Orthogonal Functions (EOFs), which characterize the second-
order statistics (covariance matrix) of the flow fields in the region being
studied. This assimilation procedure has led to the development of Gulfcast
(Robinson et al., 1989).

Gulfcast is an analysis and forecast system for the Gulf Stream meander
and ring region consisting of the Harvard dynamical open-ocean model
(Robinson and Walstad, 1987) and an observational network (Robinson
et al., 1989). The network is comprised of remotely sensed sea-surface tem-
peratures, obtained every other day, and of critically located air-dropped ex-
pendable bathythermograph (AXBT) data, obtained once a week. The AXBT
drops have the dual role of verifying the previous seven-day forecast and of
helping determine the initial state for the next forecast. The Gulfcast system
was tested under a wide range of circumstances. The phenomena predicted
by the forecasting procedure include Gulf Stream meander growth and prop-
agation, straightening out a previously meandering stream, ring formation,
and ring—stream interactions and movements. Figure 19 shows a character-
istic forecast experiment, with the 100-m streamfunction field used as initial
data (Fig. 19a) and the same field after a seven-day model forecast (Fig. 19b).

Question (2), concerning the transfer of information by advection or wave
propagation from data localized in space to other regions of the ocean, has
been addressed in tropical oceanography by Miller and Cane (1989), who
assimilated real tide-gauge data from six island stations into a simple model
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FIG. 19. (a) Initial 100-m streamfunction field on 19 May 1986. (b) 100-m streamfunction field
after a seven-day forecast on 26 May 1986 (from Robinson et al., 1989).

of the tropical Pacific. Using the Kalman filter, this small amount of data
produced monthly sea-level height anomaly maps for the equatorial wave
guide with reduced rms error and increased spatial detail, even away from
the data points (see Section 6.3.3 for details on this study).

In midlatitude oceanography, this question was addressed by the two
papers of Malanotte—Rizzoli and Holland (1986, 1988). Holland’s (1978)
QG model of the general circulation was used to study the effect of local
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hydrographic, or tomographic, sections in improving the model estimates for
ocean areas far away from the data region, but dynamically connected to
it. Malanotte—Rizzoli and Holland used a simple data insertion technique,
weighting observations by their distance from the grid point being updated,
as discussed in Section 6.3.2, and allowed for model errors in this OSSE-
type study.

They found that a local section can be quite effective in determining the
flow in far away regions if the model is very simple, steady, and quasi-linear
(Malanotte—Rizzoli and Holland, 1986) and that the most effective sections
are meridional, long and far away from the ocean’s western boundary (see
also Parrish and Cohn, 1985, and Section 5.3.1 here). On the other side, for
fully time-dependent and eddy-resolving simulations, a simple data section
is completely ineffective, unless decade-long time series of measurements are
available (Malanotte—Rizzoli and Holland, 1988). In the latter case, a con-
siderable improvement in the estimate of the model’s climatology, i.e., its
long-time average circulation is still obtained.

The question of the effectiveness of oceanographic data collected in sparse
localized clusters of mooring arrays has been addressed by Malanotte—
Rizzoli and Young (1991). This question is motivated by the forthcoming
availability of three-year long time series of current velocities and tempera-
tures measured at two clusters of current meter moorings as part of the
already-mentioned SYNOP experiment, which focuses on process studies in
the Gulf Stream system. The two current-meter mooring arrays are located
one east and the other west of the New England Sea Mountain Chain
(Rossby, 1990).

Malanotte—Rizzoli and Young (1991) simulate the two localized clusters
in a Semi-Spectral Primitive Equation (S.P.E.M.) model with active thermo-
dynamics originally developed by Haidvogel et al. (1991). They use the nudg-
ing technique discussed in Section 6.3.2 to relax the prognostic variables
(u,v, p) towards their observed values with an identical-twin approach. The
results are quite encouraging even though the data are provided only at a
very small number of model grid points: the assimilation process is quite
successful in reconstructing the jet behavior of the control run, includ-
ing the bending of meanders and ring pinch-off, in the region downstream
‘of the mooring arrays, especially between the two clusters, after only two
months of continuous time assimilation. This is due to the advection of
the assimilated information downstream from the measurement points, pro-
vided by the strongly nonlinear, idealized mean flow representing the Gulf
Stream jet.

6.1.2. Trade-Off between Variables

Few investigations have been devoted until now in oceanography to the
problem of the relative usefulness of different variables for the data assimi-
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lation process, while in meteorology a substantial literature on this problem
exists (Charney et al., 1969; Smagorinsky et al., 1970; Ghil, 1989, and refer-
ences therein). Most of the existing studies are in the tropical ocean. Moore
et al. (1987) investigated the effect of updating models of the Indian Ocean
using simulated temperature or velocity data. Temperature data were found
to be better than velocity data in determining the model state. Further experi-
ments showed, however, that increasing the model’s diffusion and decreasing
its eddy viscosity results in velocity data determining the state better. These
results were ascribed to changes in the energy distribution from one case to
the other, with the proportion of kinetic energy being greater in the later
experiments. Simulated data from the proposed Tropical-Ocean/Global-
Atmosphere (TOGA) Indian Ocean XBT network were also assimilated. The
importance of salinity for data assimilation in tropical ocean models was first
considered by Cooper (1988).

Other assimilation studies related to the tropical ocean are those by
Leetmaa and Ji (1989), who have been using an operational ocean model in
the hindcasting mode, Anderson and Moore (1989), Moore and Anderson
(1989), and Miller (1990). Moore and Anderson (1989) formulate initial
data for and then update a one-layer reduced-gravity model of the tropical
ocean at regular intervals with XBT observations of the 16°C isotherm col-
lected as part of the Tropical-Ocean/Global-Atmosphere (TOGA) ship-of-
opportunity program. The XBT data were interpolated in space by combining
each observation with the model first guess, using a scheme based on the suc-
cessive correction method (SCM) (see Section 2, especially Table I, and Sec-
tion 5.1, especially Table II), as used by Moore et al. (1987).

The method is a special form of the linear unbiased data assimilation
scheme [Eq. (4.8b)] and can be written explicitly in this case as

h=h + i o (h? — h§)/<ap + i oz,-) 6.3)
i=1 i=1

- where h is the depth of a given isotherm and the superscripts o, f and a indi-
cate, as in Section 4, observed, first-guess, and analyzed values, respectively.
Subscript i refers to an observation point and k to the model grid point under
analysis; a; is a weighting function assigned to each observation point i, and «,,
is an additional weight that can be assigned to the first-guess field. Figure 20
shows the normalized rms errors (o-f) and (0-a) in the displacement of the
model 16°C isotherm about its 200-m mean depth in four regions of the equa-
torial Pacific. The effect of the data assimilation process in reducing the rms
errors is especially pronounced in the Eastern Pacific, where the control
solution is substantially modified. Miller (1990) carried out much the same
exercise with a K-filter, obtaining detailed analysis error maps for different
observational arrays (see his Fig. 11), using the same model of the tropical
Pacific as Miller and Cane (1989).
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The question of the effectiveness of different data types in midlatitudes was
addressed by Malanotte-Rizzoli et al. (1989) in an eddy-resolving multilevel
PE model. Two types of data fields were compared:

1. Knowledge of the depth-integrated flow only, i.e., of the barotropic ex-
ternal mode. This type of information would correspond to measurements
of the total transport provided, for instance, by tomographic arrays across
different sections of the Gulf Stream jet.

2. Knowledge of the density field only, ie., of the baroclinic, internal
modes or, equivalently, of the velocity shear through the thermal-wind rela-
tionship. This information would be provided by traditional hydrographic
surveys covering the region of study.

Notice that the knowledge of the barotropic streamfunction provides infor-
mation that is constant with depth, i.e., a 2-D field of data, while the density
field provides a 3-D data set. The assimilation experiments for data types
(1) and (2) thus allow a comparison of the effectiveness of 2-D horizontal ver-
sus fully 3-D data maps.

The results are illustrated by showing the rms errors in different fields, both
the global rms over the entire 3-D network and the rms for each of 5 hori-
zontal levels considered in the model. Figure 21 shows the rms errors when
assimilating the density field p only, at every model grid point; Fig. 22 shows
the results for the assimilation of the barotropic streamfunction ¥, only, also
at every model grid point.

Experiments with progressively coarser horizontal resolutions were also
carried out. The following conclusions can be drawn from this set of assimi-
lation experiments:

(1) The knowledge of the depth-integrated flow W, or total transport, is
much less effective than knowledge of the interior density field p. In the
second case, the decrease in rms error, i.e., the convergence to the reference
ocean, is much faster. (2) If the baroclinic structure is known, i.e., if data are
inserted three dimensionally, a decrease in the horizontal resolution of data
insertion is not very deleterious. Coarse horizontal resolution can be reached
before significantly worsening the model estimates. (3) If only the barotropic
component is known, a decrease in the horizontal resolution has an imme-
diate and profound effect on the assimilation: the rms errors sharply increase
and the assimilation run diverges from the reference ocean. (4) Even with
dense insertion at every grid point of the barotropic flow, the errors in the
deep layers always show an increasing trend, which indicates a worsening
of the estimate of the deep circulation, as evident from the examination of
Fig. 22.

The simplest and natural interpretation is that the assimilation of the den-
sity field is much more successful because a 3-D rather than a 2-D data
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set is provided to the model, ie., more data are used (see also Ghil, 1989,
Section 4.3.3). However, a rationalization can also be made in the context of
simple geostrophic adjustment theory. When providing baroclinic informa-
tion, the data insertion process must force the (unknown) barotropic mode.
The response time of the model will then be the short adjustment time re-
quired by the (fast ) barotropic component of the flow. That this is so emerges
clearly from Fig. 21, in which the baroclinic component is assimilated, and a
great percentage of rms error decrease occurs during the first two-to-three
days of assimilation. Alternatively, when only the barotropic mode is known,
the baroclinic component of the flow must be forced and the adjustment
time of the model will occur on the (long) time-scale of the (slow) baroclinic
modes. This is also clear in the much reduced rate of error reduction of
Fig. 22, when only ¥; is assimilated, and comparable error decreases are
achieved only after one month of continuous assimilation.

6.2. Initialization Problem in Oceanography

The issue of model initialization was addressed briefly in Section 2 and
more extensively in Section 5.2, where meteorological applications were em-
phasized. We now summarize the oceanographic applications, referring to
Section 5.2 for the details of the different procedures.

The problem of initial conditions for ocean GCMs in relation to data
assimilation and forecasting was first addressed in the tropics by Philander
et al. (1987). Initialization in the tropical ocean was studied by Moore (1990).
The initialization problem was investigated systematically in the oceano-
graphic context for midlatitude systems by Malanotte—Rizzoli et al. (1989),
who used the NNMI procedure introduced by Machenhauer (1977) and con-
nected by Leith (1980) to quasi-geostrophic theory (see also Daley, 1981).
The method applied by Malanotte—Rizzoli and colleagues represents a com-
putationally efficient, first-order approximation of Machenhauer’s NNMI,
using a QG streamfunction, and consists of the following two steps:

(1) Geostrophic and hydrostatic initialization,

= =¥©

u® — _\y;O)’ v© = +\Pf,°), w® =0
Ple=0 = ¢(°) = fo‘P(o’

for the pressure field, and

Plieo = po = —§¢<:’ (6.4a)
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where p, is the perturbation density field for a constant midlatitude value of
the Coriolis parameter, and the superscript (o) indicates geostrophic fields,
valid at initial time t = 0.

(2) Quasi-geostrophic tendency,

¥ =Y & =¥

6.4b
ul = _\Pl.y; l)l = +\P1'x ( )
and
oDy
JoS Dt *

where S = N?(z)/f}. The subscript 1 indicates fields at the first time step.
Step (2) constrains the horizontal velocity field to be given by geostrophy and
the vertical velocity to be quasi-geostrophic. This second step is equivalent
to letting the tendency of the fast gravity modes vanish, as discussed in detail
in Section 5.2.

The following conclusions were drawn from the initialization experiments
of Malanotte-Rizzoli et al. (1989): (1) In the absence of initialization, a large
amount of imbalance in the initial data is required to produce substantial
levels of internal gravity-wave noise that radiate away from the initial jet.
(2) First-order balancing for some of the initial fields only is sufficient to
suppress the greatest part of gravity-wave noise. In this balancing, the baro-
tropic velocity or the velocity shear are evaluated geostrophically from the
barotropic streamfunction or the density field, respectively. (3) A geostrophi-
cally balanced initialization [Step (1), Eq. (6.4a)] for all the fields is sufficient
for long evolutions of the jet without any significant appearance of gravity
waves. Hence, there does not seem to be a need for constraining the model
tendency in the initialization, as given by Eq. (6.4b).

These results obtained by Malanotte~Rizzoli et al. (1989) confirm the ef-
fectiveness of the simpler balanced initializations carried out by Hurlburt
(1986), Kindle (1986), and Thompson (1986) (see also Section 6.1.1) and the
results of Carter (1989), who used Lagrangian-float data. In particular,
Thompson’s (1986) results showed the robustness of geostrophic initializa-
tions under the noisy conditions provided by errors from a poorly known
geoid. Hurlburt (1986) also showed that a simple geostrophic initialization
is quite appropriate as long as the determination of the subsurface pressure
field can be properly made. However, forecasting experiments for the Gulf
Stream system with a PE model indicate that poorly known deep pressure
fields at the initial time are a major source of error in forecast accuracy, and
that shocks from these imbalanced initial states are in part responsible for
the degraded forecasts (Hurlburt et al., 1990). Thus, a dynamical balance
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between the surface and subsurface initial pressure fields is an important re-
quirement for accurate ocean forecasting.

In conclusion, the initialization problem does not seem to be as crucial an
issue in large-scale oceanography as it is in NWP. Part of the reason may be
ascribed to the difference between the two fluids, specifically their different
characteristic Burger numbers and the related implications for energy distri-
bution between waves, as discussed in Section 3.1.

6.3. Assimilation Methods

Two approaches to data assimilation are emerging in the oceanographic
community. The first is the development and use of sophisticated assimilation
techniques. The computational feasibility of this approach has limited its use
so far to relatively simple dynamical models, with hundreds to thousands of
variables. To this category belong (a) sequential estimation methods, intro-
duced in Section 4.1, of which the K-filter is the prototype; and (b) variational
methods, introduced in Section 4.2, especially those based upon the use of the
adjoint equations. The meteorological applications of these two approaches
were discussed in Sections 5.3 and 5.4, respectively. Their oceanographic
counterparts will be presented in the following Sections 6.3.3 and 6.3.4.

The second approach focuses upon the use of more complex and realistic
dynamical models, capable of simulating ocean processes in greater detail. In
this approach, the data assimilation schemes are, per force, methodologically
simple and computationally efficient. Two important schemes in the latter
category are the blending and the nudging methods discussed in Section 6.3.2.
The methods whose oceanographic applications are presented next are those
based on optimal interpolation (OI), and in general on optimization schemes,
The former stem most naturally from the practice of meteorological fore-
casting, the latter from geophysical inverse theory (see Section 1). The theory
underlying OI was introduced in Section 5.1, A short review of its oceano-
graphic applications is also given by Webb (1989).

6.3.1. Optimal Interpolation and Inverse Methods

Optimal interpolation is a simplified version of the K-filter in which the
interpolation weights for observations are determined using an approximate
form of the forecast error covariance matrix, cf. Egs. (5.1)—(5.5). Optimal
interpolation is a practical and internally consistent approach for treating a
large set of heterogeneous observations, and it is at present the technique
that produces the best results for objective analysis at one given time level
in NWP. Several problems occur, however, when this method is applied to
the temporal evolution of a nonlinear unstable flow. In fact the procedures
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now in operational use in meteorology proceed sequentially in time, but the
weights assigned at successive analysis steps are still not entirely consistent
with the evolution equations (Cohn et al., 1981; Ghil et al., 1982; Webb, 1989;
Section 5.1 here).

Statistical interpolation in general tends to smooth the objectively ana-
lyzed fields excessively. Excessive smoothing is particularly troublesome for
mesoscale models, since it may inhibit developments that are unlikely from
a statistical point of view, just because of the rarity of their occurrences, but
are very important to correctly simulate the system. A well-known example
of such a relatively rare but important phenomenon is ring formation from
the Gulf Stream jet. An interesting approach to avoid this excessive smooth-
ing was proposed by Mariano (1990). He estimates the position of dynamical
features with known characteristics, rather than grid-point values for com-
plete fields.

We first recall that objective analysis, in general (see Section 2), is also
widely used to analyze synoptic or quasi-synoptic data with climatology,
rather than a model forecast, as a background field (Bretherton et al.,1976;
Freeland and Gould, 1976; Gandin, 1963). Data from different time levels
can be used in this way as well (Miyakoda and Talagrand, 1971; Kindle, 1986;
McWilliams et al., 1986). Various examples on the use of OI are also given
in Wunsch (1989a).

O1 as a form of objective analysis is most often used nowadays in conjunc-
tion with a dynamical model. Marshall (1985a) applied OI to the problem of
determining the ocean circulation by assimilating satellite altimetry data and,
at the same time, improving the geoid estimate. He used a barotropic (2-D)
QG ocean model with the identical-twin approach, i.e., with model-simulated
altimetric measurements. The technique was used in a simulation study of
Gulf Stream variability in which the surface geostrophic flow, or ocean
topography (OT) in Marshall’s designation, is degraded by the noise intro-
duced through the uncertainty in the geoid’s estimate. Figure 23 shows re-
sults of this application.

In Fig. 23a, the true six-month time mean OT is shown as constructed by
the control run of the identical-twin experiment. Figure 23b shows the six-
month mean OT estimate obtained through data assimilation into the ocean
model when updating continuously both the OT and the geoid estimate. The
rms error of Fig. 23b with respect to 23a is only 4.1 cm. Figure 23c is also
evaluated through the data assimilation process, but only the OT estimate
is continuously updated, not the geoid. The comparison of the assimilation
experiments shown in Figs. 23b,c with the true ocean of Fig. 23a clearly
demonstrates that solving simultaneously for the geoid and OT is preferable.
The analysis of Fig. 23c is visibly poorer than the analysis of Fig. 23b, and
the rms error of Fig. 23c with respect to Fig. 23a is in fact 8.4 cm.
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Fi1G. 23. Surface circulation (ocean topography, OT) evaluated by a quasi-geostrophic 2-D
barotropic ocean model. (a) True six-months time mean OT from the control run. (b) Six-months
time mean OT reconstructed in the assimilation experiment when continuously updating both
the OT estimate and the geoid estimate. (c) Six-months time mean OT reconstructed in the as-
similation experiment when continuously updating the OT estimate, but not the geoid estimate
(from Marshall, 1985a).

Marshall (1985b) applied the method further to study the efficiency of dif-
ferent altimeter sampling strategies. White et al. (1990a,b,c) also used OI to
assimilate first simulated and then GEOSAT altimetric sea-level observations
continuously into a QG eddy-resolving ocean model. Multivariate statistical
objective analysis of the OI type was also applied by Carton and Hackert
(1989) to the circulation of the tropical Atlantic Ocean. Statistical regres-
sion techniques blended with a deterministic modeling approach and pro-
jection of the surface information onto the deep layers through vertical EOFs
have also been used by Robinson and collaborators in the studies quoted in
Section 6.1.1 in their use of the Harvard open-ocean QG model in different
regional domains of the world ocean. The domains are typically of the order
of 10 Rossby radii on the side, as the emphasis of the work of this group is
upon the real-time prediction of the mesoscale eddy field.

The 4-D data assimilation approach so successful in meteorology for
coping with data sparsity, which uses objective analysis techniques to blend
the model-evaluated variables and the observations, was first applied to
oceanographic problems in limited-ocean domains (Robinson and Leslie,
1985; Rienecker et al., 1987). Clancy et al. (1988) applied the method to larger
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domains but used a simple mixed-layer model. More recently, Leetmaa and Ji
(1989) have used the methodology for operational hindcasting of the tropical
Pacific. The most recent oceanographic application of 4-D data assimila-
tion has been made by Derber and Rosati (1989) to the global ocean using
a high-resolution PE model. At the National Meteorological Center (NMC),
experience with a quasi-operational data assimilation system for a noneddy-
resolving model has shown that the largest source of errors is the poor knowl-
edge of atmospheric fluxes (J. Derber, personal communication, 1990; see
also Atlas et al., 1987).

Optimization methods based upon the idea of minimizing a deterministic
objective function, rather than an expected error [see Egs. (4.5)-(4.7) and
Sec. 5.4.1], were first used by Provost (1983) and by Provost and Salmon
(1986) to estimate the geostrophic circulation from hydrographic data. These
optimization schemes belong to the category of variational methods discussed
in Sections 4.2 and 6.3.4. A nonlinear optimization method was developed
by Schréter and Wunsch (1986) to study the effect of observation errors in
determining solutions of nonlinear, finite-difference, steady models with one
and two layers. They carry out a sensitivity analysis exploring the effect of
uncertainties in the surface forcing function, i.e., the wind stress curl, as well
as uncertainties in a model parameter, the bottom friction coefficient. The
optimization again proceeds by minimizing a diagnostic objective function
that represents some feature of the flow, such as the area integral of the
potential or kinetic energy (nonlinear objective function) or the transport of
the model’s western boundary current (linear objective function).

The inverse techniques borrowed from solid-earth geophysics (Backus and
Gilbert, 1967; Parker, 1972; Tarantola, 1987) and introduced into physical
oceanography by Wunsch (1977) broadly belong to the category of optimiza-
tion methods. First, the distinction between “inverse methods” and “inverse
problems” has been pointed out by Wunsch (1989b), who gives a very simple
example of a direct and an inverse problem in the context of the same model,
the Poisson equation

Vig=p (6.5)

The direct problem is the solution of Eq. (6.5) within a domain D, with bound-
ary 6D and boundary conditions ¢ = ¢, on dD. This is the classical Dirichlet
problem. The inverse problem would be to assign ¢ and its boundary con-
ditions and solve for the source term p. An oceanographic inverse problem is
Stommel’s B-spiral (Stommel and Schétt, 1977), which was originally solved
by a direct method, least squares (even though Davis, 1978, showed the dy-
namical connection between the p-spiral and Wunsch’s inverse problem).

Inverse methods are directed primarily at problems which in some way
are ill-posed and which need to be regularized. For a review of steady and
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time-dependent ill-posed problems, see Wunsch (1989a). Here we shall give
a simple example of a problem best solved by an inverse method. Consider
the linear problem

M
> Dyp=bi, i=1L....N (6.6)
J=1

with unknowns p;, j = 1,..., M. Equation (6.6) has, in general, no solutions
if N > M (overdetermined case) and an infinity of solutions if N < M (under-
determined case). In the overdetermined case, if the N equations are linearly
independent, solutions can be defined only by discarding (N — M) equations.
In the underdetermined case, unique solutions can be found only by assigning
additional criteria for their selection from the infinity of solutions.

A powerful inverse method to solve this problem in both cases is singular
value decomposition (SVD) (Lanczos, 1961), widely applied to solve inverse
problems in geophysics as well as oceanography. For a review of SVD theory
and of inverse problems and methods, see Olbers (1989) and Wunsch (1989b).
In the latter reference, a short history on the use of inverse methods in ocean
circulation studies is also given. They were pioneered by Wunsch (1977, 1978)
to study the general circulation of the North Atlantic and solve the problem
of determining the classical level of no motion, ie., to calculate reference-
level velocities for the thermal-wind equations of motion. These studies used
the SVD method, and further applications were later made by Wunsch and
Grant (1982) and Fiadeiro and Veronis (1984). A number of linear inverse
calculations of the ocean circulation in different ocean basins followed. A
nonlinear inverse method for the general circulation was also proposed by
Mercier (1986). The interested reader is referred to Wunsch (1989b) for a
complete review.

We conclude here by mentioning that inverse methods have been success-
fully applied to two other oceanographic inverse problems. The first one is
the tomographic problem introduced by Munk and Wunsch (1979), who used
SVD in their original study. Statistical inverses based on OI were constructed
and applied to acoustic-tomography data by Cornuelle et al. (1985). The sec-
ond oceanographic inverse problem is the tracer problem, also formulated
from this perspective by Wunsch (1988, 1989b). In Section 6.3.4, the tracer
problem is treated with the adjoint method.

6.3.2. Blending and Nudging Methods

The blending technique is a highly simplified and localized version of OI,
with purely empirical weights. At assigned times, the observed or forecast field
variable f at a given grid point is replaced by a new variable f"* which is a
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blending of the two, f™**! and fo°bs
fnew = afobs + (1 _ a)fmodel (67)

a is the weight assigned to the observed value [compare Eq. (4.2a)]. When
a = 1, the blending method reduces to direct insertion of the observed value
in place of the model-predicted value (see Table II in Section 5.1). The di-
rect insertion technique was used by Kindle (1986), Thompson (1986), and
Hurlburt (1986), and Malanotte—Rizzoli and Holland (1986, 1988) also used
it in their investigation of the assimilation of localized hydrographic sections
(see Section 6.1.1), Insertion techniques were also applied by Moore et al.
(1987) and Moore and Anderson (1989). Their method was a direct updating
of the whole temperature or velocity fields (Section 6.1.2). A direct insertion
technique was used by Malanotte—Rizzoli et al. (1989) in the study dis-
cussed in Section 6.1.2 and by Berry and Marshall (1989) in the assimilation
of altimeter data. The latter work shows that a time of the order of the baro-
clinic Rossby adjustment time (i.e., of years) may be necessary with some
insertion methods for surface information to spread into the deep layers and
provide convergence of the deep circulation to the reference ocean.

The nudging technique, introduced for oceanographic data assimilation by
Verron and Holland (1989) and by Holland and Malanotte-Rizzoli (1989)
seems to be much more effective in reconstructing the circulation in the deep
layers. As noted in Section 6.1.1, the rms error of the assimilation experiments
of Holland and Malanotte—Rizzoli (1989) exhibited an e-folding decay time
scale of about 6 months, in contrast to the much longer rms-decay time scales
of Berry and Marshall (1989). Before discussing the reasons for the success of
the nudging technique in comparison to the blending one, we first summarize
its properties.

The nudging or relaxation scheme was first introduced in meteorology by
Anthes and colleagues (Anthes, 1974; Hoke and Anthes, 1976). Following the
original formulation by Anthes (1974), consider a prognostic variable f of
the model measured at N observational stations. The equation for nudging
can be written as

af > obs
FTin RHS — n;l G(e,,0t,0r,02)( f — f3™) (6.8a)

here RHS (Right-Hand Side) contains all the other linear and nonlinear terms
of the prognostic evolution equation for f, while f* n=1,..., N, are the
measurements of f at N observational stations. Equation (6.8a) is anal-
ogous to Egs. (4.8b) and (5.22) (see also Table IV and its discussion in
Sec. 5.4.1).
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The relaxation function G is in principle a function of &,, the standard
deviation of the nth observation, of dt, which is the separation between the
observation times ¢, and the model evaluation time ¢, and of ér and 0z, the
horizontal and vertical distances, respectively, between the model grid point
and the observational point. In practice, however, G is assumed to be a con-
stant in all meteorological applications. Anthes (1974) noted that, from first
principles, one can expect G to be positive and decrease with increasing
observation error &, increasing horizontal and vertical distance separation
and increasing time separation. In practice, however, he chose

G = constant > 0 for 6r =5z =0 (6.8b)
G = 0 if either r or 6z # 0 (6.8¢c)

In the altimetric data assimilation carried out with a QG model by Holland
and Malanotte—Rizzoli (1989), Eq. (6.8a) specializes to

a
ot

where (; is the relative vorticity in the surface layer, which is related to the
quasi-geostrophic streamfunction y, (the direct altimetric measurement) by
{; = VX, Holland and Malanotte—Rizzoli studied the sensitivity of the
assimilation experiments to different choices of r. They considered a general
shape for r given by

= RHS — r((, — (3*) (6.92)

ey 2 > el
r=rge* Ty irgat (6.9b)

where r, is typically of the order of (2 days)~'. The Gaussian shape for
the horizontal dependence of r has a decay distance of the order of the first
Rossby deformation radius Ly and the (empirically found) best value for the
decay time scale is a = (5 days)™!. The nudging method has been tested
successfully for the assimilation of altimeter data also in experiments car-
ried out with the Holland and Lin (1975) model (Haines et al., 1991) and
in the experiments carried out with the S.P.E.M. Gulf Stream model when
assimilating localized data clusters (Malanotte—Rizzoli and Young, 1991,
-and Section 6.1.1 here).

As remarked in Section 6.1.1, the direct insertion of altimetric data used by
Berry and Marshall (1989) causes an additional vertical velocity w, , between
the surface layer and the one immediately below. In the case of a two-layer
model, w,, is determined principally by Yy, the observed surface-pressure
field, because i, tends to be small due to bottom friction. This is not true,
however, for multilayer models. In multilayer models, the stretching induced
by the top two layers does not cause any immediate change in the current
structures, and alterations can only occur on much longer time scales.
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The description of this process given by Haines (1991) is based on con-
sidering the field changes caused by the direct insertion. Assuming that a
complete set of surface observations are available, the Berry and Marshall
(1989) scheme corresponds to

Ay, =y, — Y™ = given (6.10a)
Ay;=0forj=2,. N (6.10b)

where Ay is the field change due to insertion. That is, the pressure change is
assigned at the surface only. Of course, pressure changes in the deeper layers
do occur over time as the model is integrated, as described by the Berry and
Marshall method of considering the w fields in the w-equation.

In contrast, the nudging scheme indirectly alters the surface pressure field
by altering the surface potential vorticity field g,, since the nudging term
appears on the right side of the surface potential vorticity equation. Thus,
after one time step At, we have

Aq, = At(g, — q5>) = given (6.11a)
Ag;=0forj=2,...,N (6.11b)

This has, of course, the disadvantage that ¢3™ is not really the observed field,
which is . Disregarding this at present, it was pointed out by Holland and
Malanotte-Rizzoli (1989) and more explicitly by Haines (1991) that a change
in the surface potential vorticity field alone causes an immediate change in
the current structures at all vertical levels; this is consistent with the QG
approximation, i.., with the approximate validity of the Taylor— Proudman
theorem. Thus, nudging causes rapid penetration of surface information into
the deep ocean, unlike the direct insertion method, which only changes the
surface currents instantaneously.

With this contrast in mind, Haines (1991) develops a new method of data

assimilation that avoids the disadvantages of both previous methods. He

proposes that the following field changes be made at the assimilation time:

Ay, = Y — Y5> = given (6.12a)
Ag;=0forj=2,...,N (6.12b)

Equation (6.12a) is clearly the same as Eq. (6.10a), while Eq. (6.12b) is the same
as Eq. (6.11b). Thus, the known ¥, is used in the upper layer, avoiding the use
of the unknown gq,, while instantaneous QG adjustment is achieved in the
lower layers. To see how this adjustment occurs, Haines demonstrates how
the variable changes of Egs. (6.12a,b) can be inverted to obtain the other vari-
able changes, i.e.,, Aq, and Ay; for j = 2,...,N.
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The method first solves for the Ay; using the definitions of potential vor-
ticity in layers 2,..., N (in his case N = 4),

V2(AYy) — 733[A%) — (AYs)] — 73.1(Aks) = —931(AYy)  (6.13)
V2(Ays) — 732 [(AY5) — (AY)] — 73,4 [(AYs) — (Ag)] = O (6.13b)
V(A) — 733[(AY) — (AYs)] =0 (6.13¢)

The right sides would normally contain Ag;, but these are assumed to be zero,
and Ay, in Eq. (6.13a) is known. The y; ;, are the inverse Rossby defor-
mation radii for the interfaces. The resulting Ag, is given by

Agy = V*(Ay) — y12[(A%) — (Ags)] (6.13d)

Haines uses this method for intermittent data assimilation in an identical-
twin experiment and demonstrates rapid convergence to the control run in
all layers. A more recent manuscript uses a similar method in a shallow-water
model and compares the success with nudging (Haines et al., 1991).

The attractiveness of the previously discussed methods lies in their sim-
plicity, since their implementation involves only fairly straightforward modi-
fications of existing dynamic models. A general disadvantage, on the other
hand is that these empirical schemes are not well suited to address issues of
consistency and errors in the estimated solution when applied to real situa-
tions, where the true reference ocean is unknown.

6.3.3. Kalman Filtering Applications

The theory of the K-filter was presented in Section 4.1, and its meteoro-
logical applications were presented in Section 5.3. The sequential nature of
the state estimation provided by K-filtering makes it particularly well suited
to the meteorological application of forecasting. In the oceanographic con-
text, however, data at different times are stored and used simultaneously.
Thus, time becomes a fourth coordinate, like space, and the K-filter can be
used as a smoother (Bennett and Budgell, 1989; Gaspar and Wunsch, 1989),
: l.e., an optimal estimator that uses formally future data (see also Section 7 here).

The great advantage of sequential estimation methods is that they are
capable of providing explicit error estimates, such as the error bars or the
error covariance matrix of the obtained solution. More difficult, and this is
true for any methodology discussed here, is the identification of systematic
model errors as distinguished from forcing errors.

The K-filter has been applied to oceanographic problems by Budgell
(1986a,b), Miller (1986, 1989), Webb and Moore (1986), Bennett and
Budgell (1987, 1989), Carter (1989), Gaspar and Wunsch (1989), Miller and
- Cane (1989), and Miller and Ghil (1990). In most of these applications, re-
latively simple dynamical models were used, but Heemink and Kloosterhuis
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(1990) have used a K-filter operationally and quite successfully in a non-
linear shallow-water model of the North Sea, for real-time prediction of
water levels along the Dutch coast and of their all-important error bars
during storm surges.

Webb and Moore (1986) used a projection method equivalent to a simpli-
fied K-filter to transfer the surface information provided by altimetry to the
deeper layers. They used at update times a projection of the forecast field
onto the hyperplane of sea surface elevations given by altimetric measure-
ments [compare Daley, 1980, 1981, and discussion of Eq. (5.12) here] and
studied the convergence of the assimilation process (cf. also Talagrand, 1981).
They assumed that the measurements were error free and available every-
where at fixed time intervals. These authors approximated the oceanic fields
by an error-free superposition of linear Rossby waves and showed that their
method represents, in this case, a highly simplified K-filter [Egs. (4.17) here
with R = 0, Q = 0, and P = I, a unit matrix]. A result of this study was that
the determination of the deeper structure of the ocean was limited by the
phase separation that develops over each assimilation interval between modes
of the ocean with the same horizontal wave number but different vertical
structure, given fixed-length update intervals (cf. also Bube and Ghil, 1981).

Miller’s (1986) work was motivated by data assimilation into an eddy-
resolving open ocean model. He applied the full K -filter to a barotropic vor-
ticity equation designed to capture some of the properties of open-ocean
modelling. Miller showed that the filter can follow instabilities well, and its
performance with open boundaries is as good as with the periodic conditions
of Ghil et al. (1981).

Budgell (1986a) applied K-filtering to a one-dimensional linear shallow-
water model, corresponding to the conservation equations for momentum
and mass integrated across the section of an open channel. Nonlinear pro-
cesses were also included by Budgell (1986b). Numerical applications to the
Great Bay estuary in New Hampshire were successful in estimating the along-
channel distributions and time evolutions of the surface elevation and total
transport. Model errors were included as a stochastic forcing.

Bennett and Budgell (1987) showed that the time-continuous Kalman—
Bucy (1961) filter with regular time and space sampling at a certain period and
wavelength will not converge for waves of shorter periods and wavelengths.
This result is intuitively obvious (Bube, 1981; Bube and Ghil, 1981) and
merely indicates that the subgrid-scale problem in data assimilation, as in
modeling, has no simple ready answers.

Kindle (1986) got similar results using an eddy-resolving numerical model.
He found that the model integration would not converge given observed data
unless the data had a time-space sampling rate equal to the time—space de-
correlation scale of the model’s eddy activity. Kindle used the direct insertion
of observations into the numerical model discussed in Section 6.3.2 and got
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essentially the same results as Bennett and Budgell (1987), but slower con-
vergence. It follows that the K-filter does not overcome the problem of reso-
lution, but it does allow for a more rapid convergence of the assimilation for
the periods and wavelengths that can be resolved by the model. The suc-
cessful application of the K-filter by Carter (1989) for the assimilation of
Lagrangian data from 39 isopycnal RAFOS floats in the Gulf Stream shows,
on the other hand, that when the sampling is not on a regular time—space
grid, some of these difficulties may be overcome (cf. also Bube, 1981; Bube
and Ghil, 1981). ;

In the second part of their investigation, Bennett and Budgell (1989) ex-
amined methods for computing the Kalman smoother in an efficient way
feasible for practical calculations. They show that the computation of the
smoother may be completed in a well-conditioned way without having to
store error covariance matrices throughout the integration time interval, thus
‘reducing considerably the computational effort.

Miller (1989) showed that the K-filter, using minimal information from an-
other source, can overcome the major problem of altimetric measurements,
namely that of relative measurements only: since orbit determination is not
sufficiently precise for an absolute measurement of sea level, differences in
space and time only are provided. The K-filter converges to an absolute sea-
surface height map from altimetric differences, provided absolute measure-
ments are provided at one point in space only, e.g., from one tide gauge, at
least in Miller’s (1989) idealized setting.

Miller and Cane (1989) carried out the first apphcatlon of the K-filter
to a real oceanographic problem, with the scientific objective of producing
monthly mean sea-level maps for the period 1978-1983 in the equatorial
Pacific. As already remarked, a sophisticated assimilation technique is used
in their application in conjunction with a simple dynamical model. This con-
sists of the linearized momentum equations on an equatorial S-plane with
the long-wave approximation (Cane, 1984). In the model, the motion is de-
composed into vertical modes. The amplitude of each vertical mode is then
expanded into the meridional normal modes of the equatorial wave guide,
the Hermite functions (Cane, 1984). Thus, the solutions obtained by classical
separation of variables take the form:

(um> 2 aKm(x’ t) (lpo(_}’))
hp 212 \yo(y)
Nrn,m(x9t) ( +1)—1/2wn+1_ —Uzll’n—
27.am <(: SOy, :-*%-i) i

here (u,,, h,,) is the amplitude of the mth baroclinic mode for the zonal veloc-
ity component and the sea-level height anomaly, respectively, ax,(x,t) is the
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amplitude of the Kelvin wave and r, ,(x, t) is the amplitude of the nth merid-
ional mode Rossby wave and ), is the nth meridional Hermite function. Thus,
the equations governing the Kelvin and Rossby wave amplitudes are one-
dimensional in space and simple enough for efficient K-filtering. Moreover,
the model was used in a highly truncated version, with only two baroclinic
modes and five meridional modes; experiments with up to nine meridional
modes showed no significant changes in the results.

The model was run with monthly-average wind stress forcing for the six-
year interval from January 1978 through December 1983, first in a pre-
dictive mode for simple comparisons between model results and tide-gauge
data at island stations. Subsequently, the K-filter was applied using sea level
data from six selected tide-gauge stations. The effectiveness of K-filtering
was tested by comparing the raw model output and the filtered output with
real observations at four tide-gauge stations not used in the assimilation.
Figure 24a shows such a comparison. Clearly, the filtered model outputs
(heavy lines) are, in general, in better agreement with the observations (dots)
than the raw model output (light solid); the improvement, as discussed by
Miller and Cane, is not always significant (see for instance, the results at
Canton and at Kapingamarangi). The larger discrepancies, in both filtered
and unfiltered results, towards the end of the time interval are probably due
to the model’s difficulty in simulating the anomalously large E! Nifio event
of 1982-1983. The results of the assimilation will be greatly improved by
adding a few observation from the planned TOGA Thermal Array for the
ocean (TAO) (Miller, 1990).

As already remarked, the K-filter provides, as a very important byprod-
uct, maps of the error estimate that quantify the goodness of the result. Fig-
ures 24b,c show contour maps of the rms error for the entire model domain;
the expected rms error of the raw model output is shown in panel (b) and
the rms error of the model updated at the six stations is shown in panel (c).
The filter reduces the rms error by about 1 cm. The improvement is, not sur-
prisingly, small since only 6 data points are used in the assimilation. Further-
more, both the wind forcing errors and model errors are probably important
and are difficult to estimate (see, however, Dee et al., 1985).

An application of K-filtering to a midlatitude oceanographic problem was
made by Gaspar and Wunsch (1989). They use an even simpler model than
Miller and Cane, i., the barotropic linear Rossby wave equation. This is
surely rather less appropriate as a model for the Northwestern Atlantic,
where the energetic Gulf Stream system produces major departures from
linear, barotropic dynamics than Cane’s (1984) model for the tropical Pacific.
Gaspar and Wunsch’s goal, however, is to determine the fraction of oceanic
variability in the Northwest Atlantic, which is consistent with linear baro-
tropic Rossby waves. By consistent, these authors mean that the observed
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variability so described is indistinguishable from what the dynamical model
demands.
The model equation is
d

ch
o 2 —_—
5IV h+ 'Bax 0 (6.15a)

where h, the surface elevation, is expanded into M horizontal Rossby modes:
M
h(x,y,t) = Z a,sin(K, - X —w,t + 6,), X =(x,y) (6.15b)
m=1

Data from 10 successive 17-day repeat cycles of GEOSAT were used,
covering the period 24 March to 9 September 1987, and K-filtering applied
to the model. The authors kept 32 Rossby modes in Eq. (6.15b) and performed
experiments without and with system noise, apart from a series of sensitivity
tests. Five dominant Rossby modes were identified by using forward filter-
ing only as well as fixed-interval smoothing over the entire time interval of
170 days. Figure 25a shows the time evolution of the estimated amplitudes
o, (left panel) and phases 8, (right panel) of the five dominant modes in one
of their experiments. The filtered (solid) and smoothed (dotted) estimates of
large-amplitude changes are in good agreement when the changes are slow in
time (see the curves for mode W2), but are less so when the changes are fast
(see mode W3). In Fig. 25b, the characteristic wave numbers and periods are
reported for the five barotropic Rossby modes found to carry significant
energy as well as being simultaneously consistent with model and data. Only
a very minor fraction, unfortunately, of total signal variance, 5-15%,, is con-
sistent with these five Rossby modes over several GEOSAT repeat cycles.
This may not be too surprising considering the dynamical complexity of the
region where the study is carried out.

6.3.4. Applications of Variational Methods

The connection between variational methods and sequential estimation
was discussed in Section 4 and in Section 5.4.1, where the duality principle
of Kalman (1960) was shown to be the basis of this connection. In this con-
text, Kimeldorf and Wahba (1970) have shown that statistical interpolation
produces fields that are the solution of a variational problem in which the
function to be minimized is the sum of two terms, one representing the dis-
tance to the observations and the other some measure of smoothness of
the fields.

The forward-backward data assimilation introduced by Morel et al.
(1971) can also be related to variational assimilation. In their approach, the
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FIG. 25. (a) Evolution of the estimated amplitudes (left panel) and phases (right panel) of the
five dominant modes in the experiment with system-noise variance ¢ = 107® m?. (b) The five
Rossby modes found to carry a significant amount of energy that are simultaneously consistent
with both data and model (from Gaspar and Wunsch, 1989).



DATA ASSIMILATION IN METEOROLOGY AND OCEANOGRAPHY 243

b

Wave vector Period

Wave (cycles/ 1000 km) (days)
Wil (-3,0) 77.1
w2 -2,3) 167.0
w3 (-2,-1) 64.2
w4 -1, -1 51.4
W5 (-1,-2) 128.4

Fi1G. 25. (Continued)

model is integrated forward and backward repeatedly over time to obtain
an adjustment of the model to the observations. In the adjoint method, the
model itself is integrated forward, but the adjoint of the model is used in the
backward integration. Talagrand (1981) has shown that a sufficient condition
for convergence of a forward-backward assimilation scheme, as described
by Morel et al. (1971), is that the linearized perturbation equations be anti-
symmetric. The time-backward integration of the adjoint of an antisymmetric
equation is identical to the equation itself, which explains the success reported
by Morel et al. (1971) in the case of an antisymmetric equation.

Assimilation procedures based on the variational approach are not re-
stricted, however, to antisymmetric equations. Thacker (1986) discusses the
connection between K-filtering and the adjoint method for data assimila-
tion using a linear model. Kalman filtering is simply a particularly efficient
algorithm to minimize the distance between a model trajectory and given
data, subject to certain assumptions (Sections 4.1 and 4.2; see also Paige and
Saunders, 1977).

Bennett and MclIntosh (1982) used a variational method in the investiga-
tion of tidal motion. Their results emphasize that the proper choice of data
weights is of great importance. As already mentioned in Section 6.3.1, Provost
(1983) and Provost and Salmon (1986) have used a variational technique to
assimilate hydrographic station data to estimate the three-dimensional field
of geostrophic velocities. They used the method of weak constraints (Sasaki,
1970), that is they found the smoothest velocity field consistent with the
data and at the same time satisfied approximately the geostrophy constraints.
A smooth solution was obtained by penalizing kinetic energy as well as
enstrophy.

A direct minimization approach was also adopted by Legler et al. (1989)
to develop an objective analysis technique for monthly average wind stress
fields over the Indian Ocean. Their cost functional is composed of five qua-
dratic terms, with a weight that determines the relative closeness of fit for
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each term. The first term is the square distance of the analysis to the first
guess, the second to climatology, the third is a measure of smoothness, and
the last two are kinematic constraints on the curl and divergence of the stress.
The cost functional is minimized by using the conjugate-gradient method. Re-
sults for various weight combinations are presented and the optimal weight
combination is found by comparison with a subjective analysis.

Applications of variational methods by the Mesoscale Air-Sea Interaction
Group (MASIG) at Florida State University under the direction of J.J.
O’Brien have addressed also parameter estimation in numerical model-
ing of hydraulic systems (Panchang and O’Brien, 1990). Usually these pa-
rameters are optimized by empirical tuning of the model to observations.
Panchang and O’Brien (1990) used the adjoint method to determine the fric-
tion factor for tidal rivers.

In parallel work (Smedstad, 1989), adjoint equations were developed for
a linear, reduced-gravity shallow-water model to assimilate island sea-level
data in the equatorial Pacific. Due to the large latitudinal extent, spherical
coordinates are used, with ¢ being the longitude and 6 the latitude:
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here (U, V) are the eastward and northward components of the transport,
a is the earth’s radius, (z#,7%) are the zonal and meridional components of
the wind stress, and the wind data used are the pseudowind stress fields of
Legler and O’Brien (1986). A is the horizontal eddy viscosity coefficient,

h(x, y, t) is the pycnocline interface, V2 is the Laplacian operator in spherical
3 Ap . ; )
coordinates, ¢ = gH ;ﬁ is the reduced gravity wave speed, with Ap the

0
. density difference between the two model layers. The parameter to be esti-
mated by the adjoint method is 2. The cost function to be minimized is

J(h,c?) = J [Ezﬁ(h — )+ —Igi(c2 = c'2)2]d>: (6.17)
z

where h’ represents an observation of the upper-layer thickness and s
an a priori best guess of the phase speed. K, and K, are validity coefficients
and X represents the spatial and temporal domain over which the model is

integrated.
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First, simulation experiments were carried out using the model solution as
observations. They showed that the assimilation algorithm is able to deter-
mine the spatial structure of c? with observations available only at three
stations. The estimated c? is not sensitive to errors in the observations, as-
sumed to be uncorrelated. Subsequently, the real sea-level observations from
three Pacific island stations were used for the different periods. The year 1979
was chosen to represent a year without El Nifio, while 1982--1983 was chosen
to represent an El Nifio year. The assimilations for the latter started in June
1982 and continued for one year. The initial guess for ¢ was 6.0 m? sec™2.
The cost function decreased to almost 35% of its initial value after five itera-
tions. The corresponding evolution of the spatial structure of ¢? is shown
in Fig. 26.

After the first iteration, Fig. 26a, there is an adjustment in the western and
central region of the basin, with c? values dropping near the western bound-
ary and higher values in the central area. Figure 26b shows the zonal distri-
bution of ¢? after the third iteration and Fig. 26¢ shows it after five iterations.
In Fig. 26c, a steep slope has developed with lowest values close to the west-
ern boundary, ¢? = 3.3 m? sec™2. The maximum value c2 = 7.0 m? sec~2 is
reached near ~ 160°W, with a subsequent slow decrease eastward. The esti-
mated spatial structure of c? shown in Fig. 26¢ is in good agreement with
observations. On the other hand, assimilation for the year 1979 gave the
opposite picture, with ¢? values higher in the west and lower in the east
{not shown here).

A variational adjoint method has been used to assimilate real XBT data
into a linear reduced-gravity model of the tropical Pacific by Sheinbaum and
Anderson (1990a,b), who also carry out sensitivity studies to investigate some
deficiencies of the results. They show that in assimilation experiments per-
formed with simulated data, it is possible to distinguish between model errors
and forcing (wind stress) errors.

It is well known that a serious problem of the adjoint method is its com-
putational efficiency, which depends on the descent method used to mini-
mize the cost function (e.g., Courtier and Talagrand, 1987). Several different
conjugate-gradient algorithms exist, and some of them were tested by Navon
and Legler (1987). They concluded that the subroutine CONMIN of Shanno
and Phua (1980) gave the best convergence rates. Smedstad (1989), using
this algorithm, achieved convergence in 10 iterations or less. Further work
is in progress to reach the maximum efficiency in this area of optimization
methods.

As already mentioned in Section 6.1.1, Wunsch (1988) applied a control-
theoretical approach to a very simple advection-diffusion equation to study
a tracer problem. The use of a transient tracer to invert for the flow and the
mixing rates involves a two-step process. First, one starts with a forward
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three iterations; (c) after five iterations (from Smedstad, 1989).
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model and determines if acceptable boundary conditions drive the model to
reproduce the transient tracer distribution at the observation times. The sec-
ond step is required only if the model does not reproduce the interior dis-
tribution and needs therefore to be improved. Constraints on the fluid flow
and the mixing rates can then be used through parameter estimation tech-
niques for boundary control problems.

Waunsch (1988) pointed out the connections between this approach and
K-filtering and smoothing (cf. also Bennett and Budgell, 1989), on the one
hand, and the adjoint variational method, on the other. Schroter (1989) and
Tziperman and Thacker (1989) used simple, though nonlinear, models under
rather specialized circumstances, such as one-dimensional fields (Schréter) or
steady state (Tziperman and Thacker). These simplifications permit efficient
implementations of the adjoint method.

Schroter (1989) uses a time-dependent one-dimensional nonlinear shallow-
water model in a cyclic domain, coupled with an advection-diffusion equation
for tracers containing a decay term, and applies the adjoint procedure. The
most commonly used control variables in the adjoint approach are the initial
data s(t,), ¢, being the initial time. Schroter demonstrates that in this case
and for a discrete model, the gradient of the cost function J with respect to
the initial data s(t,) is given by the corresponding Lagrangian parameter A
evaluated one time step backward from ¢, to t,:

Vedli=i, = Alto) (6.18)

Tziperman and Thacker (1989) use the nonlinear QG barotropic vorticity
equation in a closed domain to calculate steady-state circulation from simu-
lated vorticity and streamfunction observations for examples in which wind
forcing and friction parameters are also unknown. In time-dependent form,
their model is

VA + e+ RoJ(W, V2Y) = —e, V2 + 6,V + curlT(x,y)  (6.19)

where y is the barotropic streamfunction, R, the Rossby number, €, the hori-
zontal eddy viscosity coefficient, ¢, the bottom friction coefficient, 7 the wind-
stress field, V2 the Laplacian and J the Jacobian operators, respectively, and
subscripts denote partial derivatives. Suppose that the model in Eq. (6.19) is
given initial data for the vorticity, {|,., = V2|, which coincides with a
steady-state solution. Then if the model is stepped forward to calculate the
unknown fields Y|, {l;~,,, ¥, =,, at successive time levels t,, the difference
between the initial data and the solutions after one time step should vanish,
as the initial state is the steady-state solution.

Thus, Tziperman and Thacker (1989) are able to carry out a series of sen-
sitivity experiments, including error analysis, in a computationally efficient




248 MICHAEL GHIL AND PAOLA MALANOTTE-RIZZOLI

way. With a simple sinusoidal curl 7 field, the steady Stommel—Munk solution
satisfies the nonlinear Eq. (6.19). This is shown in Fig. 27a. In their final experi-
ment, friction parameters, wind forcing, and initial vorticity were all treated
as unknowns and simultaneously calculated by the optimization. Figure 27b
shows the curl 7 field thus calculated. Notice the very strong, small-scale forc-
ing by wind stress curl in the western boundary current. This is necessary to
balance the dissipation due to the values of the friction parameters found by
the optimization, which were much too large. A typical number of iterations
for the process to converge was on the order of 200, and a reasonable value
for the friction parameter was still not obtained.

An adjoint method for the Harvard quasi-geostrophic model has been de-
veloped and applied to GULFCAST data by Moore (1991). The use of the
adjoint approach for more highly resolved models is oceanography has
been pioneered by Thacker and collaborators (Thacker, 1987, 1988, 1989;
Thacker and Long, 1988; Long and Thacker, 1989a,b). Thacker and Long
(1988) stress the advantage of deriving the adjoint equations in discretized
form. In fact, the discretized form of a continuous adjoint model is not the
adjoint of the forward model formulated in discretized form because of trun-
cation errors inherent in the numerical discretization (see Courtier and
Talagrand, 1987; Hall, 1986). Also, the duality between sequential estima-
tion and variational estimation methods is very transparent when writing
the adjoint in discretized form.

Long and Thacker (1989a) constructed the adjoint for a linearized equa-
torial ocean model. In a subsequent paper, Long and Thacker (1989b) as-
sessed the performance of the adjoint data assimilation scheme when the
different types of data sets are available, with particular emphasis on sea-
level observations. In their approach, sea-level data alone are not sufficient
and must be supplemented by subsurface information if more than a few
baroclinic modes are allowed in the model ocean.

Thacker and Long have undertaken the onerous task of developing the
adjoint code for the GFDL model documented by Cox (1984), the most
complete GCM for the ocean and the one used by the largest number of
oceanographic modelers. Using a model version with 20 points in latitude,
25 points in longitude, and 6 vertical layers, they spin up the model from
rest by wind-stress driving. Two preliminary identical-twin experiments were
carried out. The synthetic data set was the same in both cases: a full field
of u-velocity observations at time step 0, temperature observations at time
step 3, v-velocity observations at time step 6, and salinity observations at time
step 9, extracted from the model control run. The difference between the two
cases lies in the surface boundary conditions; in the first case, surface tem-
perature and salinity are prescribed; in the second, surface fluxes of heat and
moisture are specified.
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FiG. 27. (a) The stcady-state solution for the streamfunction y and vorticity { used as simu-
lated initial state in Eq. (6.19). The parameters used to obtain this solution are R, = 0.01;
&, = 0.05; &, = 0.0001; curl T = —sin(nx) sin(ny). (b) Final solution for curl t found by the opti-
mization (from Tziperman and Thacker, 1989).
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Figure 28a shows the behavior of the cost function for the first case, nor-
malized by the cost at first guess. Convergence is very rapid; the cost is re-
duced by four orders of magnitude in one iteration and seven orders of
magnitude in 15 iterations. In the second case, convergence stalled after a cost
reduction of little more than one order of magnitude (not shown). To ex-
amine the reason for this, a cross-section of the cost function was evaluated
running through the point at which convergence stalled and through the un-
known model state being sought. The results are shown in Fig. 28b. The true
minimum being sought is at iteration 13. The descent method had converged -
on a secondary minimum in the cost, a consequence of the nonlinearity of
the optimization problem. In fact, Miller and Ghil (1990) have shown that the
number of secondary minima increases with the length of the time interval
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F1G. 28. (a) Cost vs. iteration for the specified temperature and salinity case. (b) Cost section
between local and global minima in the case of specified surface heat and water flux. Values are
scaled by the cost at first guess and are plotted on a logarithmic scale (courtesy of R. Long and

W. C. Thacker).
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over which the minimization is carried out (cf. also F. Gauthiez, personal
communication, 1990; R. Ziegler, personal communication, 1990).

A first application of the GFDL numerical model with its adjoint code
has been made for the North Atlantic using a simplified version of the model
and of the adjoint in which the horizontal momentum equations are steady,
linearized, and include only the wind stress and a linear bottom stress term
(Tziperman et al., 1991a,b). The fully nonlinear, time-dependent GFDL model
with the related adjoint are presently being applied to and tested for an
idealized Northern Atlantic basin and a realistic configuration of the Eastern
Mediterranean Sea. The latter application is part of the modelling effort on-
going on in the Physical Oceanography of the Eastern Mediterranean Sea
(POEM) program (Malanotte—Rizzoli and Robinson, 1988).

7. CONCLUDING REMARKS

The ambitious and elusive goal of data assimilation is to provide a dynam-
ically consistent “motion picture” of the atmosphere and oceans, in three
space dimensions, with known error bars. The ingredients for generating this
four-dimensional space—time movie are a large number of observations with
different spatio-temporal distributions and error characteristics, on the one
hand, and an imperfect knowledge of and ability to solve the equations of
fluid motion, on the other.

The purposes of generating this movie can differ: in numerical weather
prediction (NWP) and in the emerging discipline of ocean forecasting, the
main emphasis is on short loops between successive initial states for sub-
sequent prediction, one day (in the atmosphere) or one week to one month
(in the oceans) apart. In climate-related problems, whether atmospheric or
oceanic, the emphasis is on full-length “feature movies”, based on all the in-
formation available for long time intervals, e.g., for the entire duration of a
field experiment or of even longer historic data records. The appropriate
classes of problems are called prediction, filtering, and smoothing in estima-
tion theory.

Consider a system

w = N(W) + u, —0<t<oo (7.1)

where w(t) is a state vector of grid-point values or spectral coefficients, N is

the known part of the nonlinear dynamics at a given resolution, and u(t) is

system noise, representing subgrid-scale phenomena and other model errors.
Observations z(t) are given as

zZ=Hw +v, lo<t<t (7.2)
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where H represents the fact that the observations are partial and indirect
and that interpolation between the regular model grid and the irregular ob-
servational grid has to occur; v(t) is observational noise, representing both
instrumental and sampling error. Typically dimz = p « n = dimw.

The filtering problem is that of determining the best estimate W(t) at the
end of the time interval over which data are provided, ¢t = t;. The solution
of this problem is provided, for a linear system, by the K-filter (Kalman,
1960; Sections 4.1, 5.3 and 6.3.3 here). For a nonlinear system [Eq. (7.1)], no
solution which is both computable and truly optimal exists. Various near-
optimal, computable solutions do exist (Sections 4.1, 4.2, 5.3.2, 5.4.3 and 6.3).

The prediction problem is that of determining W(z) at times after the
last available observation, ¢ > t;. Its solution for zero-mean system noise,
Eu(t) = 0, is simply

#=N®) t>1 (7.3a)
W) = W, (7.3b)

here E is the expectation operator (the ensemble mean), ( )° denotes time
derivatives, and W, is the solution of the filtering problem for Egs. (7.1) and
(7.2). Estimating the initial state of a forecast from data up to initial time and
paying no further attention to the data during the forecast itself is standard
practice in NWP and, as we see, makes perfectly good sense.

The smoothing problem is that of estimating W(t) optimally at interior
points, t, < t < t,. It is therewith the problem appropriate for climate-related
feature movies (Bennett and Budgell, 1989; Gaspar and Wunsch, 1989; Sec-
tions 6.3.3 and 6.3.4 here). One of its solutions involves computing a forward
K-filter estimator W, (t) for intervals (to, ) with t < t,, a backward estimator
W, (t) for the adjoint of Eq. (7.1) linearized about w,(t) for intervals (¢,¢,)
with t, < t, and finding the optimal linear combination between W, (t) and
#,(t) at each ¢ € (to, t;). Thus, the Kalman smoother and the adjoint method
(Penenko and Obraztsov, 1976; Le Dimet and Talagrand, 1986; Sections 4.2,
54.3 and 6.3.4 here) of deterministic optimization theory exhibit certain
analogies. The difference is that the smoother of stochastic estimation theory
also provides automatically the requisite error bars on the estimated states,
whereas the adjoint is easier to formulate.

While this chapter is already rather long, certainly longer than the authors
originally planned or expected, it is far from exhaustive. It is by-and-large
restricted to the problem of state estimation, having touched only occasion-
ally upon the important problems of parameter estimation (in Section 6.3.4)
or noise estimation (in Section 4.1; see also Dee et al., 1985, and Ghil, 1990).

Still, the main points should be clear:

1. The use of dynamic models in a data-assimilation mode is essential to



DATA ASSIMILATION IN METEOROLOGY AND OCEANOGRAPHY 253

compensate for the incompleteness, irregular distribution in time and space,
and varying error properties of observations in both meteorology and ocean-
ography. The production of both short loops and feature-length movies, for
prediction and climate studies, respectively, depends on the ideas and methods
of 4-D data assimilation (see also Panel, 1991).

2. For the same model, better assimilation methods extract more informa-
tion from the same data (see Section 5.1, especially Table II, and Section 6.3.2).

3. Active research on data assimilation is burgeoning rapidly in both mete-
orology and oceanography. Operational NWP requirements have produced
a mature data-assimilation technology in meteorology, from which climatic
research has benefitted as well. For the atmosphere, research is concentrating
on the implementation of advanced methods from sequential estimation and
optimization theory, on the one hand, and on the merging of short NWP
loops into climatic 40-year movies, on the other.

4. In oceanography, interest in data assimilation is much more recent, but
experience has been gathering rapidly. The advantages of more sophisticated
methods are becoming clear (Section 6.3.2). The variety of problems, models,
and data sets in oceanography will require a great deal of additional research
on methodology before the optimal combination of dynamic model, data as-
similation scheme, and sampling strategy for each ocean domain and spatio-
temporal scale is decided upon.

An illustration of the latter point is given by the question of what deter-
mines the degree of success or lack thereof in an oceanographic assimilation.
If the goal is to provide only improved estimates of the larger space scales
and longer time scales of motion, i.e., of the quasi-steady component of the
circulation, then the main requirement for the success of the assimilation is
to obtain a reasonably good estimate of the statistics of the mesoscale eddy
field, and not to map it. In this case, steady models with simplified dynamics
like those used by the inverse methods discussed in Section 6.3.1 may be ade-
quate. In these latter approaches, mesoscale activity is not explicitly resolved
but parameterized, for instance, through eddy-viscosity coefficients.

On the other hand, the ocean is characterized by transient, energetic mo-
tions with a broad spectrum in frequency and wave number. A steady com-
ponent of the circulation may not even exist and be only a model resulting
from the analysis of data sets sparse in space and time, like hydrographic
data sets, for which steadiness is assumed a priori. Hence, eddy-resolving
general circulation models (EGCMs) are necessary to study the richness of
transient oceanic motions and the variety of their interactions. Thisis a major
goal of a substantial part of the oceanographic community and is especially
important for the understanding of energetic systems such as the Western
boundary currents, where process studies on mesoscale variability are crucial.
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These mesoscale processes also have profound influences in far-away re-
gions of the gyre, determining for instance the penetration scale of the West-
ern boundary jet into the gyre interior (Holland and Schmitz, 1985) or the
baroclinic instabilities of the Sverdrup return flow (Holland, 1986). A simple
knowledge of the eddy statistics is not sufficient to address these issues, but
phase information must also be provided, i.e., visualization and mapping of
single realizations is important. Thus, in oceanic data-assimilation problems,
the choice of a model and related data assimilation scheme and the definition
of success of the assimilation process itself depend crucially on the scientific
issue of interest as the starting point

Computational constraints impose, at present, a trade-off between the
physical complexity and spatial resolution of the model, on the one hand,
and the sophistication of the data assimilation method used in any given
study, on the other, for both meteorology and oceanography. As raw compu-
tational speed increases, and parallel architectures, coarse- and fine-grained,
evolve, we should be able to combine both realistic models and advanced as-
similation methods into powerful 4-D data assimilation cycles for the coupled
ocean—atmosphere system. ;

The key issues for advanced data-assimilation methods, whether based on
sequential estimation or control theory, are (a) to reduce the computational
complexity of implementation algorithms; (b) to provide reliable information
on the errors of the estimated fields; and (c) to deal adequately with strongly
nonlinear situations. It will be an exciting decade for data assimilation and
for the improvement of our ability to describe and understand atmospheric
and oceanic flows on global and local scales.
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