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We show that multivariate singular spectrum analysis (M-SSA) greatly helps study phase syn-
chronization in a large system of coupled oscillators and in the presence of high observational noise
levels. With no need for detailed knowledge of individual subsystems nor any a priori phase defini-
tion for each of them, we demonstrate that M-SSA can automatically identify multiple oscillatory
modes and detect whether these modes are shared by clusters of phase-and-frequency locked oscil-
lators. As an essential modification of M-SSA, we introduce here variance-maximization (varimax)
rotation of the M-SSA eigenvectors to optimally identify synchronized-oscillator clustering.
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I. INTRODUCTION

Over the last two decades, singular spectrum analy-
sis (SSA) and multivariate SSA (M-SSA) have proven
their usefulness in the temporal and spatio-temporal
analysis of short and noisy time series in several fields
of the geosciences and of other disciplines [1]. M-SSA
provides insight into the unknown or partially known
dynamics of the underlying system by decomposing the
delay-coordinate phase space of a given multivariate time
series into a set of data-adaptive orthonormal compo-
nents. These components can be classified essentially into
trends, oscillatory patterns and noise, and allow one to
reconstruct a robust “skeleton” of the dynamical system’s
structure [1–3]. While this skeleton does not yield, in
general, the dimension of the system’s attractor [2, 4, 5],
we show here that it can greatly help phase synchroniza-
tion analysis and provide considerable insight into the
mechanisms of rhythm adjustment.

Phase synchronization refers, in general, to an adjust-
ment of rhythms of coupled oscillators that is reflected
in a locking of both their frequencies and phases [6, 7].
While for periodic orbits the phase is well defined, several
methods exist to define a phase for more complex, pos-
sibly chaotic behavior. In the presence of spiral behav-
ior, the phase is typically defined as an angle of rotation
with respect to an origin in phase space [8–10]. In prac-
tice, however, this approach requires a priori information
about the analyzed system, e.g. by visual inspection. It
thus may become difficult to formulate a definition that
is both useful and robust for a high-dimensional system
and in the presence of noise.

In the present paper, we show that M-SSA is able to
automatically identify oscillatory modes and detect clus-
ter synchronization in large systems of coupled oscilla-
tors. We show that the M-SSA approach, which requires
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no detailed knowledge of individual subsystems nor a
suitable phase definition for each of them, provides an
attractive alternative to commonly used phase-based ap-
proaches [8–10].

Feliks et al. [11] have suggested the application of M-
SSA to pairs of climatic variables in order to determine
mutual influence and synchronization between these vari-
ables. We introduce here, as a crucial modification of
their idea, the rotation of M-SSA eigenvectors and pro-
vide numerical evidence for its improved ability to iden-
tify clusters of synchronized oscillators. This modifica-
tion of classical M-SSA becomes more and more impor-
tant as the number of coupled oscillators increases; re-
sults are given for a chain of coupled chaotic oscillators
studied in [12]. Furthermore, we show that M-SSA pro-
vides insight into the reconstruction of shared dynamical
behavior in terms of common oscillatory modes.

The paper is organized as follows. In Sec. II, we briefly
review M-SSA and illustrate its properties on a prototyp-
ical model system. Furthermore, we present the novel
idea of applying variance-maximization (varimax) rota-
tion to M-SSA eigenvectors and the improvements in the
analysis of clustering effects thus obtained. In Sec. III, we
show how M-SSA can help phase synchronization analy-
sis in a chain of coupled chaotic oscillators. The results
are summarized and discussed in Sec. IV.

II. METHODS

A. Multivariate singular spectrum analysis

SSA and M-SSA rely on the classical Karhunen-Loève
spectral decomposition of time series. Broomhead and
King [13, 14] introduced them into dynamical systems
analysis, as a more robust version of the Mañé-Takens
idea to reconstruct dynamics from a single time series.
We focus here on M-SSA, which we summarize for com-
pleteness.

Let x = {xd(n) : d = 1, . . . , D, n = 1, . . . , N} be a
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multivariate time series with D channels of length N .
We assume that each channel has been centered and nor-
malized. Following the original embedding ideas of Mañé
and Takens, the starting point of M-SSA is to embed
each channel into an M -dimensional phase space, by us-
ing lagged copies Xd(n) = (xd(n), . . . , xd(n + M − 1)),
n = 1, . . . , N −M + 1. From this we form the full aug-
mented trajectory matrix X = (X1,X2, . . . ,XD), which
has DM columns of length N −M + 1.

The M-SSA algorithm then computes the covariance
matrix C = XᵀX/N of X and its eigendecomposition;
here (·)ᵀ indicates transposition. The covariance matrix
C combines all auto- as well as cross-covariances, up to
a time lag equal to M − 1. Due to finite-size effects,
the sample C may deviate slightly from symmetry and
be biased, but effective and accurate estimation methods
appear in Ref. [1].

Next, one diagonalizes the appropriately symmetrized
covariance matrix

Λ = EᵀC E (1)

to yield a diagonal matrix Λ that contains the real eigen-
values λk of C, and a matrix E whose columns are the
associated eigenvectors ek. The ek’s form a new orthog-
onal basis in the embedding space of X, and the corre-
sponding λk’s give the variance in the direction of ek.
The spectral decomposition in Eq. (1) determines the di-
rections of greatest variance successively, from largest to
smallest, subject to the condition that each new direction
be orthogonal to all the preceding ones.

Projecting the time series X onto the eigenvectors,

A = XE , (2)

yields the corresponding principal components (PCs) as
the columns of A. The PCs have the same length
N −M + 1 as X and are uncorrelated at zero lag; they
can be considered as filtered components of the time se-
ries x, with data-adaptive filters that are given by the
eigenvectors [15]. This filtering property becomes more
obvious if we rewrite Eq. (2) explicitly as

ak(n) =

D∑
d=1

M∑
m=1

xd(n+m− 1)edk(m) , (3)

with k = 1, . . . , DM and n = 1, . . . , N − M + 1. In
particular, setting M = 1 reduces M-SSA to classical
principal component analysis (PCA) in D variables.

The coefficients ak(·) are the entries of the PC matrix
A. The notation ek = {edk(m) : 1 ≤ d ≤ D} is meant to
reflect the special structure of the eigenvectors, which are
composed of D consecutive segments of length M , each
of which is associated with a channel, edk(m) ≡ ek({d−
1}M +m). Hence, the summation over m in Eq. (3) can
be interpreted as a classical finite-impulse response (FIR)
filter [16] operating on channel d with filter coefficients
given by the eigenvector elements edk(m). The second

summation over d, which combines the filtered channels,
represents a classical PCA.

In contrast to PCA eigenvectors, M-SSA eigenvectors
are, therefore, able to capture oscillatory behavior in time
via oscillatory pairs [2, 17]. Provided the two eigenvec-
tors of a pair correspond to the same period, they are
the data-adaptive equivalent of sine-and-cosine pairs in
Fourier analysis. It is especially this property that en-
ables M-SSA, in contrast to PCA, to represent temporal
oscillations, and hence makes M-SSA superior to PCA in
phase synchronization analysis.

Several papers have explored recently the benefits of an
eigenvalue decomposition in the context of synchroniza-
tion analysis. Müller and coauthors used PCA eigenval-
ues to derive the synchronization strength of two coupled
chaotic oscillators [18]. In [19], the authors presented a
participation index in order to identify clusters of syn-
chronized oscillators. Feliks and coauthors applied simi-
lar ideas to climatic oscillators [11].

M-SSA, however, goes beyond a pure identification and
quantification of coupled behavior: it allows, further-
more, to reconstruct the dynamical behavior that the
coupled subsystems share and that is associated with a
specific eigenvalue-eigenvector pair. The PCs, which are
already filtered versions of the original time series, are
not appropriate for this purpose, since they combine the
properties of all the channels in the data set. Moreover,
the PCs have a reduced length N −M + 1 and do not
allow a unique localization in time [1, 3].

A way to reconstruct the individual components of the
system’s behavior that is optimal in the least-squares
sense is given by the transformation

rdk(n) =
1

Mn

Un∑
m=Ln

ak(n−m+ 1)edk(m) . (4)

The rdk are referred to as reconstructed compo-
nents (RCs) [15, 17] and represent that part of channel xd
that corresponds to the eigenelement pair (λk, ek). The
values of the normalization factor Mn and the summa-
tion bounds Ln and Un for the central part of the time
series, M ≤ n ≤ N −M + 1, are simply (Mn, Ln, Un) =
(M, 1,M); for either end they are given in [1]. In partic-
ular, the time series can be completely reconstructed by

the sum of all its RCs, xd(n) =
∑DM

k=1 rdk(n). In the uni-
variate case D = 1, Eqs. (3) and (4) specify forward-and-
reverse filtering, respectively, and therefore the resulting
RCs have zero-phase distortion [16].

B. Model equations

To illustrate the insights provided by M-SSA into
phase synchronization, we consider a chain of diffusively
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Figure 1. Eigenvalue spectrum for five uncoupled and de-
tuned Rössler oscillators, with c = 0 and α = 0.15 in Eq. (5):
λk from Eq. (1), and modified variances λ∗k from Eq. (12)
after rotation of the first S = 20 eigenvectors. The window
width M = 30 covers more than one oscillation period, since
M∆t = 12, while the mean period is roughly 2π/ωj ' 6.

coupled Rössler oscillators [12]:

ẋj = −ωjyj − zj ,
ẏj = ωjxj + α yj + c (yj+1 − 2yj + yj−1), (5)

żj = 0.1 + zj(xj − 8.5).

The position in the chain is given by the index j =
1, . . . , J ; ωj = ω1 + 0.02(j− 1) are the associated natural
frequencies, with ω1 = 1, and we assume free bound-
ary conditions: x0(n) = x1(n), xJ+1(n) = xJ(n). The
frequency mismatch ∆jkω between oscillators j and k is
often called “detuning” in engineering applications; here
∆jkω = 0.02|j − k|. The parameter α allows one to
change the system’s topology [9] and c > 0 is the cou-
pling strength.

We first set α = 0.15 and the individual oscillators,
while being chaotic, are in a phase-coherent regime,
with a well-defined center of oscillation in the (x, y)-
plane [8, 9]. We integrate J = 5 uncoupled system,
with c = 0, in order to see whether M-SSA is able to
distinguish between the different oscillators. The solu-
tion is sampled at time intervals ∆t = 0.4, and the
observed time series x has D = 3J = 15 channels of
length N = 2500. To cover more than one oscillation pe-
riod, we select a window width of M = 30, which yields
DM = 450 eigenvalues and eigenvectors, respectively, by
using Eq. (1). The 40 largest eigenvalues λk are plotted
in Fig. 1 (open circles).

The leading 10 eigenvalues are clearly significant and
fall into five pairs of nearly equal ones. The eigenvalue
spectrum in Fig. 1 thus indicates that our M-SSA has cor-
rectly identified the five uncoupled oscillators in Eq. (5):
each of them is described by an oscillatory pair, which
shares its natural frequency (not shown).

An inspection of the corresponding eigenvectors in
Fig. 2, however, shows a more ambiguous picture: The
eigenvectors do not distinguish between the distinct, un-
coupled systems. Instead the distinct systems are all
present in each of the eigenvectors. Moreover, as the
number J of coupled oscillators increases, the separation
between the significant λk’s and those that are not disap-
pears (not shown), and so does the gap present in Fig. 1.
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Figure 2. Eigenvectors ek corresponding to the 10 largest
eigenvalues λk in Fig. 1. Each eigenvector of length DM is
composed of D = 15 consecutive segments, each of length
M = 30, associated with the 15 channels.

This mixture is a shortcoming of PCA in general and of
M-SSA in particular. This type of methods is designed
to capture a maximum of the variance in the data set
with a minimum number of PCs [1, 20]: while good for
signal compression purposes, they contribute but little to
the physical interpretation of the underlying dynamical
system. In the example at hand, all five modes have
the same variance, and thus signal compression does not
necessarily reveal the correct underlying structure, only
a mixture of degenerate eigenvectors [20].

C. Varimax rotation

As the number D of channels increases, so does the
risk of degenerate eigenvectors in all types of PCA. This
was less of a problem in [11], where D = 2. The partic-
ipation index proposed in [19], however, suffers precisely
from these mixing problems. Allefeld and coauthors [19]
discussed therefore a heuristic approach of setting eigen-
vector coordinates to zero and rerunning the analysis.
Despite this iterated analysis, correct identification of the
underlying cluster structure is only partially possible, in
particular when the clusters have similar strength [21].

Recently, Vejmelka and Paluš [22] found varimax or-
thogonal rotation [23] to be helpful in better identifying
the correct cluster structure. In this paper, we rely on the
same principles of eigenvector rotation, as widely used in
PCA [24], but in the context of M-SSA. As we shall see,
it is the special structure of M-SSA eigenvectors that re-
quires an adaptation of the varimax algorithm.

First, we briefly review the classical methodology of
varimax rotation. The idea that all so-called simple-
structure rotations have in common is to find a poste-
rior eigenvector rotation that simplifies the structure of
the eigenvectors, reduces mixture effects and thus im-
proves the physical interpretability. There are several
ways to quantify the simplicity of a structure and to
transform eigenvectors [25]. Varimax rotation attempts
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to do this by computing an appropriate orthogonal rota-
tion E∗ = ET to maximize the variance of the squared
elements of E∗. This way, all the elements are brought
close to either one or zero, while intermediate values that
get in the way of a clear classification are eliminated.

In PCA with M = 1, as applied to factor analysis [23]
or to random fields [25], varimax simply maximizes the
variance of the squared elements e∗dk of the eigenvectors
e∗
k in E∗,

V1 =

S∑
k=1

 1

D

D∑
d=1

(
e∗dk

2

h∗d
2

)2

−

(
1

D

D∑
d=1

e∗dk
2

h∗d
2

)2
 , (6)

where S is the number of rotated e∗
k’s, and

h∗d
2 =

∑S
k=1 e

∗
dk

2 is the corresponding normalization.
Kaiser [23] gives an explicit equation for the sequential
rotation of pairs of e∗

k that shows this algorithm’s sim-
plicity of implementation and thus superiority over more
sophisticated optimization procedures, such as indepen-
dent component analysis.

In the criterion V1, the variance is maximized over all
the coordinates of the eigenvectors. As already discussed,
M-SSA eigenvectors differ in structure from those of clas-
sical PCA and this difference impedes the direct appli-
cation of varimax to the former: The rotation would not
only achieve the desirable effect of increasing the differ-
ence between the FIR filters of length M , but also in-
crease the variance within each of them; the latter effect
is undesirable, since it can lead to a loss of correctly cap-
tured oscillatory pairs [17].

To avoid this loss of a key M-SSA property, we propose
here a simple but effective modification of the varimax
criterion. Prior to the calculation of the variance, we
sum over the individual filters,

ē∗dk
2 =

M∑
m=1

e∗dk
2(m), (7)

and the criterion becomes

VM =

S∑
k=1

 1

D

D∑
d=1

(
ē∗dk

2

h̄
∗
d

2

)2

−

(
1

D

D∑
d=1

ē∗dk
2

h̄
∗
d

2

)2
 , (8)

with the normalization h̄
∗
d

2
=
∑S

k=1 ē
∗
dk

2. In this way, the
criterion VM attempts to bring the squared amplitudes
of the filters either close to one or to zero; for M = 1 we
recover the original criterion V1.

With the modified criterion above, we have simply to
replace — in the equation of pairwise rotation of two
eigenvectors ek and el in Ref. [23] — each e2dk + e2dl by
its averaged version

∑
m e2dk(m) +

∑
m e2dl(m), as well as

each edkedl by
∑

m edk(m)
∑

m edl(m) (see Appendix A).
Typically, the rotation is restricted to the first S eigen-

vectors, which capture most of the systems’ variance. In
order to find an appropriate subset of eigenvectors, it is
common to look for a gap in the eigenvalue spectrum; this
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Figure 3. Rotated eigenvectors e∗k after varimax rotation
of the first S = 20 eigenvectors. Note that only the first 10
significant eigenvectors are shown.

approach is called a scree test [26], also referred to as a
scree-diagram test [1]. An obvious gap as in Fig. 1, how-
ever, cannot be expected in general, especially in appli-
cations to short and noisy time series [1]. As mentioned
already, this gap disappears as J , and hence D, increases.
Therefore, numerous objective criteria for determining S
have been proposed, but no general consensus exists; see
for example [25] and references therein.

In our experience with real data, multiplying each

eigenvector ek by the singular value λ
1/2
k , prior to vari-

max, stabilizes the rotation results over a large range
of S-values. Without this scaling, varimax would be sus-
ceptible to “overrotation” [27] and could end up with too
many clusters for large S. Note that, for M = 1, the ex-
pression λk e

∗
dk

2 is the participation index of channel d in
cluster k [19]; therefore, scaling the eigenvectors prior to
varimax rotation maximizes the association into clusters
and minimizes intermediate participation indices [22].

The scaling is only used to derive the rotation ma-
trix T: we multiply the S original leading eigenvectors,
which form the columns of ES , by this T, to yield

E∗
S = EST. (9)

There are two reasons for doing so: first, scaling, rotating
and rescaling yields an oblique rotation, which does not
perform as well as an orthogonal rotation in the present
examples; second, the algorithm (9) preserves the vari-
ance captured by ES .

The result of eigenvector rotation is shown in Fig. 3.
In contrast to the unrotated eigenvectors in Fig. 2, the
rotated ones are clearly associated pairwise with each of
the uncoupled oscillators and permit their unique identi-
fication. The rotated eigenvectors form oscillatory pairs
that share the natural frequencies of the Rössler oscilla-
tors (not shown).

The number of rotated eigenvectors, in this case S =
20, has been chosen to include at least those that are
significant. Even when rotating many more eigenvectors,
S = 40 or 60 say, one obtains the same picture (not
shown). This is a consequence of the eigenvector scaling
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prior to varimax, since adding more eigenvectors with
small amplitude does not alter the variance VM .

Next, in order to obtain the variance that the rotated
eigenvectors capture, we project the covariance matrix C
onto them,

Λ∗
S = E∗

S
ᵀC E∗

S , (10)

like in Eq. (1). Since the rotated eigenvectors E∗
S are not

part of the singular value decomposition of the covariance
matrix C, the matrix Λ∗

S is not diagonal. From the equiv-
alent formulation Λ∗

S = E∗
S
ᵀXᵀX E∗

S/N = A∗
S
ᵀA∗

S/N
we see, however, that Λ∗

S does capture the variance of
the rotated PCs,

A∗
S = X E∗

S ≡ AS T, (11)

along its diagonal; we denote its diagonal elements by λ∗k
and call them the modified variances.

Figure 1 shows the resulting λ∗k’s (solid circles) along
with the original eigenvalues λk (open circles). Since M-
SSA, like all PCA methods, tries to maximize variance
captured by successive eigenvectors, it is also prone to
artificial variance compression, i.e. it may account for
too much variance in the largest eigenvalues or too little
in the smallest. This flaw is reflected in the 10 largest
λk’s in Fig. 1 being unequal, although the oscillators have
the same variance.

It is this variance compression that causes the gap be-
tween the original λk’s to disappear as D increases. The
values of the post-rotation λ∗k’s, on the other hand, are
now correctly associated with the individual oscillators,
and do reflect the correct situation of equal variance.
Note that the a priori choice of S is not critical with
respect to the results in Fig. 1: even when rotating many
more eigenvectors, one obtains the same distribution of
λ∗k’s (not shown).

As already stated above, an orthogonal rotation pre-
serves the total variance captured by the λ∗k’s. Inserting
Eq. (9) into Eq. (10) yields the relationship

Λ∗
S = TᵀΛST, (12)

which is a similarity transformation and thus preserves
the trace, i.e., the sum of the variances, during rotation.

Equation (4) was used first to derive the original RCs
and is now applied directly to the rotated eigenvectors
E∗

S and the PCs A∗
S ; the resulting RCs are denoted by

r∗dk. Since the rotation is based on successive planar rota-
tions, the first S rotated eigenvectors and the remaining
unrotated ones are still orthogonal, and the RCs r∗dk thus
add up to the original time series. In contrast to the un-
rotated RCs, we observe that the rotated RCs allow a
good reproduction of oscillatory behavior (Fig. 4(a)).

D. Participation index

By analogy with the participation index λk e
∗
dk

2 in [19],
we introduce here a participation index

πdk = λ∗k ē
∗
dk

2 (13)

Figure 4. Reconstruction of the leading pair, i. e. RCs
1-2 (black curve), of the coupled Rössler oscillators’ actual
trajectory (gray curve) in (a) a phase-coherent regime with
α = 0.15; and (b) in the funnel regime with α = 0.28.

for M-SSA by replacing e∗dk
2 with ē∗dk

2 from Eq. (7).

Since the eigenvectors have norm one,
∑D

d=1 πdk = λ∗k.
Consequently, πdk quantifies the contribution of channel
d to the variance λ∗k of the k-th principal component.

III. PHASE SYNCHRONIZATION RESULTS

A. Phase-coherent oscillators

So far, we discussed the case of uncoupled oscillators
and showed the ability of M-SSA to correctly identify the
distinct oscillatory modes. We present next its ability
to provide considerable insight into the mechanisms of
rhythm adjustment on the road to phase synchronization.

We consider a chain of J = 10 Rössler oscillators (5)
and take time series of length N = 25 000. When the fre-
quency mismatch in the model equations is sufficiently
large, it is known that the transition in the observed
mismatch is no longer smooth as the coupling strength c
increases, and it occurs in abrupt jumps instead [12].

In the present case, ∆j,j+1ω = 0.02 with 1 ≤ j <
j + 1 ≤ J = 10, synchronization manifests itself via
clustering: the oscillators form clusters with the same
observed frequency and even larger detuning between
clusters. As c increases further, the number of clus-
ters decreases in a cascade of vanishing frequencies; see
Fig. 5(a).

We concentrate first on the identification of oscillatory
modes and on their relation to clusters of phase-and-
frequency locked oscillators. Note that the successive
clustering of oscillators is also reflected in a decreasing
number of significant eigenvalues λk in Fig. 5(b). The
explanatory power of M-SSA, though, is quite limited in
the absence of rotation. For weak coupling (c . 0.018),
prior to any clustering, the spread among the largest λk’s
increases with c. This spread results from the already
mentioned tendency to variance compression. As clus-
tering sets in at c ' 0.018, the behavior at the successive
bifurcation points is fairly smooth, with continuously de-
creasing eigenvalues and no distinct transitions. Further-
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Figure 5. Synchronization for a chain of J = 10 coupled
Rössler oscillators. (a) Mean observed frequencies Ωj = 〈φ̇j〉,
φj = arctan(yj/xj), of the oscillators (solid lines) and esti-
mated frequencies from rotated PCs (gray dots); (b) eigen-
value spectrum λk of M-SSA with M = 30; (c) modified vari-
ances λ∗k after rotation of the first S = 20 eigenvectors, along
with the remaining unchanged eigenvalues λk, k ≥ 21; and
(d) modified eigenvalues v∗k of the matrix of pairwise phase
coupling indices. Note logarithmic scale on x-axis.

more, no obvious gap that would allow a clear separation
of significant eigenvalues appears, at c ' 0.05.

After rotation, however, the distribution of the λ∗k’s in
Fig. 5(c) reflects much better the transition to phase syn-
chronization, with sharp jumps at the bifurcation points.
The effect of variance compression has practically dis-
appeared and we are able to clearly identify the signifi-
cant λ∗k’s. Each line in the spectrum of the λ∗k’s is now
the superposition of two practically identical values —

referred to as an oscillatory pair — and represents one
oscillatory mode. These oscillatory modes, in turn, can
be associated with the individual clusters of phase-and-
frequency locked oscillators. At each bifurcation point,
when the cluster structure changes and a frequency van-
ishes in Fig. 5(a), we observe an abrupt jump in Fig. 5(c).

An oscillatory mode’s frequency, which one can es-
timate from the corresponding eigenvectors or PCs,
matches very well the observed frequency in Fig. 5(a).
In this figure, we have included only pairs with λ∗k-values
that lie above a certain threshold (dashed line in
Fig. 5(c)), but in practice more sophisticated significance
tests may be necessary [28]. There are only a few lines in
Fig. 5(c) that are not covered by M-SSA. We will address
this apparent mismatch when discussing the reconstruc-
tion of dynamical behavior later on.

We compare now the M-SSA results with the recently
proposed clustering algorithm of [22], which relies on
the matrix P = (ρkl) of pairwise phase coupling indices
ρkl = |〈exp{i (φk − φl)}〉|. The eigendecomposition of
this matrix yields non-vanishing eigenvalues and associ-
ated eigenvectors that allow an accurate cluster identifi-
cation, with a cluster’s strength equal to the correspond-
ing eigenvalue [22].

We propose here again, in contrast to [22], to scale
the eigenvectors of P prior to variance maximization, as
done for M-SSA in Sec. II C. The phase-coupling matrix
P is symmetric but, unlike the covariance matrix C, it is
not necessarily positive semi-definite. Hence we set any
negative eigenvalues to zero and obtain a rotation matrix
for all D eigenvectors, which also helps us derive modified
eigenvalues v∗k, as in Eq. (12).

The results in Fig. 5(d) agree quite well with the M-
SSA results in Fig. 5(c). For weak coupling, c . 0.03, the
oscillators are uniquely associated into clusters, and the
v∗k’s are integers. For intermediate coupling, 0.03 . c .
0.2, the number of clusters decreases, while connections
between clusters (cluster-to-cluster) come into play and
impede a unique cluster assignment; hence the resulting
v∗k-values are no longer integers.

We analyze next, in greater detail, the underlying clus-
ter structure of locked modes. In order to understand the
dynamical behavior of cluster-to-cluster interactions, we
determine the associated RCs just before the transition
from three to two clusters, at c ' 0.12 (Fig. 6). M-SSA
detects three clusters, which comprise oscillators 1–4, 6-
7, and 9-10, respectively. At the boundaries between two
clusters, we see that the oscillators j = 5 and j = 8 are
not uniquely classified, since they possess non-vanishing
RCs in both clusters.

The power spectra of uniquely classified oscillators, e.g.
of their x-components (not shown), are characterized by
a strong single peak at the observed frequency Ω. At
the boundaries between two clusters, the behavior of the
oscillators is fairly intermittent and the trajectories ex-
hibit beats, while their power spectra possess two peaks,
at the frequencies of the two clusters, respectively. With
increasing coupling strength, energy is transferred from
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Figure 7. Participation index πdk that correspond to Fig. 6.
The values for the clusters k = (1, 2), (3,4) and (5,6) are
clearly well separated, while intermediate values are assigned
to oscillators j = 5 and 8.

one peak to the other, and M-SSA shows a rather abrupt
vanishing of one of the oscillatory pairs, as soon as the
middle cluster has vanished (Fig. 5(c)). This transfer of
energy is reflected by a smooth change in the observed
frequencies Ωj in Fig. 5(a), which correspond to an aver-
age frequency for each oscillator.

If solely interested in the cluster structure, and not
in the detailed dynamical behavior, we can obtain this
structure directly by means of the participation index
πdk. Without the need for an explicit calculation of the
PCs and RCs, πdk quantifies the contribution of channel
d to the variance λ∗k of the kth PC. In agreement with
the RC findings of Fig. 6, intermediate π–values are as-
signed to the oscillators j = 5 and j = 8 at the cluster
boundaries, while the π–values for the other oscillators j
are close to either 0 or the unique value associated with
a given cluster; see Fig. 7.

Next, we wish to evaluate the robustness of the clus-
tering analysis in the presence of observational noise, and
add Gaussian white noise with the same variance as the
signal. In spite of this very high noise level, the M-SSA
results are visually the same (Figs. 8(a),(c)), because the
noise variance in each principal direction is reduced by a

factor DM and large eigenvalues remain, therefore, vir-
tually unaffected. Even when the noise starts swamping
the signal, as is the case here, the RCs in Fig. 4 and
Fig. 6 remain visually the same (not shown) and provide
a robust reconstruction of oscillatory behavior. Synchro-
nization analysis methods, however, that use a geometric
phase definition are affected much more strongly by the
presence of noise, and can no longer provide correct clus-
ter identification (Figs. 8(b),(d)).

Moreover, PCA eigenvalues and PCs are invariant with
respect to an arbitrary orthogonal rotation of the time
series x = {xd(n)}, a theoretical result confirmed by nu-
merical tests on the invariance of M-SSA eigenvalues and
PCs; hence rotation does not alter the M-SSA results in
Figs. 5(a–c). The proper definition of a phase — such as
the one used in Fig. 5(d) — does depend, however, on the
coordinate-wise representation of the dynamical system
and is thus not invariant with respect to rotation.

B. Funnel regime with no phase coherence

In the previous section we have considered the phase-
coherent regime of Rössler oscillators that share a rather
simple spiral topology. The power spectrum of each os-
cillator contains, in this case, a well-pronounced peak
and synchronization manifests itself mainly in a locking
of both phase and frequency. As a result, M-SSA can
easily detect clusters of synchronized oscillators in terms
of oscillatory pairs.

We expect, however, to be confronted in many realis-
tic cases with oscillatory behavior on different time scales
and with dynamics that gives rise to a more complicated
topology. The so-called funnel regime of the Rössler sys-
tem (5) is a well-studied, paradigmatic example of such
a situation [9]. In this regime, the attractor has lost
its spiral topology and a straightforward phase definition
becomes difficult (Fig. 4(b)).

The dynamics is no longer phase-coherent and the
power spectrum exhibits both a broad-band background
and multiple peaks (not shown). As a consequence, syn-
chronization behavior, when present, is essentially differ-
ent from what we have seen in the phase-coherent regime
of the previous subsection. The presence of multiple
unstable periodic orbits (UPOs), with different period
lengths, requires a much stronger coupling for synchro-
nization to occur: it is only upon zero-crossing of one
positive Lyapunov exponent that two or more oscillators
become phase-synchronized in the funnel regime [9].

As in the phase-coherent case, we start by analyzing
uncoupled subsystems and evaluate whether M-SSA is
still able to distinguish between them. The more com-
plex behavior of each oscillator leads to a more ambigu-
ous eigenvalue spectrum in Fig. 9 than in Fig. 1: we
observe quite a few groupings of eigenvalues λk, rather
than two well-separated ones, and a rather slowly de-
caying tail. The corresponding eigenvectors (not shown)
include components associated with both oscillators.
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fied variances λ∗k, k ≤ 20, along with the unchanged eigenval-
ues λk, k ≥ 21; and (d) modified eigenvalues v∗k of the phase
coupling matrix.

After varimax rotation, we observe two distinct groups
of λ∗k’s, namely 1–4 and 5–8, each of them containing
in turn two pairs of nearly equal values. All of the ro-
tated eigenvectors in Fig. 10 are clearly associated with
one of the two oscillators, and no mixture effects oc-
cur any longer. The complex dynamical behavior leads
to multiple oscillatory pairs for each of the subsystems,
and it might well be the existence of two distinct near-
periodicities in the funnel regime [9] — possibly associ-
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Figure 9. Eigenvalue spectrum for two uncoupled and de-
tuned Rössler oscillators in the funnel regime (α = 0.28): λk

from Eq. (1), and λ∗k from Eq. (12) after rotation of the first
S = 20 eigenvectors. Window width M = 30.
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Figure 10. Rotated eigenvectors e∗k associated with the
16 largest eigenvalues λ∗k in Fig. 9.

ated with two separate UPOs — that gives rise to the two
distinct groups in Fig. 9. The reconstruction using just
the first RC pair, for example, describes an oscillation
similar to the one in the phase-coherent regime; compare
Figs. 4(a) and (b).

UPOs are road posts on the way from simple to com-
plex dynamics, leave their imprint on the system’s ob-
served time series [1], and play an important role in the
synchronization process. Since the eigendecomposition
of a covariance matrix gives mutually orthogonal eigen-
vectors, we cannot expect them to match the more com-
plex geometry of UPOs in the system’s phase space. M-
SSA is, nonetheless, able to reliably detect oscillatory
modes, and provides a robust reconstruction of an ap-
proximate skeleton of the attractor from short and noisy
data [2, 29, 30].

The complex synchronization process in the funnel
regime is also reflected by the more complex behavior
of the post-rotation variances {λ∗k} in Fig. 11(a): since
the process involves the interaction of multiple UPOs, the
transitions are more gradual than in the phase-coherent
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Figure 11. Synchronization of two coupled Rössler oscillators
in the funnel regime. (a) Modified variances λ∗k with M = 30,
after rotation of the first S = 20 eigenvectors; and (b) differ-
ence ∆πk between the oscillators’ participation indices πdk.
(c) Difference of mean observed frequencies Ω2 − Ω1 (solid
line) with corresponding spectral resolution (dashed line) and
phase coupling strength ρ12 (dash-dotted line); the phase def-
initions follow [9]. The two vertical dashed lines indicate the
transition of a zero Lyapunov exponent to negative values at
c ' 0.06 and zero crossing of one positive Lyapunov exponent
at c ' 0.15, respectively. All quantities are averages over 10
realizations with different initial data.

case, in which a single abrupt jump occurs (not shown).
We obtain multiple oscillatory pairs in the eigenvalue
spectrum — each with a distinct variance and frequency
— and these oscillations interfere with each other in
Fig. 11(a). Furthermore, we observe that all the transi-
tions lie between the coupling-parameter value c ' 0.06,
at which a null Lyapunov exponent that is associated
with motion along a limit cycle becomes negative, and
the value c ' 0.15, at which one of the two positive Lya-
punov exponents associated with the chaotic behavior of
each Rössler oscillator falls below zero (vertical dashed
lines in Fig. 11). In particular, there appear to be no
transitions in λ∗k that could be linked to the onset of
phase synchronization in Fig. 11(c).

To gain greater insight into the complex interplay

of distinct spectral peaks and separate subsystems, we
further analyze the ability of each oscillatory mode to
distinguish between the two subsystems. This is done
here by computing the difference ∆πk =

∑
d=1,2,3 πdk −∑

d=4,5,6 πdk between the participation indices associated
with the variables of the two oscillators: this difference
is maximally positive when e∗

k is completely associated
with the first subsystem, maximally negative for the sec-
ond one, and zero if no distinction is possible.

As the coupling strength c increases, we observe in
Fig. 11(b) a cascade of vanishing differences in the partic-
ipation indices, with the weaker oscillatory modes getting
synchronized first. In fact, M-SSA enhanced by varimax
rotation indicates a complete set of synchronized oscilla-
tory modes at c ' 0.11, well before phase synchronization
occurs at c ' 0.15.

In this interval 0.11 . c . 0.15, the two oscillators
show already long epochs of phase synchronization, in-
terrupted only by rare phase slips [9]. The difference
Ω2 − Ω1, which is the ensemble average over 10 real-
izations of the system, reaches a value that is smaller
than the ensemble standard deviation of either frequency
(dashed line in Fig. 11(c)) at c ' 0.11. This standard de-
viation is induced by the effective noise due to lack of
phase coherence [31, 32] and it equals the spectral reso-
lution; as a consequence, M-SSA indicates already phase
synchronization when the frequency difference falls below
the spectral resolution.

This effective noise, which limits the resolution of M-
SSA and that of other spectral methods, becomes quite
significant in the funnel regime under study, since phase
diffusion in this regime is several orders of magnitude
larger than in the phase-coherent one [9]. By increas-
ing the coupling strength further, it is possible to bring
both oscillators even closer in frequency, thus reducing
chaotic behavior even more and causing the associated
zero-crossing of a positive Lyapunov exponent.

As in the previous subsection, it is worth noting that
the M-SSA results show the same robustness against ob-
servational white noise, and Figs. 11(a-b) are practically
unaffected when adding noise of the same variance as
the signal (not shown). Such a high noise level, how-
ever, would impede a direct application of the phase-by-
curvature definition [9] in Fig. 11(c) and require further
pre-filtering.

IV. CONCLUDING REMARKS

In the present paper, we have demonstrated that mul-
tivariate singular spectrum analysis (M-SSA) provides an
elegant way to obtain sharp and robust results in phase
synchronization analysis. This method does not rely on a
priori information about a proper phase definition, and it
thus provides an entirely objective approach to the iden-
tification of oscillatory modes and of their interactions in
coupled systems.

We have shown that, in the classical case of phase-
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and-frequency locking of spiral chaotic systems, M-SSA
provides reliable and consistent information about the
synchronization mechanism. To achieve the full potential
of M-SSA in this respect, we have introduced a modified
varimax rotation of the M-SSA eigenvectors, and shown
that this simple but effective modification allows a cor-
rect identification of clusters of synchronized oscillators.
For chains of coupled oscillators, moreover, M-SSA is
much more robust against observational noise than com-
mon methods of phase synchronization analysis that are
based on a geometric phase definition. In addition, M-
SSA goes beyond pure cluster identification and allows
the reconstruction of shared dynamical behavior in terms
of well-defined oscillatory modes, even when the signal is
getting swamped by observational white noise.

Finally, we have analyzed the funnel regime of Rössler
oscillators in which phase-coherent behavior is absent,
and thus no direct phase definition is possible. In this
regime, the system passes through several cycles of dif-
ferent period length — associated with multiple unstable
periodic orbits (UPOs) — and the power spectrum has a
broad-band component. As a consequence, M-SSA iden-
tifies multiple oscillatory modes for each of the oscillators.
It turns out that these oscillatory modes get successively
synchronized as the coupling strength increases, start-
ing from the modes with the smallest to those with the
largest variance. Despite the limited explanatory power
of orthogonal eigenvectors, this behavior appears to be
linked to the synchronization of multiple UPOs. We have
shown, furthermore, that strongly diffusive phase dynam-
ics — which is known to reduce spectral resolution —
also limits the detection of phase synchronization, and
that even M-SSA cannot overcome this fundamental lim-
itation, which arises from the physics of the situation.

In the present work, we have made the rather restric-
tive assumption of system contamination by white noise
only. In more realistic situations, however, the noise —
whether extrinsic or intrinsic — may exhibit frequency-
dependent behavior, i.e. be “colored” rather than white
noise, and more rigorous statistical tests for the iden-
tification of significant oscillatory modes might be re-
quired [1, 28].
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Appendix A: Modified varimax rotation

In order to find a rotation matrix T that maximizes
the varimax criterion V1 in Eq. (6), Kaiser [23] proposed
the successive pairwise rotation of eigenvectors. In this
approach, all possible pairs that can be formed with the
first S eigenvectors are successively rotated until a certain
convergence limit in V1 is reached. For completeness, we
summarize here briefly the standard algorithm for the
case M = 1. If not otherwise specified, the summation is
over d = 1, . . . , D.

Given any two eigenvectors ek and el, their planar ro-
tation is given by

e∗dk = edk cosφ+ edl sinφ , (A1)

e∗dl =− edk sinφ+ edl cosφ ;

hence

de∗dk/dφ = e∗dl , de∗dl/dφ = −e∗dk . (A2)

The rotation angle φ is chosen so as to maximize the
pair’s V1-value,

D
∑

e∗dk
4−
(∑

e∗dk
2
)2

+D
∑

e∗dl
4−
(∑

e∗dl
2
)2
, (A3)

according to Eq. (6). Differentiating (A3) with respect
to φ and using (A2) gives the extremal condition

D
∑

e∗dke
∗
dl(e

∗
dk

2−e∗dl
2)−

∑
e∗dke

∗
dl ·
∑

(e∗dk
2−e∗dl

2) = 0.

(A4)
Substitution of e∗dk and e∗dl according to (A1) yields an
explicit equation for φ in terms of edk and edl [23].

The derivation requires an extensive amount of alge-
braic manipulation, and it is only sketched in the ap-
pendix of [23]. The full derivation is not necessary, how-
ever, in order to understand the implications of the mod-
ified varimax criterion (8) we propose.

We start with the orthogonal rotation of two M-SSA
eigenvectors,

e∗dk(m) = edk(m) cosφ+ edl(m) sinφ , (A5)

e∗dl(m) =− edk(m) sinφ+ edl(m) cosφ ,

which yields

de∗dk(m)/dφ = e∗dl(m), de∗dl(m)/dφ = −e∗dk(m) , (A6)

and hence

dē∗dk
dφ

=

∑M
m=1 e

∗
dk(m)e∗dl(m)

ē∗dk
, (A7)

dē∗dl
dφ

=−
∑M

m=1 e
∗
dk(m)e∗dl(m)

ē∗dl
.

According to (8), we choose the rotation angle φ so as
to maximize

D
∑

ē∗dk
4−
(∑

ē∗dk
2
)2

+D
∑

ē∗dl
4−
(∑

ē∗dl
2
)2
. (A8)
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As for Eqs. (A3) and (A4), we differentiate (A8) with re-
spect to φ, using (A7), and obtain the extremal condition

0 = D
∑∑

m

e∗dk(m)e∗dl(m)(ē∗dk
2 − ē∗dl

2) (A9)

−
∑∑

m

e∗dk(m)e∗dl(m) ·
∑

(ē∗dk
2 − ē∗dl

2) .

Equation (A9) only differs from (A4) by an additional
summation over m: the terms e∗dke

∗
dl and e∗dk

2 − e∗dl
2

in (A4) are simply replaced by
∑

m e∗dk(m)e∗dl(m) and

ē∗dk
2 − ē∗dl

2 ≡
∑

m(e∗dk
2(m) − e∗dl

2(m)), respectively. It
suffices, therefore, to understand the implications of this
replacement. According to (A5), substitution of e∗dk(m)
and e∗dl(m) yields

∑
m

e∗dk(m)e∗dl(m) = −f(φ)
∑
m

e2dk(m) + f(φ)
∑
m

e2dl(m) + g(φ)
∑
m

edk(m)edl(m) , (A10)

ē∗dk
2 − ē∗dl

2 = g(φ)
∑
m

e2dk(m)− g(φ)
∑
m

e2dl(m) + 4f(φ)
∑
m

edk(m)edl(m) ,

with f(φ) = sinφ cosφ and g(φ) = cos2 φ−sin2 φ. Hence,
we simply have to replace e2d,· by

∑
m e2d,·(m), and edkedl

by
∑

m edk(m)edl(m) in the equation for the rotation an-
gle φ of Ref. [23].
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