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The atmosphere, hydrosphere and cryosphere form a fully coupled climate

system. This system exhibits a number of large-scale phenomena, such as the

El Niño–Southern Oscillation (ENSO), the Asian Monsoon, the North At-

lantic Oscillation (NAO), and the Madden-Julian Oscillation (MJO). While

these modes of variability are not exactly periodic, they are oscillatory in char-

acter, and their state is monitored using so-called climate indices. Each of

these scalar indices is a combination of several climate variables. Here, we

use a comprehensive set of 25 climate indices for time intervals that range

between 1948 and 2011, and estimate an optimal set of lags between these

indices to maximize their correlation. We show that most of the index pairs

drawn from this set present a significant correlation on interannual time scales.

It is also shown that, on average, about two-thirds of the total variability

in each index can be described by using only the four leading principal com-

ponents of the entire set of lagged indices. Our index set’s leading orthog-

onal modes exhibit several interannual frequencies and capture separately

variability associated with the North Atlantic and the North Pacific. These

modes are associated, in turn, with large-scale variations of sea surface tem-

peratures.
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1. Introduction

The Earth’s atmosphere, oceans, cryosphere, and continental hydrology exchange mass,

momentum and energy on all time scales. As a consequence, global- or regional-scale

climate variables — such as the sea surface temperature (SST), the rainfall, the surface

pressure or the wind speed — fluctuate more or less regularly. Many of these fluctuations

are known as modes or oscillations, and their states are monitored by using scalar-valued

climate indices. Some of the best-known oscillations extend over large areas of the globe;

they include ENSO, the NAO, the Pacific Decadal Oscillation (PDO) and the MJO. Cer-

tain oscillations are more localized, i.e. associated with the climate of smaller regions, e.g.,

the Sahel Rainfall; however, many teleconnections [Wallace and Gutzler , 1981] between

the latter indices are also known to exist.

Numerous authors have studied such teleconnections and the, possibly lagged, correla-

tions between up to four indices [Ambaum et al., 2001; Moonley and Munot , 1993; Tsonis

et al., 2007; Wyatt et al., 2011; Wang et al., 2012]. Other studies have considered the

dynamics of coupled nonlinear oscillators as a possible source for such correlations [Ghil

and Mo, 1991; Kimoto and Ghil , 1993; Feliks et al., 2010] or studied the network of time

series of a single climate field, such as the SSTs, at the nodes of a regular grid [Tsonis

and Swanson, 2008; Donges et al., 2009].

In this study, we investigate whether and to which extent a large set of climate indices —

which presumably capture the coupled dynamics of several climate fields — may exhibit

lagged correlations on a global scale and, if so, what possible causes such a phenomenon

may have.

c©2013 American Geophysical Union. All Rights Reserved.
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In Section 2, we describe the data used, and how they were preprocessed. In Section

3, we investigate the connections between the climate indices. Section 4 makes the link

between our results and variations of the the SST field. The spectral content of the

retrieved modes is discussed in Section 5. Concluding remarks follow in Section 6.

2. Data Sets and Their Preparation

For this investigation, we use a set of 25 climate indices, regional as well as global; their

complete list — with acronyms, time intervals of availability and source — is given in

Table 1.

This set of time series consists of the entire set of climate indices from NOAA’s Earth

System Research Laboratory, with four exceptions: (i) only the Southern Oscillation In-

dex (SOI) has been kept among the different ENSO-related time series, since all of these

are highly correlated with each other, and their inclusion would have led to climatically

superfluous numerical difficulties; (ii) the atmospheric angular momentum has been re-

moved, since previous studies showed that its interannual variability was linked to ENSO

[Stefanick , 1982]; and (iii) the solar constant variability was dropped, as it is not a climatic

index per se. Finally, (iv) the MJO index was added to the set because its interannual

modulation is a topic of particular interest to the authors (e.g., Marcus et al. [2001]).

To separate the interannual contribution, we started by removing a composite seasonal

cycle, i.e. the average value over all the months of January in the time series has been

subtracted from each January value, and so on. The linear trend of each time series was

then fitted and removed. Finally, a tapered low-pass filter with a cut-off frequency of 12

months has been applied by convolution of the time series with sin(2πft)/(2πft), where

c©2013 American Geophysical Union. All Rights Reserved.
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f is the cut-off frequency [Owen, 2007]. The resulting time series for each index has been

divided by its own standard deviation, in order to normalize the different indices with

respect to each other.

In Section 5, we used the global SST fields of Kaplan et al. [1998].These SSTs have

monthly resolution and are given on a 2.5◦x2.5◦ grid.

3. Connections Between Climate Indices

3.1. Cross-correlations

In order to study the connections between the indices, we start by cross-correlating

pairs of indices, up to a maximum lag of one year. The correlation coefficient used in

this study is the Pearson product-moment coefficient. Cross-correlations are computed

by shifting one time series by a given number of months with respect to the other.

We first computed cross-correlations for lags between +1 year and −1 year, in steps of 1

month, and then computed the significance for the lag with the highest cross-correlation.

The significance is computed using a Student t-test, after estimating the number of degrees

of freedom of the time series, cf. Von Storch and Zwiers [1999].

The number of degrees of freedom was estimated for each pair of time series as the

harmonic mean of the number of degrees of freedom from the two time series over the

common time interval; this number was computed for each of the two series as the ratio

between the common time interval and the decorrelation time of the series in question,

i.e. the lag at which its autocorrelation drops to 1/e.

Figure 1 summarizes the cross-correlation results. For each index pair, a colored square

indicates the maximum value of the cross-correlation for those pairs of indices for which

c©2013 American Geophysical Union. All Rights Reserved.
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the statistical significance exceeds 95%; all other correlations appear as white squares.

The figure shows that more than 60% of the pairs are significantly cross-correlated.

3.2. Principal components (PCs) and optimization procedure

To investigate the common content in our set of time series {xi(t) : i = 1, ..., n}, we

apply principal component (PC) analysis [Von Storch and Zwiers , 1999], and project

them onto the eigenvectors of their variance-covariance matrix. This way, the set of 25

climate indices is expressed as a linear combination of the eigenvectors {Xk(t) : k =

1, . . . , K}, K ≤ n = 25, which are orthogonal at zero lag,

xi(t) =
K∑

k=1

ai,kXk(t).

When several time series are interrelated, much of the variance is associated with only

a few PCs, K � n. As we want to allow lags between the different indices, we used a

slightly different version of PC analysis, and optimized a set of lags between the indices

so that the variance captured by four PCs is maximized. The choice of K = 4 PCs was

based on Monte-Carlo tests [Overland and Preisendorfer , 1982], which showed that the

first four PCs are significant, and that adding a few more does not modify the picture in

any substantial way.

Given the relatively large dimension of the set of climate indices and, a fortiori, of

the set of possible lags between them, we started with a random set of lags, and used a

genetic algorithm [Goldberg , 1989] to converge to the optimal set. Since the intervals of

availability of the 25 indices differ, we used 126 different time intervals, including in each

of them only the indices available in that interval. The 126 intervals correspond to 14

c©2013 American Geophysical Union. All Rights Reserved.
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starting times, from 1955 to 1981 by steps of 2 yr, and nine ending times, from 1995 to

2011 by steps of 2 yr; the interval lengths thus range from 15 to 55 yr, with a median

value of 35 yr. The optimal set of lags was computed for each time interval.

If a connection between two indices does exist, the difference between the lags of those

indices — with respect to an arbitrary origin — would be consistent over the 126 runs,

whereas the absence of a robust connection between the two would manifest itself as a

random distribution of the difference between their lags. We tested each lag-difference

distribution against a uniform distribution by using a χ2-test and found that the distri-

butions so tested were significantly distinct from random (at the 95% level) for about

60% of the pairs of indices. Altogether, more than 80% of the index pairs have either a

cross-correlation that is significant at the 95% level or a robust lag, or both.

Next, an overall least-square fit was performed in order to find a globally optimal set

of lags, based on the best lags found between pairs of modes over all the runs. We also

estimated a weighted solution, in which each run is weighted according to the variance

captured by the first four modes; both solutions are provided in Table 1. The difference

between the weighted and unweighted lags only exceeds one full month in three cases,

all of which represent relatively local phenomena, and it is larger than one full year in

only one of these three. We then used these optimized lags to compute four PCs over the

subset of indices that are defined over the entire interval, 1955− 2011.

Each of the indices was then reconstructed as a linear combination of the four PCs

over its own interval of availability, and we computed for each of them the variance so

described. The contribution of each of the four PCs to each of the 25 modes, and the

c©2013 American Geophysical Union. All Rights Reserved.
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total variance captured in each case, are shown in Figure 2. It is clear from the figure

that the variance described by a linear combination of the four PCs is below 50% for only

six of the 25 indices. It also allows one to group the indices dominated by the same PC.

The group associated with the first PC (red bars) includes mostly Atlantic-related

indices — the Atlantic Multidecadal Oscillation (AMO), the Tropical North Atlantic

mode, the Atlantic Meridional Mode, Caribbean SSTs and the Atlantic Tripole — along

with a few other indices, such as the global mean SST and the Western Hemisphere

warm pool. Some of these links, like the one between the AMO and the Tropical North

Atlantic mode, have been recognized in previous studies [Trenberth and Shea, 2006]. The

AMO involves the buoyancy-driven meridional overturning of the entire Atlantic Ocean

[Delworth et al., 1993; Chen and Ghil , 1996] and it does seem to have a near-global climate

impact [Knight et al., 2006; Wang et al., 2008].

The group of indices that is associated with the second PC (blue bars) appears to be

linked with the Pacific Ocean. This PC captures much of the PDO, ENSO, the Trop-

ical Pacific SST pattern, the Northern Oscillation and the North Pacific pattern, with

smaller contributions to other modes, such as the MJO, the Antarctic Oscillation and the

NAO. Pohl et al. [2010] already documented a connection between ENSO, the Antarctic

Oscillation and the MJO, and so did Giannini et al. [2001] for ENSO and the NAO. The

near-global effects of ENSO have, of course, been a matter of intensive study over the last

three decades[Philander , 1990; Sarachik and Cane, 2010].

The third PC (green bars) is associated mostly with the Arctic Oscillation, the NAO,

and the Tropical Southern Atlantic index. Links between the Arctic Oscillation and

c©2013 American Geophysical Union. All Rights Reserved.
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the NAO have also been studied, but are known to exhibit various complexities in their

details [Ambaum et al., 2001; Kravtsov et al., 2006]. The last PC is associated with smaller

contributions to the variance of a few tropical and Atlantic indices.

4. Teleconnections and the SST Field

In studying the dynamics of the climate system on interannual and longer time scales, it

is natural to investigate the role of the oceans and of their variability [National Research

Council , 1995]. Consequently, we computed a lag correlation between the global SST

field [Kaplan et al., 1998] and our four leading PCs. In Figure 3, we show a map of the

lagged cross-covariances between the SST field and each of the four PCs, at the lag that

maximizes the sum of the absolute values of the correlations over the whole map. The

cross-covariance has been set to zero, and thus appears in white on the respective map,

wherever the cross-correlation is not significant at the 95% level.

As expected for global-scale phenomena, the cross-covariances are quite substantial over

large areas of the World Ocean. The SST pattern correlated with the first PC is consistent

with the SST signature of the AMO [Messié and Chavez , 2011], and the second one with

the classical pattern of the PDO [Weare et al., 1976; Mantua et al., 1997; Chao et al.,

2000]. The cross-covariances in Fig. 3(a) are largest in the North Atlantic’s subpolar seas,

off Japan, and in several marginal seas, including the Mediterranean and the Baltic.

The SST field is lagging here by roughly one year, while it is leading by about one year

in the other three panels. Note that the time origin of the PCs is arbitrary, as it is based

on a lagged set of indices; hence only the relative lags are meaningful.

c©2013 American Geophysical Union. All Rights Reserved.
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In Fig. 3(b), the cross-covariances are largest in the Kuroshio extension and, with the

opposite sign, along parts of the West Coast of North America, in good agreement with

the dominance of the PDO for this PC. For the third PC, however, the cross-covariances

are not particularly consistent with the Arctic Oscillation. This lack of consistency may

be due, at least in part, to the complex relationships between the Arctic Oscillation and

the NAO [Ambaum et al., 2001; Kravtsov et al., 2006]. The cross-covariances here are

largest in the South Pacific Convergence Zone and off the West Coast of Africa; the latter

region is dominated by the Benguela Current and prominent also in Fig. 3(a). Finally, in

Fig. 3(d), the area of significant cross-covariances is much smaller than in the first three

panels, being essentially restricted to to the Tropical Pacific, the California Current, and

the Carribbean.

5. Spectral Content

Finally, we inquired into the extent to which more or less regular behavior in time might

be associated with the four leading modes. First, each PC was analyzed using the MTM

method, without pre-filtering. We found peaks at periods close to 2.5 yr and 3.5 yr for all

the PCs, 5.7 yr for mode 3, and 4.3 yr for PCs 2 and 3; see Table 2, right column. The

peaks were tested using a median-filter robustness test [Mann and Lees , 1996]. Various

taper numbers n, with 5 ≤ n ≤ 10, and the corresponding resolution parameters p, with

p = 2n− 1, were tested, without any noticeable change of the results.

Each PC was then analyzed using singular spectrum analysis (SSA), cf. Ghil et al. [2002]

and references therein. The SSA decomposition was performed iteratively: an embedding

window M is chosen in order to optimize the frequency concentration of the first mode,

c©2013 American Geophysical Union. All Rights Reserved.
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i.e. of the first pair of eigenvectors associated with nearly equal variances; the associated

reconstructed component is then subtracted, and the residual is analyzed the same way,

until eight modes or pairs have been estimated. The embedding window M is chosen

large for the first SSA run, in order to capture the long-periodic behavior, whereas we use

M ≈ 140 months, i.e., roughly 12 yr, for the next runs.

The maximum-entropy method (MEM) spectrum has been computed both on the sum

of the eight SSA modes (see results in Table 2), and on each mode separately. In the first

case, a long-term component, with a period longer than 20 yr, and a periodic term around

2.5 yr were identified for each PC; in addition, a 4.5 yr component was found in PC2 and

a 5.3 yr component in PC3. Analyzing the modes separately allowed us to confirm the

results obtained on the sum of the eight modes, and to detect periodic components of

lesser amplitude or longer period: 3.5 yr and 10 yr for PC1; 3.5 yr and 8.5 yr for PC2;

3.6 yr and 10 yr for PC3; 3.2 yr and 10 yr for PC4. These results are robust when changing

the MEM order within a reasonable range.

The shorter periods of 3.2–3.6 yr were confirmed by the MTM analysis in each of the four

PCs. While not present in the MTM analysis with a high significance, it is of some interest

to find the 10-yr peak present in all four PCs, when analyzing the modes separately.

Table 2 summarizes the results from these analyses. All four PCs have a highly signif-

icant peak, obtained by both methods, in the range of 2.3–2.8 yr, which is most likely

associated with the global effects of ENSO’s quasi-biennial oscillation [Philander , 1990;

Sarachik and Cane, 2010; Ghil et al., 2002]. In addition, modes 2 and 3 also exhibit a

longer and likewise highly significant period, at 4.3–5.7 yr. This peak might, in turn,

c©2013 American Geophysical Union. All Rights Reserved.
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be associated with the quasi-quadrennial periodicity of ENSO, modified maybe by the

effects of the NAO’s 7–8-yr periodicity [Ghil et al., 2002; Feliks et al., 2010]. A longer

period, of 21 yr or even longer, is present only in the SSA analysis of all four modes; it

could be due to the 17–21-yr period in the PDO [Chao et al., 2000; Ghil et al., 2002], but

cannot be significant in our data set, whose length barely exceeds twice the period under

consideration.

6. Conclusions

We have thus shown here that 25 different climate indices — associated with a great

variety of climatic fields and geographic regions — share a very substantial fraction of their

variability. This common fraction can be captured and described by using no more than

four leading modes of variability. Much of this variability, in turn, is correlated with the

SST field. The preferred periodicities apparent in these modes reflect mainly the quasi-

biennial and quasi-quadrennial periodicities of ENSO. The short records, of not much

more than 50–60 years, do not allow one to determine unequivocally the longer periods

of 7–8 yr of the NAO or the 17–21 yr of the PDO, but some trace of such periodicities is

also apparent in our analysis.
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Figure 1. Cross-correlation map between pairs of indices. The size of each square is propor-

tional to the length of the common time interval of availability; the square showing the correlation

between two time series with a common interval of 20 years will be twice larger than that showing

the correlation between two time series with a common interval of 10 years. Only correlations

that are significant at the 95% lever are colored: red means the correlation is positive, blue in-

dicates anti-correlation, while white squares indicate correlations that are not significant at this

level. The results for each pair appear twice, for better legibility.
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Figure 2. Variance captured by each of the four leading PCs for each of our 25 climate indices,

sorted from the least “explained” to the best “explained” index, i.e., from the one that is most

independent of the other 24 to the one that is least so. The height of the color bars indicates

the variance contribution of the leading PCs, from the first to the fourth: red, green, blue and

purple, in this order. The full list of the index acronyms on the abscissa is given in Table 1.
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Figure 3. Lagged cross-covariances between the local SST (in ◦C) and each of the four leading

PCs, plotted for the lag that yields the highest sum of absolute values of the cross-correlations:

(a)–(d) Modes 1–4, each at the respective optimal lag. Color bar gives the cross-covariance

values; zero values (in white) include all cross-correlations that are not significant at the 95%

level. Note that, as the PCs are normalized to unit standard deviation, the cross-covariance at a

grid point only depends on the standard deviation of the SST there, projected onto the given PC.

To better show the most significant areas for each mode, the maps are centered on the Greenwich

meridian in panels (a) and (c), while being centered on the dateline in (b) and (d).
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eTable 2. Main periods (in years) of the four leading PCs and their significance level

from spectral-density estimates using the multi-taper method (MTM) and the maximum-entropy

method (MEM). Note that singular spectrum analysis (SSA) has been used as a pre-filter for

the MEM spectrum. Only the periods found for the total reconstruction are given here, and not

the ones on the individual SSA modes. All the MTM results are significant at the 99% level

according to the robustness test of Mann and Lees [1996]; please see text (Section 5) for the

SSA+MEM tests.

PC # SSA+MEM MTM
1 > 20

3.55
2.84 2.75
2.03 2.44

2 > 20
4.74 4.26

3.28
2.51 2.51

3 > 20
5.33 5.69

4.26
3.45

2.24 2.31
4 21.3

3.28
2.37 2.50
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