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a b s t r a c t

Boolean Delay Equations (BDEs) are semi-discrete dynamical models with Boolean-valued variables
that evolve in continuous time. Systems of BDEs can be classified into conservative or dissipative, in a
manner that parallels the classification of ordinary or partial differential equations. Solutions to certain
conservative BDEs exhibit growth of complexity in time; such BDEs can be seen therefore as metaphors
for biological evolution or human history. Dissipative BDEs are structurally stable and exhibit multiple
equilibria and limit cycles, as well as more complex, fractal solution sets, such as Devil’s staircases and
‘‘fractal sunbursts.’’ All known solutions of dissipative BDEs have stationary variance. BDE systems of this
type, both free and forced, have been used as highly idealized models of climate change on interannual,
interdecadal and paleoclimatic time scales. BDEs are also being used as flexible, highly efficientmodels of
colliding cascades of loading and failure in earthquake modeling and prediction, as well as in genetics. In
this paper we review the theory of systems of BDEs and illustrate their applications to climatic and solid-
earth problems. The former have used small systems of BDEs, while the latter have used large hierarchical
networks of BDEs. We moreover introduce BDEs with an infinite number of variables distributed in
space (‘‘partial BDEs’’) and discuss connections with other types of discrete dynamical systems, including
cellular automata and Boolean networks. This research-and-review paper concludes with a set of open
questions.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

BDEs constitute a modeling framework especially tailored for
the mathematical formulation of conceptual models of systems
that exhibit threshold behavior, multiple feedbacks and distinct
time delays [1–4]. BDEs are intended as a heuristic first step on
the way to understanding problems too complex to model using
systems of partial differential equations at the present time. One
hopes, of course, to be able to eventually write down and solve the
exact equations that govern the most intricate phenomena. Still,
in the geosciences as well as in the life sciences and other natural
sciences, much of the preliminary discourse is often conceptual.

∗ Corresponding author at: Département Terre-Atmosphère-Océan and Labora-
toire de Météorologie Dynamique (CNRS and IPSL), Ecole Normale Supérieure, 24
rue Lhomond, F-75231 Paris Cedex 05, France. Tel.: +33 0 1 4432 2244; fax: +33 0 1
4336 8392.

E-mail addresses: ghil@lmd.ens.fr (M. Ghil), zal@unr.edu (I. Zaliapin),
coluzzi@lmd.ens.fr (B. Coluzzi).

BDEs offer a formal mathematical language that may help to
bridge the gap between qualitative and quantitative reasoning.
Besides, they are fun to play with and produce beautiful fractals by
simple, purely deterministic rules. Furthermore, they also provide
an unconventional view on the concepts of non-linearity and
complexity.

In a hierarchical modeling framework, simple conceptual
models are typically used to present hypotheses and capture
isolated mechanisms, while more detailed models try to simulate
the phenomena more realistically, and test for the presence
and effect of the suggested mechanisms by direct confrontation
with observations [5]. BDE modeling may be the simplest
representation of the relevant physical concepts. At the same
time, new results obtained with a BDE model often capture
phenomena not yet found by using conventional tools [6–8].
BDEs suggest possible mechanisms that may be investigated
using more complex models once their ‘‘blueprint’’ is detected
in a simple conceptual model. As the study of complex systems
garners increasing attention and is applied to diverse areas — from
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Fig. 1. The place of BDEs within dynamical system theory. Note the links: the
discretization of t can be achieved by the Poincaré map (P-map) or a time-onemap,
leading from Flows to Maps. The opposite connection is achieved by suspension.
To go from Maps to Automata we use the discretization of x. Interpolation and
smoothing can lead in the opposite direction. Similar connections lead from BDEs
to Automata and to Flows, respectively. Modified after Mullhaupt [2].

microbiology to the evolution of civilizations, passing through
economics and physics — related Boolean and other discrete
models are being explored more and more [9–13].

The purpose of this research-and-review paper is threefold:
(i) summarize and illustrate key properties and applications of
BDEs; (ii) introduce BDEs with an infinite number of variables;
and (iii) explore more fully, connections between BDEs and
other types of discrete dynamical systems (dDS). Therefore, we
first describe the general form and main properties of BDEs
and place them in the more general context of dDS, including
cellular automata and Boolean networks (Section 2). Next, we
summarize some applications, to climate dynamics (Section 3)
and to earthquake physics (Section 4); these applications illustrate
both the beauty and usefulness of BDEs. In Section 5 we introduce
BDEs with an infinite number of variables, distributed on a spatial
lattice (‘‘partial BDEs’’) and point to several ways of potentially
enriching our knowledge of BDEs and extending their areas of
application. Further discussion and open questions conclude the
paper (Section 6).

2. Boolean delay equations (BDEs)

BDEs may be classified as semi-discrete dynamical systems,
where the variables are discrete — typically Boolean, i.e. taking
the values 0 (‘‘off’’) or 1 (‘‘on’’) only — while time is allowed to be
continuous. As such they occupy the previously ‘‘missing corner’’
in the rhomboid of Fig. 1, where dynamical systems are classified
according to whether their time (t) and state variables (x) are
continuous or discrete.

Systems in which both variables and time are continuous are
called flows [14,15] (upper corner in the rhomboid of Fig. 1). Vector
fields, ordinary and partial differential equations (ODEs and PDEs),
functional and delay-differential equations (FDEs and DDEs) and

stochastic differential equations (SDEs) belong to this category.
Systems with continuous variables and discrete time (middle left
corner) are known as maps [16,17] and include diffeomorphisms,
as well as ordinary and partial difference equations (O"Es and
P"Es).

In automata (lower corner) both the time and the variables
are discrete; cellular automata (CAs) and all Turing machines
(including real-world computers) are part of this group [10,
11,18], and so is the synchronous version of Boolean random
networks [12,19]. BDEs and their predecessors, kinetic [20] and
conservative logic, complete the rhomboid in the figure and occupy
the remaining middle right corner.

The connections between flows andmaps are fairly well under-
stood, as they both fall in the broader category of differentiable dy-
namical systems (DDS [14–16]). Poincarémaps (‘‘P-maps’’ in Fig. 1),
which are obtained from flows by intersection with a plane (or,
more generally, with a codimension-1 hyperplane) are standard
tools in the study of DDS, since they are simpler to investigate, an-
alytically or numerically, than the flows fromwhich they were ob-
tained. Their usefulness arises, to a great extent, from the fact that
— under suitable regularity assumptions — the process of suspen-
sion allows one to obtain the original flow from its P-map; hence
the properties of the flow can be deduced from those of the map,
and vice-versa.

In Fig. 1, we have outlined by labeled arrows the processes that
can lead from the dynamical systems in one corner of the rhomboid
to the systems in each one of the adjacent corners. Neither the
processes that connect the two dDS corners, automata and BDEs,
nor these that connect either type of dDS with the adjacent-corner
DDS—maps and flows, respectively—are aswell understood as the
(P-map, suspension) pair of antiparallel arrows that connects the
two DDS corners. We return to the connection between BDEs and
Boolean networks in Section 2.6 below. The key difference between
kinetic logic and BDEs is summarized in the Appendix.

2.1. General form of a BDE system

Given a system with n continuous real-valued state variables
v = (v1, v2, . . . , vn) ∈ Rn for which natural thresholds qi ∈ R
exist, one can associatewith each variable vi ∈ R a Boolean-valued
variable, xi ∈ B = {0, 1}, i.e., a variable that is either ‘‘on’’ or ‘‘off’’,
by letting

xi =
{
0, vi ≤ qi
1, vi > qi

, i = 1, . . . , n. (1)

The equations that describe the evolution in time of the Boolean
vector x = (x1, x2, . . . , xn) ∈ Bn, due to the time-delayed
interactions between the Boolean variables xi ∈ B are of the form:





x1(t) = f1 [t, x1(t − θ11), x2(t − θ12), . . . , xn(t − θ1n)] ,
x2(t) = f2 [t, x1(t − θ21), x2(t − θ22), . . . , xn(t − θ2n)] ,

...
xn(t) = fn [t, x1(t − θn1), x2(t − θn2), . . . , xn(t − θnn)] .

(2)

Here each Boolean variable xi depends on time t and on the state
of the other variables xj in the past. The functions fi : Bn → B,
1 ≤ i ≤ n, are defined via Boolean equations that involve logical
operators (see Table 1). Each delay value θij ∈ R, 1 ≤ i, j ≤ n,
is the length of time it takes for a change in variable xj to affect
the variable xi. One always can normalize delays θij to be within
the interval (0, 1] so the largest one has actually unit value; this
normalization will always be assumed from now on.

Following Dee and Ghil [1], Mullhaupt [2], and Ghil and
Mullhaupt [3], we consider in this section only deterministic,
autonomous systems with no explicit time dependence. Periodic
forcing is introduced in Section 3, and random forcing in Section 4.
In Sections 2–4 we consider only the case of n finite (‘‘ordinary
BDEs’’), but in Section 5we allow n to be infinite, with the variables
distributed on a regular lattice (‘‘partial BDEs’’).
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Table 1
Common Boolean operators

Mathematical Engineering Name Description
symbol symbol

x NOT x Negator Not true when x is true
x ∨ y x OR y Logical OR True when either x or y or both

are true
x ∧ y x AND y Logical AND x ∧ y ≡ (x ∨ y)
x * y x XOR y Exclusive OR True only when x and y are not

equal
x " y True only when x and y are equal

2.2. Essential theoretical results on BDEs

We summarize here the most important theoretical results
from BDE theory; their original and complete form appears in
[1–3].

We start by choosing a proper topology for the study of BDEs.
Denoting by Bn[0, 1] the space of Boolean-valued vector functions
with a finite number of jumps in the interval [0, 1]:
x |[0,1] ≡ x(t : 0 ≤ t ≤ 1),

and noting that, ∀τ , x |[τ ,τ+1] still belongs to Bn[0, 1] apart from
a translation in time, the system (2) can be considered as an
endomorphism:

Ff : Bn[0, 1] → Bn[0, 1]. (3)

We wish to extend this endomorphism into one that acts on the
solutions x(t) of Eq. (2):

Ff : x |[t,t+1] → x |[t+1,t+2] . (4)

Changing the point of view between (2) and (4) helps us study the
dynamical properties of BDEs. The space Bn[0, 1] equipped with
Boolean algebra [21] and the topology induced by the L1 metric:

d(x, y) ≡
∫ 1

0

n∑

i=1

|xi(t) − yi(t)|dt, (5)

is the phase space on which F acts; we denote it by X . In coding
theory, this metric is often called the Hamming distance.

In constructing solutions for a given BDE system, there is a
certain similarity with the theory of real-valued delay-differential
equations (DDEs) (see [22–25]), as well as with that of ordinary
difference equations (O"Es) ([26,27]).

Theorem 2.1 (Existence and Uniqueness). Let x |[0,1] ∈ Bn[0, 1] be
the initial data of the dDS (4). Then the equivalent system (2) has a
unique solution for all t ≥ 1 and for an arbitrary n2-vector of delays
! = (θij) ∈ (0, 1]n2 .
Sketch of Proof. The theorem can be proved by induction, con-
structing an algorithm that advances the solution in time, and
using a lemma that shows the number of jumps (between the val-
ues 0 and 1) to be bounded from above in any finite time inter-
val [1]. Thus the iterates F k, k = 1, . . . , K , stay within Bn[0, 1] for
all finite K and the unique solution of (2) is given simply by piec-
ing together the successive intervals [0, 1], [1, 2], . . . , [K , K + 1],
etc. !

Theorem 2.2 (Continuity). The endomorphism F : X → X is
continuous for given delays. Moreover, the endomorphism F : X ×
[0, 1]n2 → X × [0, 1]n2 is continuous, where the space of delays
(0, 1]n2 has the usual Euclidean topology.

At this point, we need to make the critical distinction between
rational and irrational delays. All BDE systems that possess only
rational delays can be reduced in effect to finite cellular automata.
Commensurability of the delays creates a partition of the time
axis into segments over which state variables remain constant,
and whose length is an integer multiple of the delays’ least
common denominator (lcd). As there is only a finite number of
possible assignments of two values to these segments, repetition
must occur, and the only asymptotic behavior possible is eventual
constancy or periodicity in time. Thus, we obtain the following

Theorem 2.3 (‘‘Pigeon-hole’’ Lemma). All solutions of (2) with
rational delays ! ∈ Qn2 are eventually periodic.

Remark. By ‘‘eventually’’ we mean that a finite-length transient
may occur before periodicity sets in. A transient is an initial state
that is only visited once in the evolution of the system along a
particular orbit in phase space. An interesting feature of BDEs vs.
flows or maps, as we shall see, is precisely that such transients
have finite rather than infinite duration, i.e., asymptotic behavior
is reached in finite time.

Dee and Ghil [1], though, found that for the simple system of
two BDEs:
{
x1(t) = x2(t − θ)
x2(t) = x1(t − θ) * x2(t − 1), (6)

where * is the exclusive OR (see Table 1), the number of jumps
per unit time seemed to keep increasing with time (see Fig. 2)
for a rational value θ = 0.977. Complex, aperiodic behavior only
arises in cellular automata for an infinite number of variables (also
called sites). Thus BDEs seem to pose interesting new problems,
irreducible to cellular automata. One of these, at least, is the
question of which BDEs, if any, do posses solutions of increasing
complexity. To answer this question, we need to classify BDEs and
to study separately the effects of rational and irrational delays.

2.3. Classification of BDEs

Based on the pigeon-hole lemma, and therefore on the behavior
for rational delays, Ghil and Mullhaupt [3] classified BDE systems
as follows. All systems with solutions that are immediately
periodic, for any initial data, are conservative. All other systems are
dissipative and will exhibit, at least for some initial data, transient
behavior before settling into eventual periodicity or quasi-
periodicity. The DDS analogs are conservative (e.g., Hamiltonian)
dynamical systems [28,29] versus forced-dissipative systems
(e.g., the well-known Lorenz system [30]). Typical examples of
conservative systems occur in celestial mechanics [31,32], while
dissipative systems are often used inmodeling geophysical [33,34]
and many other natural phenomena.

The simplest nontrivial examples of a conservative and a
dissipative BDE are

x(t) = x(t − 1)

and

x(t) = x(t − 1) ∧ x(t − θ), 0 < θ < 1,

respectively. The Boolean operators we use are listed in Table 1. It
is common to call a Boolean function f = (f1, . . . , fn) a connective
and its arguments xi channels [21]; we shall also refer to a channel
xi simply as channel i.

Definition 2.1. A BDE system is conservative for an open set Ω ⊂
(0, 1]n2 of delays if for all rational delays in Ω and all initial data
there are no transients; otherwise the system is dissipative.
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Fig. 2. Solutions of the system of two conservative BDEs (6) for the delay θ = 0.977 and 0 ≤ t < 40 [1]. The tick marks on the t-axis indicate the times at which jumps in
either x1 or x2 take place. After Dee and Ghil [1].
© 1984, Society for Industrial and Applied Mathematics; reprinted with permission.

As is also the case in DDS theory, the conservative character of
a BDE is tightly connected with its time reversibility.

Definition 2.2. A BDE system is reversible if its time reversal also
defines a system of BDEs.

Theorem 2.4 (Conservative ⇔ Reversible). Definitions 2.1 and 2.2
are equivalent.

Useful algebraic criteria have been established [2,3] for linear
or partially linear systems of BDEs to be conservative. Consider the
following system

xi(t) =
n∑

j=1

cijxj(t − θij) ⊕ gi[xj′(t − θij′)], 1 ≤ i ≤ n; (7)

here⊕ and the summation symbol stand for addition (mod 2) in X;
cij ∈ Z2, where Z2 is the field {0, 1} associated with this addition,
while the gi depend only on those xj′ for which cij′ = 0. Note that
x * y = x ⊕ y, while x " y = 1 ⊕ x ⊕ y. We use the two types of
symbols, * and ⊕, interchangeably, depending on the context or
point of view.

Adding constants ci0 to the above equations corresponds to
adding particular ‘‘inhomogeneous’’ solutions to the homogeneous
linear system. All solutions of the full system can be represented
as the sum of solutions to inhomogeneous and homogeneous
systems. We review below only the homogeneous case.

We call a system linear if and only if (iff) all gi = 0. Naturally,
the system obtained by putting gi = 0 in (7) is called the linear
part of the BDE system.Note that this concept of linearity (mod2) is
actually very nonlinear over the field of realsR, with usual addition
and multiplication: it corresponds, in a sense, to the thresholding
involved in Eq. (1).

First we consider the simplest case of systems with distinct
rational delays in their linear part. With any such system we
associate its characteristic polynomial

Q (z) = det A(z), Aij = δij + cijzpij , pij = qθij, (8)

where q is the lcd of all the delays θij such that cij 2= 0; the degree
of Q is denoted by ∂Q .

Theorem 2.5 (Conservativity for Linear Systems with Distinct Ratio-
nal Delays). A linear system of BDEs is conservative for an open neigh-
borhood Ω of a fixed vector of distinct rational delays ! iff
∑

i

q sup
k

θki = ∂Q .

In the case of rational delays only, we can give a first definition
of partial linearity, namely that at least one gi 2= 0 and ∂Q ≥ 2.

Corollary 2.1 (Partially Linear Systems). The same result holds for a
partially linear system of BDEs with distinct rational delays.

2.4. Solutions with increasing complexity

A natural question is whether (eventually) periodic solutions
are generic in a BDE realm? We already noticed (see Fig. 2) that
the answer to this question could be negative. Let us introduce the
jump counting function
J(t) = #{jumps of x(t) within the interval [t, t + 1)},
whichmeasures the complexity of a BDE solution x(t)with a given
set of initial data.

Lemma 2.1 (Increasingly Complex Solutions for Linear BDEs). All
solutions (except the trivial one x(t) ≡ 0) of the linear scalar BDE

x(t) = x(t − 1) * x(t − θ2) * · · · * x(t − θδ) (9)

with rationally independent 0 < θδ < · · · < θ2 < θ1 = 1 and δ ≥ 2
are aperiodic, and such that the lower bound for the corresponding
J(t) increases with time.

A simple example of this increasing complexity is given in Fig. 3,
for δ = 2, θ2 ≡ θ = (

√
5 − 1)/2, and a single jump in the initial

data. Note that this delay is equal to the ‘‘golden ratio,’’ which is
the most irrational number in the sense that its continued fraction
expansion has the slowest possible convergence [35].

Remark. As for ODEs, a ‘‘higher-order’’ BDE can easily be written
as a set of ‘‘first-order’’ BDEs (2). Therefore the previous lemma
also applies to the system (6) of two linear BDEs, showing that the
complexity of the solution is really increasingwith time at least for
irrational θ .
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Fig. 3. Jump function J(t) for the particular solution of a conservative BDEwith the
irrational delay θ = (

√
5−1)/2; see Eq. (9) and further details in the text. Courtesy

of A. P. Mullhaupt (2008).

A more general result holds for partially linear systems that
include irrational delays. For such systems of the form (7), we
introduce a generalized characteristic polynomial (GCP):

Q (λ) = det A(λ), Aij(λ) = δij + cijλθij .

Clearly, this polynomial reduces to the characteristic polynomial in
(8) if all the delays are rational and λ = zq. The index ν of the GCP
is defined as the number of its terms. We say that a BDE system (7)
is partially linear if at least one gi 2= 0 and ν is large enough, ν ≥ 3.

Theorem 2.6 (Increasingly Complex Solutions for Partially Linear
BDEs). A partially linear system of BDEs has aperiodic solutions
of increasing complexity, i.e. with increasing J(t), if its linear part
contains δ ≥ 2 rationally independent delays.

The condition in this theorem is sufficient, but not necessary. A
simple counterexample is given by the third-order scalar BDE

x(t) = [x(t − 1) * x(t − θ)] ∧ x(t − τ ), (10)

with θ , τ , and θ/τ irrational, and a single jump in the initial data
at t0: 0 < 1 − θ < 1 − τ < t0 < 1. The jump function for this
solution grows in time like that of Eq. (9) for δ = 2, although the
GCP is identically 1, so that its index is ν = 1.

On the other hand, there exist nonlinear BDE systems with
arbitrarily many incommensurable delays that have only periodic
solutions. For example, all solutions of

x(t) =
n∏

k=1

x(t − θk) (11)

are eventually periodic, with period π = ∑
θk for n even, and

π = 2
∑

θk for n odd; the length λ of transients is bounded by
λ ≤ π . The multiplication in (11) is in the sense of the field Z2,
with xy ≡ x ∧ y (see Table 1).

Dee and Ghil [1] established the upper bound on the jump
function, J(t) ≤ Ktl−1, where l is, in general, the number of distinct
delays and the constant K depends only on the vector of delays
!. This bound is essential in proving the existence and uniqueness
theorem in Section 2.2. Moreover, Ghil andMullhaupt [3] obtained
the lower bounds J(t) = O

(
t log2(δ+1)

)
for Eq. (9) and J(t) ≥ K ′t log2 ν

for partially linear BDEs with δ ≥ ν − 1 rationally independent
delays in the linear part. These authors also showed the log-
periodic character of the jump function in Fig. 3 (see also Fig. 7
in [3]).

Having summarized these results, we are still left with the
question why Fig. 2 here, with θ = 0.997 being a rational number,
does exhibit increasing complexity? The question is answered by
the following ‘‘main approximation theorem’’.

Theorem 2.7 (Periodic Approximation). All solutions to systems of
BDEs can be approximated arbitrarily well (with respect to the L1-
norm of X), for a given finite time, by the periodic solutions of a nearby
system that has rational delays only.

The apparent paradox is thus solved by taking into account the
length of the period obtained for a given conservative BDE and a
given rational delay. As the lcd q becomes larger and larger, the
solution in Fig. 3 here is well approximated for longer and longer
times (see Fig. 9 of [3]); i.e., the jump function can grow for a longer
time, before periodicity forces it to decrease and return to a very
small number of jumps per unit time.

Since the irrationals are metrically pervasive in Rn, i.e., they
have measure one, it follows that our chances of observing
solutions of conservative BDEs with infinite — or, by the
approximation theorem, arbitrarily long — period are excellent. In
fact, the solution shown in Fig. 2 here was discovered pretty much
by chance, as soon as Dee and Ghil [1] considered a conservative
system.

Ghil andMullhaupt [3] studied, furthermore, the dependence of
period length on the connective f and the delay vector!, aswell as
the degree of intermittency of self-similar solutions with growing
complexity. In the latter case, we can consider each solution as a
transient of infinite length. As we shall see next, such transients
preclude structural stability.

2.5. Dissipative BDEs and structural stability

The concept of structural stability for BDEs is patterned after
that for DDS. Two systems on a topological space X are said to be
topologically equivalent if there exists a homeomorphism h : X →
X that maps solution orbits from one system to those of the other.
The system is structurally stable if it is topologically equivalent to
all systems in its neighborhood [15,36].

In discussing structural stability, we are interested in small
deformations of a BDE leading to small deformations in its solution.
A BDE can be changed by changing either its connective f or its
delay vector !. Changes in f have to be measured in a discrete
topology and cannot, therefore, be small. It suffices thus to consider
small perturbations of the delays.

Theorem 2.8 (Structural Stability). A BDE system is structurally
stable iff all transients and all periods are bounded over some
neighborhood U ⊂ Rn2 of its delay vector !.

The periodic approximation theorem (Theorem 2.7) implies
that, for BDEs like for DDSs, conservative systems are not
structurally stable in X × [0, 1]n2 . Moreover, the conservative
‘‘vector fields,’’ here as there, are in some sense ‘‘rare’’; for BDEs
they are just the three connectives x, x * y, and x " y, for which
the number of 0’s equals the number of 1’s in the ‘‘truth table.’’
Incidentally, the jump set on the delay lattice (see Figs. 1 and 3
of [3]), and hence the growth of J(t), is exactly the same when
replacing f (x, y) = x * y by f (x, y) = x " y [3].
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The structural instability and the rarity of conservative BDEs
justifies studying in greater depth dissipative BDEs. Ghil and
Mullhaupt [3] concentrated on the scalar nth-order BDE

x(t) = f [x(t − θ1), . . . , x(t − θn)]. (12)

The connective f is most conveniently expressed in its normal
forms from switching and automata theory, with xy = x ∧ y and
x + y = x ∨ y. With this notation, the disjunctive and conjunctive
normal forms represent f as a sum of products and a product of
sums, respectively. This formalism helps prove that certain BDEs
of the form (12) lead to asymptotic simplification, i.e., after a finite
transient, the solution of the full BDE satisfies a simpler BDE. An
illustrative example is

x(t) = x(t − θ1)x(t − θ2), (13)

where either θ1 or θ2 can be the larger of the two. Asymptotically,
the solutions of Eq. (13) are given by those of a simpler equation

x(t) = x(t − θ1).

Comparison with the asymptotic behavior of forced-dissipative
systems in the DDS framework shows two advantages of BDEs.
First, the asymptotic behavior sets in after finite (rather than
infinite) time. Second, the behavior on the ‘‘inertial manifold’’ or
‘‘global attractor’’ here can be described explicitly by a simpler BDE,
while this is rarely the case for a system of ODEs, FDEs, or PDEs.

Finally, one can study asymptotic stability of solutions in the L1-
metric of X . We conclude this theoretical section by recalling that,
for 0 < θ < 1 irrational, the solutions of

x(t) = x(t − θ)x(t − 1)

are eventually equal to x(t) ≡ 0, except for x(t) ≡ 1, which is
unstable. Likewise, for

x(t) = x(t − θ) + x(t − 1),

x(t) ≡ 1 is asymptotically stable, while x(t) ≡ 0 is not. More
generally, one has the following

Theorem 2.9. Given rationally unrelated delays ! = {θk}, the BDE

x(t) =
n∏

k=1

x(t − θk)

has x(t) ≡ 0 as an asymptotically stable solution, while for the BDE

x(t) =
n∑

k=1

x(t − θk),

x(t) ≡ 1 is asymptotically stable.

To complete the taxonomy of solutions, we also note the
presence of quasi-periodic solutions; see discussion of Eq. (6.18) in
Ghil and Mullhaupt [3].

Asymptotic behavior. In summary, the following types of
asymptotic behavior were observed and analyzed in BDE systems:
(a) fixed point — the solution reaches one of a finite number of
possible states and remains there; (b) limit cycle — the solution
becomes periodic; (c) quasi-periodicity — the solution is a sum of
several incommensurable ‘‘modes’’; and (d) growing complexity —
the solution’s number of jumps per unit time increases with time.
This number grows like a positive, but fractional power of time t [1,
2], with superimposed log-periodic oscillations [3].

2.6. BDEs, cellular automata (CAs) and Boolean networks

We complete here the discussion of Fig. 1 about the place of
BDEs in the broader context of dynamical systems in general.
Specifically, we concentrate on the relationships between BDEs
and other dDS, to wit cellular automata, and Boolean networks.

The formulation of BDEs was originally inspired by advances
in theoretical biology, following Jacob and Monod’s discovery [37]
of on-off interactions between genes, which had prompted the
formulation of ‘‘kinetic logic’’ [20,38,39] and Boolean regulatory
networks [12,19,42]. In the following, we briefly review the latter
and discuss their relations with systems of BDEs, whereas kinetic
logic is touched upon in Appendix.

In order to understand the links between BDEs and Boolean
regulatory networks, it is important to start by recalling some
well known definitions and results about cellular automata (CAs),
which were introduced by von Neumann already in the late
1940s [18]. Doing so here will also facilitate the discussion of our
preliminary results on ‘‘partial BDEs’’ in Section 5.

One defines a CA as a set of N Boolean variables {xi : i =
1, . . . ,N} on the sites of a regular lattice in D dimensions. The
variables are usually updated synchronously, according to the
same deterministic rule xi(t) = f [xi(t − 1), . . . , xN(t − 1)]; that is
the value of each variable xi at epoch t is determined by the values
of this and possibly some other variables {xj} at the previous epoch
t − 1. In the simplest case of D = 1 (i.e., of a 1-D lattice) and first-
neighbor interactions only, there are 28 possible rules f : B3 → B,
which give 256 different elementary CAs (ECAs) studied in detail
by Wolfram [11,40]. For a given f , they evolve according to:

xi(t) = f [xi−1(t − 1), xi(t − 1), xi+1(t − 1)], 1 ≤ i ≤ N. (14)

For a finite size N , Eq. (14) is a particular case of a BDE system (2)
with connective fi = f for all i and a single delay θij = 1 for all i and
j (see also Section 5). One generally speaks of asynchronous CAs
when variables at different sites are updated at different discrete
times according to some deterministic scheme. Such asynchronous
CAs still belong to a restricted class of BDEs with integer delays
θij ∈ N.

When both the space and the time are discrete, a finite-size CA
will ultimately display either a fixed-point or periodic behavior. An
important advantage of the great simplicity of ECAs is that it allows
for systematic studies, and helps understand their behavior in the
limit of N → ∞. It can be shown that different updating rules
can lead to very different long-time dynamics. Wolfram [40,41]
divided ECAs into four universality classes, according to the typical
behavior observed for random initial states and large sizes N: For
rules in the first class, the system evolves towards a fixed point.
For rules in the second class, the dynamics can attain either a fixed
point or a limit cycle, but in this case the period is usually small and
it remains small for increasingN-values. For rules in the third class,
though, the period of the limit cycle usually increases with the size
N and it can diverge in the limit N → ∞, leading to ‘‘chaotic’’
behavior. Finally, CAs in the fourth class are capable of universal
computation, and are thus equivalent to a Turing machine.

A first generalization of CAs are Boolean networks, in which
the Boolean variables {xi : i = 1, 2, . . . ,N} are attached to the
nodes (also called vertices) of a (possibly directed) graph and they
evolve synchronously according to deterministic Boolean rules,
which may vary from node to node. A further generalization is
obtained by considering randomness, in the connections and/or in
the choice of updating rules. In particular, theNK model introduced
by Kauffman [19,42], is among the most extensively analyzed
random Boolean networks (RBNs). This model considers a system
of N Boolean variables, such that each value xi depends on K
randomly chosen other variables xj through a Boolean function
drawn randomly and independently from 22K possible variants.
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The connections among the variables and the updating functions
are fixed during a given system’s evolution, and one looks for
average properties at long times. Since the variables are updated
synchronously, at the same discretet-values, the evolution will
ultimately reach a fixed point or a limit cycle for any given
configuration of links and rules.

Kauffman [19,42] proposed such NK RBNs as models of a
regulatory genetic network, with different nodes corresponding
to different genes. The activity of a gene xi is regulated by the
activity of the other K genes to which xi is connected. The
different attractors, whether fixed point or limit cycle, are related
to different gene expression patterns. In this interpretation, a limit
cycle, i.e. a recurrent pattern, corresponds to a cell type and the
period is that of the cell cycle.

The NK model was initially studied for a uniform distribution
of the updating rules. In this situation, for small K values, one
finds on average, a small number of fixed points and limit cycles.
The lengths of the possible attractors remain finite in the limit
of N → ∞, and therefore the network dynamics appears
‘‘ordered.’’ For large K values, though, themodel displays ‘‘chaotic’’
behavior; in this case, the average number of attractors as well as
their average length diverge with N and the difference between
two almost identical initial states can increase exponentially
with time. Furthermore, one observes a transition in parameter
space between typical dynamics that is characterized by a large
connected cluster of frozen variables and the opposite one with
small separated clusters of frozen variables. The critical values of
the parameters corresponding to this passage from an ‘‘ordered’’
to a ‘‘chaotic’’ regime can be evaluated by looking at the evolution
of the Hamming distance between two trajectories that start
from slightly different configurations [43–45]. In particular, for a
uniform distribution of the Boolean updating functions, the NK
model is ‘‘critical’’ when K = 2.

Kauffman [19] suggested that natural organisms could lie on,
or near, the borderline between these two different dynamical
regimes, i.e. ‘‘at the edge of chaos,’’ where the system is still
sufficiently robust against small perturbations, but at the same
time close enough to the chaotic regime to feel the effect of
selection. Accordingly, a lot of attention has been devoted to the
study of such critical networks, which can also be obtained for
K > 2 with appropriate, and possibly more realistic, choices of
the updating rule distribution. Similar edge-of-chaos suggestions
have beenmade in other applications of dynamical systems theory,
including DDS and celestial mechanics [46].

For large N-values, even the problem of determining the fixed
points of a generic regular RBN, with Ki = K for all i, is highly
nontrivial. In the context of the modeling of genetic interactions,
the solution to this problem is thought to represent different
accessible states of the cell, possibly triggered by external inputs
[47]. This problem has been recently reformulated [47,48] in terms
of the zero-energy configurations of an appropriate Hamiltonian.
In this formulation, statistical mechanics tools from spin-glass
physics can be brought to bear on the problem, in particular
those that have already been successfully extended to general
optimization issues [49].

Irregular RBNs, in which the number of inputs Ki is also a
node-dependent random variable, are obviously harder to analyze.
There is increasing evidence [50] that many networks arising in
very different natural contexts are ‘‘scale free,’’ i.e. their node-
dependent connectivity Ki is distributed according to a power
law P(Ki) ∝ Ki

−γ . This seems to be true as well for the
distribution of the input connections of some genetic networks.
In the irregular case, too, one still observes ‘‘critical’’ dynamical
behavior, given a suitable distribution of the updating Boolean
functions. Kauffmann and colleagues [51] have recently studied
the stability properties of regular and irregular RBNs and their

dependence on the distribution of connectivity Ki and/or Boolean
functions. Inverse problems, in which one tries to determine the
Boolean rules leading to a particular type of behavior, have been
considered in [52].

The dependence of the average number m̄ of attractors, and
of their period length on the size N in critical RBNs is still a
matter of debate. This issue is particularly relevant for genetic-
network modeling, since the behavior of m̄(N) is expected to be
related [19,43] to the number of cell types which are present
in an organism characterized by a given number N of genes. In
regular synchronous RBNs, where all variables are updated in
parallel at the samediscrete epochs, m̄(N) increases faster than any
power of N [53–55]. Just and Enciso [56–58] have recently applied
mathematically rigorous methods to the study of general random
networks with variables that can take p ≥ 2 discrete values and,
in greater detail, for the Boolean p = 2 case. These authors also
assume synchronous updating and consider cooperative networks;
for Boolean variables, cooperation corresponds roughly to the
absence of negative feedbacks, i.e. such networks have only AND
and OR operators in the connective. For bi-quadratic cooperative
Boolean networks, where both the in-degree and the out-degree
are bounded by 2, these studies show that the period length can
nevertheless turn out to increase exponentially with system size
N , although the total absence of negative feedbacks or the presence
of only a small percentage thereof usually seems to imply shorter
periods [59].

Assuming that all the variables act synchronously, i.e. that
they ‘‘move in lock-step,’’ may be too drastic a simplification
for correctly modeling a number of natural systems and, in
particular, interacting genes [60]. In order to overcome this
simplification, asynchronous Boolean networks with different
updating procedures have been studied recently [61]. The links of
such generalized RBNs with asynchronous CAs and with ‘‘kinetic
logic’’ are reviewed in [60].

From the point of view of connections with BDEs, the updating
scheme introduced by Klemm and Bornholdt [62] is of particular
interest; they consider a ‘‘critical’’ regular RBN with K = 2
and weakly fluctuating delays in the response of each node. The
number of stable attractors in this system increases more slowly
with system size than for synchronous updating. It seems therefore
that RBNs in continuous time may be more realistic, and may
exhibit new and possibly unexpected types of behavior.

Öktem et al. [63] have recently applied a BDE approach to a
Boolean network of genetic interactions with given architecture.
In this case continuous time delays are introduced according to
the BDE formalism of [1–4]. As a result, more complicated types
of behavior than in synchronously updated Boolean networks
have been observed, and the dynamics of the system seems to
be characterized by aperiodic attractors. These results suggest
that allowing for continuous time delays could lead, on the one
side, to more realistic behavior — with a slower increase of
m̄(N), and possibly also of the period length — in some random
realization of the connective; on the other side, such delays could
lead to aperiodic solutions in distinct random realizations of the
connective.

Still, in both [62,63], the authors introduced a minimal
time interval below which changes in a given variable are not
permitted. Such a cutoff, or ‘‘refractory period’’ [63], may have
a physiological basis in genetic applications, but it rules out
the presence of solutions with increasing complexity. Therefore,
for a finite number of variables, this restriction must result in
an ultimately periodic behavior; the asymptotic period, though,
could be much larger than the one obtainable with usual Boolean
networks, especially when considering conservative connectives
and irrational delays. From this point of view, the implementation
of continuous time delays in [62,63] is different than in BDEs [1–
4] and is similar to the one adopted in ‘‘kinetic logic’’ [20,38,39],
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whose precise connections with our formalism are discussed in
Appendix.

In the applications of BDEs that we review in the next sections,
one finds different mechanisms that lead to aperiodic solutions of
bounded complexity, without the need of a cutoff; one could thus
explore the possibility of similar behavior in genetic-interaction
models as well. Summarizing, one can say that kinetic logic
and the recently proposed genetic network models [62,63], as
well as others recent generalizations of RBNs with deterministic
updating [60], can be viewed either as asynchronous CAs or as
particular cases of BDEs with large N .

In Section 5, we initiate the systematic study of BDE systems
in the limit of an infinite number of variables, assumed for the
moment to lie on a regular lattice and to interact according to a
given, unique, deterministic rule. This study should allow us to
better understand the connections of BDEs with (infinite) CAs, on
the one hand, and with PDEs on the other. Such a study should
also help clarify further the behavior of, possibly random, Boolean
networks in continuous time.

We now turn to an illustration of BDE modeling in action, first
with a climatic example and then with one from lithospheric dy-
namics. Both of these applications introduce new and interesting
properties of and extensions to BDEs. The climatic BDE model in
Section 3, while keeping a small number of variables, introduces
variables with more than two levels, as well as periodic forcing.
Its solutions show that a simple BDE model can mimic rather well
the solution set of a much more detailed model, based on non-
linear PDEs, as well as produce new and previously unsuspected
results, such as a Devil’s Staircase and a ‘‘bizarre’’ attractor in
phase-parameter space.

The seismological BDE model in Section 4 introduces a much
larger number of variables, organized in a directed graph, as
well as random forcing and state-dependent delays. This BDE
model also reproduces a regime diagram of seismic sequences
resembling observational data, as well as the results of muchmore
detailed models [64,65] based on a large system of differential
equations; furthermore it allows the exploration of seismic
prediction methods.

3. A BDE model for the El Niño/Southern Oscillation

BDEswere first applied to paleoclimatic problems. Ghil et al. [4]
used the exploratory power of BDEs to study the coupling
of radiation balance of the Earth-atmosphere system, mass
balance of continental ice sheets, and overturning of the oceans’
thermohaline circulation during glaciation cycles. On shorter time
scales, Darby and Mysak [66] and Wohlleben and Weaver [67]
studied the coupling of the sea ice with the atmosphere above
and the ocean below in an interdecadal Arctic and North Atlantic
climate cycle, respectively. Here we describe an application to
tropical climate, on even shorter, seasonal-to-interannual time
scales.

The El-Niño/Southern-Oscillation (ENSO) phenomenon is the
most prominent signal of seasonal-to-interannual climate variabil-
ity. It was known for centuries to fishermen along the west coast
of South America, who witnessed a seemingly sporadic and abrupt
warming of the cold, nutrient-rich waters that support the food
chains in those regions; these warmings caused havoc to their fish
harvests [68,69]. The common occurrence of suchwarming shortly
after Christmas inspired them to name it El Niño, after the ‘‘Christ
child.’’ Starting in the 1970s, El Niño’s climatic effects were found
to be far broader than just its manifestations off the shores of Peru
[68,70,71]. This realization led to a global awareness of ENSO’s sig-
nificance, and an impetus to attempt and improve predictions of
exceptionally strong El Niño events [72,73].

3.1. Conceptual ingredients

The following conceptual elements are incorporated into the
logical equations of our BDE model for ENSO variability.

(i) The Bjerknes hypothesis: Bjerknes [74], who laid the
foundation ofmodern ENSO research, suggested a positive feedback
as a mechanism for the growth of an internal instability
that could produce large positive anomalies of sea surface
temperatures (SSTs) in the eastern Tropical Pacific. We use here
the climatological meaning of the term anomaly, i.e., the difference
between an instantaneous (or short-term average) value and
the normal (or long-term mean). Using observations from the
International Geophysical Year (1957–58), he realized that this
mechanism must involve air-sea interaction in the tropics. The
‘‘chain reaction’’ starts with an initial warming of SSTs in the ‘‘cold
tongue’’ that occupies the eastern part of the equatorial Pacific.
This warming causes a weakening of the thermally direct Walker-
cell circulation; this circulation involves air rising over the warmer
SSTs near Indonesia and sinking over the colder SSTs near Peru. As
the trade winds blowing from the east weaken, and give way to
westerly wind anomalies, the ensuing local changes in the ocean
circulation encourage further SST increase. Thus the feedback loop
is closed and further amplification of the instability is triggered.

(ii) Delayed oceanic wave adjustments: Compensating for
Bjerknes’s positive feedback is a negative feedback in the system
that allows a return to colder conditions in the basin’s eastern
part. During the peak of the cold-tonguewarming, called thewarm
or El Niño phase of ENSO, westerly wind anomalies prevail in
the central part of the basin. As part of the ocean’s adjustment
to this atmospheric forcing, a Kelvin wave is set up in the
tropical wave guide and carries a warming signal eastward. This
signal deepens the eastern-basin thermocline, which separates
the warmer, well-mixed surface waters from the colder waters
below, and thus contributes to the positive feedback described
above. Concurrently, slower Rossby waves propagate westward,
and are reflected at the basin’s western boundary, giving rise
therewith to an eastward-propagating Kelvin wave that has a
cooling, thermocline-shoaling effect. Over time, the arrival of this
signal erodes thewarm event, ultimately causing a switch to a cold,
La Niña phase.

(iii) Seasonal forcing: A growing body of work [5,75–80] points
to resonances between the Pacific basin’s intrinsic air-sea oscillator
and the annual cycle as a possible cause for the tendency of warm
events to peak in boreal winter, as well as for ENSO’s intriguing
mix of temporal regularities and irregularities. Themechanisms by
which this interaction takes place are numerous and intricate, and
their relative importance is not yet fully understood [80–82]. We
assume therefore in the present BDEmodel that the climatological
annual cycle provides for a seasonally varying potential of event
amplification.

3.2. Model variables and equations

The model [6] operates with five Boolean variables. The
discretization of continuous-valued SSTs and surface winds into
four discrete levels is justified by the pronounced multimodality
of associated signals (see Fig. 1(b) of [6]).

The state of the ocean is depicted by SST anomalies, expressed
via a combination of two Boolean variables, T1 and T2. The relevant
anomalous atmospheric conditions in the Equatorial Pacific basin
are described by the variables U1 and U2. The latter express the
state of the trade winds. For both the atmosphere and the ocean,
the first variable, T1 or U1, describes the sign of the anomaly,
positive or negative, while the second one, T2 or U2, describes its
amplitude, strong or weak. Thus, each one of the pairs (T1, T2)
and (U1,U2) defines a four-level discrete variable that represents



Author's personal copy

M. Ghil et al. / Physica D 237 (2008) 2967–2986 2975

highly positive, slightly positive, slightly negative, and highly
negative deviations from the climatological mean. The seasonal
cycle’s external forcing is represented by a two-level Boolean
variable S.

The atmospheric variables Ui are ‘‘slaved’’ to the ocean [78,83]:

Ui(t) = Ti(t − β), i = 1, 2. (15)

The evolution of the sign T1 of the SST anomalies is modeled
according to the following two sets of delayed interactions:

(i) Extremely anomalous wind stress conditions are assumed
to be necessary to generate a significant Rossby-wave signal R(t),
which takes on the value 1 when wind conditions are extreme
at the time and 0 otherwise. By definition strong wind anomalies
(either easterly orwesterly) prevail whenU1 = U2 and thus R(t) =
U1(t) " U2(t); here " is the binary Boolean operator that takes
on the value 1 if and only if both operands have the same value
(see Section 2 and Table 1). A wave signal R(t) = 1 that is elicited
at time t is assumed to re-enter the model system after a delay
τ , associated with the wave’s travel time across the basin. Upon
arrival of the signal in the eastern equatorial Pacific at time t + τ ,
the wave signal affects the thermocline-depth anomaly there and
thus reverses the sign of SST anomalies represented by T1.

(ii) In the second set of circumstances, when R(t) = 0, and thus
no significant wave signal is present, we assume that T1(t + τ )
responds directly to local atmospheric conditions, after a delay β ,
according to Bjerknes hypothesis; the delays associated with local
coupled processes are taken all equal.

The two mechanisms (i) and (ii) are combined to yield:

T1(t) =
{[

R ∧ U1
]
(t − τ )

}
∨

{
R(t − τ ) ∧ U2(t − β)

}
; (16)

here the symbols ∨ and ∧ represent the binary logical operators
OR and AND, respectively (see Table 1).

The seasonal-cycle forcing S is given by S(t) = S(t−1); the time
t is thus measured in units of 1 year. The forcing S affects the SST
anomalies’ amplitude T2 through an enhancement of events when
favorable seasonal conditions prevail:

T2(t) = {[S"T1] (t − β)} ∨
{[

(S"T1) ∧ T2
]
(t − β)

}
. (17)

The model’s principal parameters are the two delays β and
τ associated with local adjustment processes and with basin-
wide processes, respectively. The changes in wind conditions are
assumed to lag the SST variables by a short delay β , of the order
of days to weeks. For the length of the delay τ we adopt Jin’s [84]
view of the delayed-oscillator mechanism and let it represent the
time that elapses while combined processes of oceanic adjustment
occur: it may vary from about one month in the fast-wave
limit [85–87] to about two years.

3.3. Model solutions

Studying the ENSO phenomenon, we are primarily interested
in the dynamics of the SST states, represented by the two-variable
Boolean vector (T1, T2). To be more specific, we deal with a four-
level scalar variable

ENSO =






−2, extreme La Niña, T1 = 0, T2 = 0,
−1, mild La Niña, T1 = 0, T2 = 1,
1, mild El Niño, T1 = 1, T2 = 0,
2, extreme El Niño, T1 = 1, T2 = 1.

(18)

In all our simulations, this variable takes on the values
{−2, −1, 1, 2}, precisely in this order, thus simulating real ENSO
cycles. The cycles follow the same sequence of states, although the
residence time within each state changes as τ changes at fixed
β . The period P of a simple oscillatory solution is defined as the
time between the onset of two consecutive extreme warm events,

Fig. 4. Devil’s staircase and fractal sunburst for a BDE model of the El-
Niño/Southern-Oscillation (ENSO) phenomenon. Plotted in the bifurcation diagram
is the average cycle length P̄ vs. the wave delay τ for a fixed local delay β = 0.17.
Blue dots indicate purely periodic solutions; orange dots are for complex periodic
solutions; small black dots denote aperiodic solutions. The two insets show a blow-
up of the overall, approximate behavior between periodicities of two and three
years (‘‘fractal sunburst’’) and of three and four years (‘‘Devil’s staircase’’). Modified
after Saunders and Ghil [6].

ENSO = 2. We use the cycle period definition to classify different
model solutions (see Figs. 4–6).
(i) Periodic solutions with a single cycle (simple period). Each
succession of events, or internal cycle, is completely phase-locked
here to the seasonal cycle, i.e., the warm events always peak at the
same time of year. For each fixed β , as τ is increased, intervals
where the solution has a simple period equal to 2, 3, 4, 5, 6 and
7 years arise consecutively.
(ii) Periodic solutions with several cycles (complex period): We
describe such sequences, in which several distinct cycles make up
the full period, by the parameter P̄ = P/n; here P is the length
of the sequence and n is the number of cycles in the sequence.
Notably, as we transition from a period of three years to a period of
four years (see second inset of Fig. 4), P̄ becomes a nondecreasing
step function of τ that takes only rational values, arranged on a
Devil’s Staircase.

3.4. The quasi-periodic (QP) route to chaos in the BDE model

The frequency-locking behavior observed for our BDE solutions
above is a signature of the universal QP route to chaos. Its
mathematical prototype is the Arnol’d circlemap [14], given by the
equation

θn+1 = θn + Ω + 2πK sin(2πθn) (mod 1). (19)

Eq. (19) describes the motion of a point, denoted by the angle
θ of its location on a unit circle, which undergoes fixed shifts
by an angle Ω along the circle’s circumference. The point is also
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Fig. 5. Fractal sunburst: a BDE solution pattern in phase-parameter space, for a
dissipative BDE systemwith periodic forcing. The plot is a blow-up of the transition
zone from average periodicity two to three years in Fig. 4; here τ = 0.44–0.58, β =
0.17. The inset is a zoomon 0.490 ≤ τ ≤ 0.504. A complexmini-staircase structure
reveals self-similar features, with a focal point at τ ≈ 0.5. Modified after Saunders
and Ghil [6].

Fig. 6. The Devil’s bleachers in our BDE model of ENSO. The three-dimensional
regime diagram shows the average cycle length P̄ , portrayed in both height and
color, vs. the two delays β and τ . Oscillations are produced even for very small
values of β , as long as β ≤ τ . Variations in τ determine the oscillation’s period,
while changing β establishes the bottom step of the staircase, shifts the location of
the steps, and determines their width. After Saunders and Ghil [6].

subject to nonlinear sinusoidal ‘‘corrections,’’ with the size of the
nonlinearity controlled by a parameter K .

The solutions of (19) are characterized by theirwinding number

ω = ω(Ω, K) = lim
n→∞

[(θn − θ0)/n] ,

which can be described roughly as the average shift of the point per
iteration. When the nonlinearity’s influence is small, this average
shift — and hence the average period — is determined largely by
Ω; it may be rational or irrational, with the latter being more
probable due to the irrationals’ pervasiveness. As the nonlinearity
K is increased, ‘‘Arnol’d tongues’’ — where the winding number ω
locks to a constant rational overwhole intervals — form andwiden.
At a critical parameter value, only rational winding numbers are
left and a complete Devil’s Staircase crystallizes. Beyond this
value, chaos reigns as the system jumps irregularly between
resonances [88,89].

The average cycle length P̄ defined for our ENSO system of BDEs
is clearly analogous to the circle map’s winding number, in both its
definition and behavior. Note that the QP route to chaos depends
in an essential way on two parameters: Ω and K for the circle map
and β and τ in our BDE model.

3.5. The ‘‘fractal sunburst’’: A ‘‘bizarre’’ attractor

As the systemundergoes the transition froman averaged period
of two to three years a much more complex, and heretofore
unsuspected, ‘‘fractal-sunburst’’ structure emerges (Fig. 5, and first
inset in Fig. 4). As the wave delay τ is increased, mini-ladders
build up, collapse or descend only to start climbing up again. In
the vicinity of a critical value (τ ∼= 0.5 years) that constitutes the
pattern’s focal point, these mini-ladders rapidly condense and the
structure becomes self-similar, as each zoom reveals the pattern
being repeated on a smaller scale. We call this a ‘‘bizarre’’ attractor
because it is more than ‘‘strange’’: strange attractors occur in a
system’s phase space, for fixed parameter values, while this fractal
sunburst appears in our model’s phase–parameter space, like the
Devil’s Staircase. The structure in Fig. 4 is attracting, though,
only in phase space, for fixed parameter values; it is, therefore, a
generalized attractor, and not just a bizarre one.

The influence of the local-process delayβ , alongwith that of the
wave-dynamics delay τ , is shown in the three-dimensional ‘‘Devil’s
bleachers’’ (or ‘‘Devil’s terrace,’’ according to Jin et al. [78]) of Fig. 6.
Note that the Jin et al. [77,78] model is an intermediate model,
in the terminology of modeling hierarchies [5], i.e. intermediate
between the simplest ‘‘toy models’’ (BDEs or ODEs) and highly
detailed models based on discretized systems of PDEs in three
space dimensions, such as the general circulation models (GCMs)
used in climate simulation. Specifically, the intermediate model
of Jin and colleagues is based on a system of nonlinear PDEs in
one space dimension (longitude along the equator). The Devil’s
bleachers in our BDE model resemble fairly well those in the
intermediate ENSO model of Jin et al. [78]. The latter, though, did
not exhibit a fractal sunburst, which appears, on the whole, to be
an entirely new addition to the catalog of fractals [90–92].

It would be interesting to find out whether such a bizarre
attractor occurs in other types of dynamical systems. Its specific
significance in the ENSO problem might be associated with the
fact that a broad peak with a period between two and three years
appears in many spectral analyses of SSTs and surface winds from
the Tropical Pacific [93,94]. Various characteristics of the Devil’s
Staircase have been well documented in both observations [94–
96] and GCM simulations [5,77] of ENSO. It remains to see whether
this will be the case for the fractal sunburst as well.
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4. A BDE model for seismicity

Lattice models of systems of interacting elements are widely
applied for modeling seismicity, starting from the pioneering
works of Burridge and Knopoff [97], Allègre et al. [98], and Bak
et al. [99]. The state of the art is summarized in [100–104].
Recently, colliding-cascade models [7,8,64,65] have been able to
reproduce a wide set of observed characteristics of earthquake
dynamics [105–107]: (i) the seismic cycle; (ii) intermittency in the
seismic regime; (iii) the size distribution of earthquakes, known
as the Gutenberg-Richter relation; (iv) clustering of earthquakes
in space and time; (v) long-range correlations in earthquake
occurrence; and (vi) a variety of seismicity patterns premonitory
to a strong earthquake.

Introducing the BDE concept into the modeling of colliding
cascades, we replace the elementary interactions of elements in
the system by their integral effect, represented by the delayed
switching between the distinct states of each element: unloaded
or loaded, and intact or failed. In this way, we bypass the necessity
of reconstructing the global behavior of the system from the
numerous complex and diverse interactions that researchers are
only mastering by and by and never completely. Zaliapin et al. [7,
8] have shown that this modeling framework does simplify the
detailed study of the system’s dynamics, while still capturing its
essential features. Moreover, the BDE results provide additional
insight into the system’s range of possible behavior, as well as into
its predictability.

4.1. Conceptual ingredients

Colliding-cascade models [7,8,64,65] synthesize three pro-
cesses that play an important role in lithosphere dynamics, as
well as in many other complex systems: (i) the system has a hi-
erarchical structure; (ii) the system is continuously loaded (or
driven) by external sources; and (iii) the elements of the system fail
(break down) under the load, causing redistribution of the load and
strength throughout the system. Eventually the failed elements
heal, thereby ensuring the continuous operation of the system.

The load is applied at the top of the hierarchy and transferred
downwards, thus forming a direct cascade of loading. Failures
are initiated at the lowest level of the hierarchy, and gradually
propagate upwards, thereby forming an inverse cascade of failures,
which is followed by healing. The interaction of direct and inverse
cascades establishes the dynamics of the system: loading triggers
the failures, and failures redistribute and release the load. In
its applications to seismicity, the model’s hierarchical structure
represents a fault network, loading imitates the effect of tectonic
forces, and failures imitate earthquakes.

4.2. Model structure and parameters

(i) The model acts on a directed graph whose nodes, except
the top one and the bottom ones, have connectivity six. Each
node, except the bottom ones, is a parent to three children, that
are siblings to each other. This graph is obtained from a directed
ternary tree, which has its root in the top element, by connecting
siblings, i.e., groups of three nodes that have the same parent.
(ii) Each element possesses a certain degree ofweakness or fatigue.
An element fails when its weakness exceeds a certain threshold.
(iii) The model runs in discrete time t = 0, 1, . . .. At each epoch
a given element may be either intact or failed (broken), and either
loaded or unloaded. The state of an element e at a epoch t is defined
by two Boolean functions: se(t) = 0, if an element is intact, and
se(t) = 1, if an element is failed; le(t) = 0, if an element is
unloaded, and le(t) = 1, if an element is loaded.

(iv) An element of the system may switch from one state (s, l) ∈
{0, 1}2 to another under an impact from its nearest neighbors and
external sources. The dynamics of the system is controlled by the
time delays between the given impact and switching to another
state.
(v) At the start, t = 0, all elements are in the state (0, 0), intact and
unloaded. Most of the changes in the state of an element occur in
the following cycle:

(0, 0) → (0, 1) → (1, 1) → (1, 0) → (0, 0) · · · .
Other sequences, however, are also possible, except that a failed
and loaded elementmay switch only to a failed and unloaded state,
(1, 1) → (1, 0). The latter transition mimics fast stress drop after
a failure.
(vi) All the interactions take finite, nonzero time.Wemodel this by
introducing four basic time delays: ∆L, between being impacted
by the load and switching to the loaded state, (·, 0) → (·, 1); ∆F ,
between the increase inweakness and switching to the failed state,
(0, ·) → (1, ·);∆D, between failure and switching to the unloaded
state, (·, 1) → (·, 0); and ∆H , between the moment when healing
conditions are established and switching to the intact (healed)
state, (1, ·) → (0, ·).

The duration of each particular delay, from one switch of
an element’s state to the next, is determined from these basic
delays, depending on the state of the element as well as of its
nearest neighbors during the preceding time interval (see [7] for
details). This represents yet another generalization of the set of
deterministic, autonomous equations (2)with fixed delays θij: here
the effective delays are both variable and state-dependent.
(vii) Failures are initiated randomly within the elements at the
lowest level.

The two primary delays in this system are the loading time
∆L necessary for an unloaded element to become loaded under
the impact of its parent, and the healing time ∆H necessary for a
broken element to recover.

Conservation law. The model is forced and dissipative, if we
associate the loading with an energy influx. The energy dissipates
only at the lowest level, where it is transferred downwards, out
of the model. In any part of the model not including the lowest
level, energy conservation holds, but only after averaging over
sufficiently large time intervals. On small intervals it may not hold,
due to the discrete time delays involved in energy transfer.

Model solutions. The output of the model is a catalog C of
earthquakes — i.e., of failures of its elements — similar to the
simplest routine catalogs of observed earthquakes:

C = (tk,mk, hk), k = 1, 2, . . . ; tk ≤ tk+1. (20)

In real-life catalogs, tk is the starting time of the rupture; mk is
the magnitude, a logarithmic measure of energy released by the
earthquake; and hk is the vector that comprises the coordinates
of the hypocenter. The latter is a point approximation of the
area where the rupture started. In our BDE model, earthquakes
correspond to failed elements, mk is the level at which the failed
element is situated within the directed graph, while the position
of this element within its level is a counterpart of hk.

4.3. Seismic regimes

A long-term pattern of seismicity within a given region is
usually called a seismic regime. It is characterized by the frequency
and irregularity of the strong earthquakes’ occurrence, more
specifically by (i) the Gutenberg-Richter relation, i.e. the time-
and-space averaged magnitude–frequency distribution; (ii) the
variability of this relation with time; and (iii) the maximal
possible magnitude. The notion of seismic regime here is a much
more complete description of seismic activity than the ‘‘level
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Fig. 7. Three seismic regimes in a colliding-cascade model of lithospheric
dynamics; each earthquake sequence illustrates characteristic features of the
corresponding regime and only a small fraction of each sequence is shown. Top
panel — regime H (High), ∆H = 0.5× 104; middle panel — regime I (Intermittent),
∆H = 103; bottom panel — regime L (Low), ∆H = 0.5 × 103; in all three panels
∆L = 0.5×104 (see also Fig. 10) and the number of nodes in the simulated lattice is
1093, for a tree depth of L = 6, the maximum magnitude of any earthquake in the
BDE model. Reproduced from Zaliapin et al. [7], with kind permission of Springer
Science and Business Media.

Fig. 8. Three seismic regimes: internal dynamics of the BDE model. The panels
show the density ρ(n) of broken elements in the system, as defined by Eq. (21);
they correspond to the synthetic sequences shown in Fig. 7. Top panel — RegimeH;
middle panel — Regime I; and bottom panel — regime L. Reproduced from Zaliapin
et al. [7], with kind permission of Springer Science and Business Media.

of seismicity,’’ often used to discriminate among regions with
high, medium, low and negligible seismicity; the latter are called
aseismic regions.

The seismic regime is to a large extent determined by the
neotectonics of a region; this involves, roughly speaking, two
factors: (i) the rate of crustal deformations; and (ii) the crustal
consolidation, determining what part of deformations is realized
through the earthquakes. However, as is typical for complex
processes, the long-term patterns of seismicity may switch from
one to another in the same region, as well as migrate from one
area to another on a regional or global scale [108,109]. Our BDE
model produces synthetic sequences that can be divided into three
seismic regimes, illustrated in Figs. 7–11.

Fig. 9. Measure G(I) of seismic clustering in our BDE model of colliding cascades;
see Eq. (26). The three curves correspond to the three synthetic sequences shown in
Fig. 7. Reproduced from Zaliapin et al. [7], with kind permission of Springer Science
and Business Media.

Fig. 10. Regime diagram in the (∆L, ∆H ) plane of the loading and healing delays.
Stars correspond to the sequences shown in Fig. 7. Reproduced from Zaliapin
et al. [7], with kind permission of Springer Science and Business Media.

Regime H: High and nearly periodic seismicity (top panel of
Figs. 7 and 8). The fractures within each cycle reach the top level,
m = L, where our underlying ternary graph has depth L = 6.
The sequence is approximately periodic, in the statistical sense of
cyclo-stationarity [110].

Regime I: Intermittent seismicity (middle panel of Figs. 7 and 8).
The seismicity reaches the top level for some but not all cycles, and
cycle length is very irregular.

Regime L: Medium or low seismicity (lower panel of Figs. 7 and
8). No cycle reaches the top level and seismic activity ismuchmore
constant at a low or medium level, without the long quiescent
intervals present in Regimes H and I.

The location of these three regimes in the plane of the two key
parameters (∆L, ∆H) is shown in Fig. 10. Figs. 7–12were computed
for a tree depth of L = 6, i.e. 1093 nodes. Many calculations were
also carried out for L = 7, i.e. 3280 nodes, and the results were
similar, but are not reported here.
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Fig. 11. Bifurcation diagram for the BDE seismic model: (a) rectangular path in
the delay plane (∆L, ∆H ); and (b) the measures G and ρ, calculated along the
rectangular path shown in panel (a). The transition between points (A) and (B), i.e.
between regimes H and L, is very sharp with respect to the change in irregularity
G of energy release, while almost negligible with respect to the change in failure
density ρ. The colored circles, triangles, and squares in panel (b) correspond
to synthetic catalogs from regimes H, I, and L, respectively; these catalogs are
produced for the points indicated along the rectangular path in panel (a), as well
as for many scatter points that lie on a uniform grid covering the entire regime
diagram, with the same resolution in ∆H and ∆L as those along the path.

4.4. Quantitative analysis of regimes

The quantitative analysis of model earthquake sequences and
regimes is facilitated by the two measures described below.

Density of failed elements. The density ρ(t) of the elements that
are in a failed state at the epoch n is given by:

ρ(t) = [ν1(t) + · · · + νL(t)]/L. (21)

Here νm(t) is the fraction of failed elements at the m-th level of
the hierarchy at the epoch t , while L is the depth of the underlying
tree. Sometimes we consider this measure averaged over a time
interval, or a union of intervals, I and denote it by ρ(I). The density
ρ(t) for the three sequences of Fig. 7 is shown in Fig. 8.

Irregularity of energy release. The second measure is the
irregularity G(I) of energy release over the time interval I . It is
motivated by the fact that one of the major differences between
regimes resides in the temporal character of seismic energy
release. The measure G is defined by the following sequence of
steps:

(i) First, define a measure Σ(I) of seismic activity within the time
interval, or union of time intervals, I as

Σ(I) = 1
nI

nI∑

i=1

10Bmi , B = log10 3. (22)

The summation in (22) is taken over all eventswithin I , i.e., ti ∈ I; nI
is the total number of such events, and mi is the magnitude of the
i-th event. The value of B equalizes, on average, the contribution
of earthquakes with different magnitudes, that is from different
levels of the hierarchy. In observed seismicity, Σ(I) has a
transparent physical meaning: given an appropriate choice of B, it
estimates the total area of the faults unlocked by the earthquakes
during the interval I [111]. This measure is successfully used in
several earthquake prediction algorithms [100].
(ii) Consider a subdivision of the interval I into a set of
nonoverlapping intervals of equal length ε > 0. For simplicity we
choose ε such that |I| = εNI , where | · | denotes the length of
an interval and NI is an integer. Therefore, we have the following
representation:

I =
NI⋃

j=1

Ij, |Ik| = ε, k = 1, . . . ,NI; Ij ∩ Ik = ∅ for j 2= k. (23)

(iii) For each k = 1, . . . ,NI we choose a k-subset

Ω(k) =
⋃

i=i1,...,ik

Ii

that maximizes the value of the accumulated Σ:

Σ[Ω(k)] ≡ Σ∗(k) = max
(i1,...,ik)

{

Σ

[
k⋃

j=1

Iij

]}

. (24)

Here the maximum is taken over all k-subsets of the covering set
(23).
(iv) Introducing the notations

Σ̄(k) = Σ∗(k)/Σ(I), τ (k) = kε/|I|, (25)

we finally define the measure G of clustering within the interval I
as

G(I) = max
k=1,...,NI

{
Σ̄(k) − τ (k)

}
. (26)

Fig. 9 illustrates this definition by displaying the curves Σ̄ − τ
vs. τ for the three synthetic sequences shown in Fig. 7. The curves
give, essentially, the maximum seismic activity minus the mean
activity, as a function of length of time over which the activity
occurs, and the maximum of each curve gives the corresponding
value ofG. Themore clustered the sequence, themore convex is the
corresponding curve, the larger the corresponding value of G, and
the shorter the interval forwhich this value ofG is realized. Despite
its somewhat elaborate definition, G has a transparent intuitive
interpretation: it equals unity for a catalog consisting of a single
event (delta function, burst of energy), and it is zero for a marked
Poisson process (uniform energy release). Generally, it takes values
between 0 and 1 depending on the irregularity of the observed
energy release.

4.5. Bifurcation diagram

Fig. 11 provides a closer look at the regime diagram of Fig. 10: it
illustrates the transition between regimes in the parameter plane
(∆L, ∆H). To do so, Fig. 11(a) shows a rectangular path in the
parameter plane that passes through all three regimes and touches
the triple point. We single out 30 points along this path; they are
indicated by small circles in the figure. The three pairs of points that
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Fig. 12. Synthetic sequences corresponding to the key points along the rectangular path in parameter space of Fig. 11(a). The panels illustrate the transitions between the
regimes H and L — panels (A) and (B); L and I — (C) and (D); and I and H — (E) and (F). The transition from (A) to (B) is very pronounced, while the other two transitions are
smoother. Reproduced from Zaliapin et al. [7], with kind permission of Springer Science and Business Media.

correspond to the transitions between regimes are distinguished
by larger circles and marked in addition by letters, for example (A)
and (B) mark the transition from Regime H to Regime L.

We estimate the clustering G(I) and average density ρ(I) over
the time interval I of length 2 × 106 time units, for representative
synthetic sequences that correspond to the 30marked points along
the rectangular path in Fig. 11(a). Fig. 11(b) is a plot of ρ(I) vs.
G(I) for these 30 sequences. The values of G drop dramatically,
from 0.8 to 0.18, between points (A) and (B): this means that the
energy release switches from highly irregular to almost uniform
between RegimesH and L. This transition, however, barely changes
the average density ρ of failures.

The transitions between the other pairs of regimes are much
smoother. The clustering drops further, from G = 0.18 to G ≈
0.1, and then remains at the latter low level within Regime L.
It increases gradually, albeit not monotonically, from 0.1 to 0.8

between points (C) and (A), on its way through regimes I and H.
The increase of ∆L along the right side of the rectangular path in
Fig. 11a, between points (F) and (A), corresponds to a decrease of
ρ and a slight increase of clustering G, from 0.5–0.6 to ≈ 0.8.

The transition between regimes is illustrated further in Fig. 12.
Each panel shows a fragment of the six synthetic sequences that
correspond to the points (A)–(F) in Fig. 11(a). The sharp difference
in the character of the energy release at the transition between
Regimes H (point (A)) and L (point (B)) is very clear, here too.
The other two transitions, from (C) to (D) and (E) to (F), are much
smoother. Still, they highlight the intermittent character of Regime
I, to which points (D) and (E) belong.

Zaliapin et al. [8] considered applications of these results to
earthquake prediction. These authors used the simulated catalogs
to study in greater detail the performance of pattern recognition
methods tested already on observed catalogs and other models
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[100,111–118], devised new methods, and experimented with
combinations of different individual premonitory patterns into a
collective prediction algorithm.

5. BDEs on a lattice and cellular automata (CAs)

While the development and applications of BDEs started about
25 ago, this is a very short time span compared to the long history
of ODEs, PDEs, maps, and even CAs. The BDE results obtained so far,
though, are sufficiently intriguing to warrant further exploration.
In this section, we provide some preliminary results on BDE
systems with a large or infinite number N of variables, and we
discuss in greater detail their connectionswith CAs [11,18,43], (see
also Fig. 1 and Section 2.6).

These ‘‘partial BDEs’’ that we are led to explore, with N → ∞
Boolean variables, were mentioned in passing in [2], and stand in
the same relation to ‘‘ordinary BDEs,’’ explored so far, as PDEs do to
ODEs. The classification of what we could call now ordinary BDEs
into conservative and dissipative (Section 2) suggests that partial
BDEs of different types can exist as well.

5.1. Towards partial BDEs of hyperbolic and parabolic type

Wewant, first of all, to clarifywhat the ‘‘correct’’ BDE equivalent
of partial derivativesmaybe. To do so,we start by studyingpossible
candidates for hyperbolic and parabolic partial BDEs. Intuitively,
these should correspond to generalizations of conservative and
dissipative BDEs, respectively (see Sections 2.3 and 2.5), that are
infinite-dimensional (in phase space). We are thus looking for the
discrete-variable version of the typical hyperbolic and parabolic
PDEs:
∂

∂t
v(z, t) = ∂

∂z
v(z, t), (27)

∂

∂t
v(z, t) = ∂2

∂z2
v(z, t), (28)

where, in the spatially one-dimensional case, v : R2 → R. We
wish to replace the real-valued function v with a Boolean function
u : R2 → B, i.e. u(z, t) = 0, 1, with z ∈ R and t ∈ R+, while
conserving the same qualitative behavior of the solutions.

Since for Boolean-valued variables |x − y| = x * y (see
Section 2 and Table 1), one is tempted to use the ‘‘eXclusive OR’’
(XOR) operator* for evaluating differences.Moreover, one is led to
introduce a time delay θt and a space delay θz when approximating
the derivatives in Eqs. (27) and (28) by finite differences. First-
order expansions then lead to the equations:

u(z, t + θt) * u(z, t) = u(z + θz, t) * u(z, t) (29)

in the hyperbolic case, and

u(z, t + θt) * u(z, t) = u(z − θz, t) * u(z + θz, t) (30)

in the parabolic one.

5.2. Boundary conditions and discretizing space

The pure Cauchy problem for Eq. (29) on the entire real
line [119], z ∈ (−∞, ∞) has solutions of the form:

u(z, t) = u(z + θz, t − θt). (31)

This first step towards a partial BDE equivalent of a hyperbolic PDE
displays therewith the expected behavior of a ‘‘wave’’ propagating
in the (z, t) plane. The propagation is from right to left for
increasing times when the ‘‘plus’’ sign is chosen in the right-hand
side (rhs) of Eq. (29), as we did, but it could be in the opposite
direction choosing the ‘‘minus’’ sign instead. The solution (31) of

(29) exists for all times t ≥ θt and it is unique for all delays
(θz, θt) ∈ (0, 1]2, and for all initial data u0(z, t)with z ∈ (−∞, ∞)
and t ∈ [0, θt).

In continuous space and time, Eq. (29) under consideration is
conservative and invertible. Aside from the pure Cauchy problem
discussed above, when u0(z, t) is given for z ∈ (−∞, ∞), one
can also formulate for (29) a space-periodic initial boundary value
problem (IBVP), with u0(z, t) given for z ∈ [0, Tz) and u0(z +
Tz, t) = u0(z, t). The solution of this IBVP displays periodicity
in time as well, with Tt = Tzθt/θz . This time-and-space periodic
solution exists for all time and is unique under conditions that are
analogous to those stated for the pure Cauchy problem above.

Next, we analyze a discrete version of Eq. (29), which is
obtained by studying the evolution of the system on a 1-D lattice.
Specifically, one considers the grid {zi = z0 + iθz}i∈Z for a fixed
z0 ∈ R and assumes that the initial state is constant within the
space intervals Ii = [z0 + iθz, z0 + (i + 1)θz] for t ∈ [0, θt),
i.e., u0(z, t) = ∑∞

i=−∞ u0,i(t)Ii, where Ii is the characteristic
function of the interval Ii, equal to unity on Ii and to zero outside
it. Correspondingly, the behavior of u(z, t) is determined by the
evolution of the elements of the set {ui(t) ≡ u(zi, t)}i∈Z and one
gets:

ui(t) = ui−1(t − θt), i ∈ Z. (32)

Eq. (32) is a simple linear BDE system (7), with cij = δj,i−1 and
equal delays θij = θt for all i and j, in the limit n → ∞. The
discretization thus makes it more evident that, in the IBVP case,
where {u0,i(t) = u0,i+N(t)}i∈Z, the solution is immediately periodic
in time, without transients, and with period Tt = Nθt . Notice that
for all (θz, θt) ∈ (0, 1]2,whether rational or not, one can choose the
space discretization generated by multiples of θz and the resulting
partial BDE system with constant initial data within the space
intervals Ii will depend on the single delay θt . The same observation
should apply to more general cases, and therefore partial BDEs,
whether hyperbolic or not, but containing only one space delay
θz and one time delay θt cannot display solutions with increasing
complexity. The case of partial BDEs with higher time derivatives
and admitting therewithmore than one timedelay, is left for future
work.

We merely note here that approximating ∂z in the hyperbolic
PDE (27) to the second order [120] yields the same partial BDE
(30) that was obtained from the first-order approximation of the
parabolic PDE:

u(z, t) = u(z − θz, t − θt) * u(z, t − θt) * u(z + θz, t − θt). (33)

The equivalence is apparent by using the associativity of addition
(mod 2) in B (see Section 2).

This result is slightly, but not utterly unexpected: it is fairly
well known in the numerical analysis of PDEs (i) that higher-
order finite-difference approximations of partial derivatives can
lead to P"Es (see Fig. 1) that are consistent with a different
PDE, containing higher-order derivatives [121]; and (ii) that such
higher-order approximations,when they are stable, aremore likely
than not to be dissipative. Still, Eqs. (29), (30) and (33) show that
finding the ‘‘correct’’ partial BDE equivalent of a given PDE is not
quite trivial. To get further insight into the behavior of Eq. (33), or,
equivalently, Eq. (30), we consider again the case of discrete space,
and show that this system is equivalent, in turn, to a particular CA
in the limit of infinite size.

5.3. Partial BDE (33) and ECA rule 150

Applying the space discretization scheme from the previous
subsection (Section 5.2) and using the same space-periodic initial
data, one finds that

ui(t) = ui−1(t − θt) * ui(t − θt) * ui+1(t − θt), i ∈ Z. (34)
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Fig. 13. Solutions of the ‘‘partial BDE’’ (34): (a) for a single nonzero site at t = 0; and (b) the collision of two ‘‘waves,’’ each originating from such a site. For the space and
time steps θz = θt = 1, this BDE is equivalent to the elementary cellular automaton (ECA) with rule 150; empty sites (ui(j) = 0) in white and occupied sites (ui(j) = 1) in
black.

In order to establish the equivalence of Eq. (34) with the general
form (14) of ECA evolution (in one space dimension), one needs to
specify the boundary conditions. For periodic boundary conditions
ui = ui+N , and the number n of BDEs that we can associate
with such an ECA is n = 2N + 1; this number, though, can be
slightly lower or higher if one uses Dirichlet or Neumann boundary
conditions.

To identify the particular Boolean function that gives the ECA
corresponding to Eq. (34), recall that in an ECA, i.e. a 1-D CA
where the interactions involve only the nearest right and left
neighbors ui±1, the single rule valid at all sites can be described by
a binary string. This string summarizes the truth table of the rule,
by assigning the values of the inputs (ui−1, ui, ui+1) in decreasing
order, from 111 to 000. Correspondingly, one gets 23 = 8 binary
digits, 1 or 0, for each possible output. The 8-digit string that
characterizes the 3-site rule on the rhs of Eq. (34) is 10010110. For
brevity, Wolfram replaces [11] each such 8-digit binary number by
its decimal representation, which yields, in this case, rule 150 [40].
We also recall that, for a finite number of variables, i.e. for i ∈
[−N,N] with finite size N , the ECA version of our pigeon-hole
lemma (Theorem 2.3 in Section 2.2) states that all solutions of such
an automaton have to become stationary or purely periodic after a
finite number of time steps. ForN infinite, however, rule 150 yields
interesting behavior, with self-similar, fractal patterns embedded
in its spatio-temporal structure.

Next, we study in detail the simple case of Eq. (34) with
the time-constant initial state, u0,i(t) ≡ ui(0) for 0 ≤ t <
θt , and assume θt = 1 without loss of generality, and θz =
θt for simplicity. We thus verify merely that our partial BDE
does generate the rule-150 ECA behavior, which is already quite
interesting, while we expect less trivial BDEs to yield distinct, and
possibly even more interesting, behavior.

We notice that the system’s dynamics for any initial state of
the pure Cauchy problem can be obtained from the evolution of
the corresponding ECA, that starts from initial data with a single
nonzero value, which we show in Fig. 13(a). This property of
solutions is due to the fact that rule 150 exhibits the important
simplifying feature of ‘‘additive superposition’’ [40], as evident
from Fig. 13(b), where the collision of two ‘‘waves’’ is plotted; this
feature is the result of linearity (mod 2), as discussed in [2,3] and
in Section 2 here.

In the IBVP case, the solutions can behave quite differently,
depending on the value of N and on the initial state. We report
here only the results for the IBVP with periodic initial data ui(0) =
ui+Tz (0) and number of variables 2N + 1, with N chosen to be an
integer multiple of the space period Tz . In this case — apart from
the presence of possible fixed points, in particular for Tz ≤ 3 —
the solutions of Eq. (34) display the longest time periods when

Fig. 14. The solution of the BDE (34) starting from a random initial state of length
N = 100. The qualitative behavior is characterized by ‘‘triangles’’ of empty (ui(j) =
0) or occupied (ui(j) = 1) sites but without any recurrent pattern; this behavior
does not depend on the particular random initial state.

Tz = N . More precisely, u0(0) = uTz (0) = 1 and ui(0) = 0 for
i not amultiple of Tz ; this choice of the initial state has the longest-
possible space period at fixed size N .

In agreementwith other known results for ECA150 [40,122],we
find that our solutions with Tz = N are immediately time periodic
for N not a multiple of three, whereas there is a transient when
N = 3p, p ∈ N; this transient is of length 1 for N odd and of
length 2j−1, where 2j is the largest power of two which divides
N , otherwise. The ECA with rule 150 belongs to the third class in
Wolfram’s classification [40,41], in which evolution for N → ∞
can lead to aperiodic, chaotic patterns. While the behavior of this
ECA is predictable from the knowledge of the initial state for the
IBVP with finite N , the length of the time period Tz can increase
rapidlywithN . In particular, one finds a time period already as long
as 511 for space-periodic initial data with Tz = N = 19.

To show that the behavior of the IBVP for Eq. (33) is not periodic
in time in the limit of N → ∞, we present in Fig. 14 the results
for a random initial state of length N = 100. These results do
not show any ‘‘recurrent pattern,’’ apart from the expected [11,43]
appearance of characteristic ‘‘triangles’’ that still emerge from the
chaotic distribution of empty and occupied sites.

We have seen in Section 2 (see Definition 2.1) that ordinary
BDEs are conservative if their behavior is immediately periodic
for any initial data, and that correspondingly, they are also time-
reversible. Our findings show that Eq. (33) is dissipative, since one
observes transients for the periodic IBVP with various N values;
this is expected from its equivalence with the ‘‘parabolic’’ BDE
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Table 2
Results on partial BDEs

PDE ∂tv = Approximation PBDE ui(t + θt ) = ECA rule ECA class Eq. no and behavior

∂zv * (1st order) ui−1(t) 170 – (29) C
∂zzv ∨ [ui−1(t) ∨ ui+1(t)] * ui(t) 54 I (35) D
∂zzv ∧ [ui−1(t) ∧ ui+1(t)] * ui(t) 108 II (36) D
∂zzv * (1st order) [ui−1(t) * ui+1(t)] * ui(t)

150 III (33) D
∂zv * (2nd order)

Summary of results on the partial BDEs (PBDEs) obtained fromdifferent approximations for the spatial derivative in the simplest parabolic and hyperbolic PDEs. The temporal
derivative is always approximated to first order by the* operator. The last columngives the equation number and the behavior of the solutions, conservative (C) or dissipative
(D). Notice that, though all but Eq. (29) in this table are dissipative, it is only Eq. (33) that displays chaotic behavior in the limit of infinite lattice size.

Eq. (30). Nevertheless, in the ordinary BDE context, the connectives
of the form (33), based on the* operator, are often conservative at
least for some set of distinct delays. We wish therefore to extend
the analysis of this partial BDE — from the case of all delays being
equal, θij ≡ θt , as above — to the case of distinct θt values in the
rhs of Eq. (34), since this could lead to conservative behavior, and
to increasingly complex solutions for some set of delays. Doing so,
however, goes beyond the purpose of the present paper and will
have to await future work.

Another attempt at formulating parabolic partial BDEs is given
by the equations:

u(z, t) = [u(z − θz, t − θt) ∨ u(z + θz, t − θt)] * u(z, t − θt),

(35)
u(z, t) = [u(z − θz, t − θt) ∧ u(z + θz, t − θt)] * u(z, t − θt),

(36)

obtained from the parabolic PDE (28) by replacing ∂zz with the
OR and the AND operator, respectively. From the known results
on ordinary BDEs, the solutions in these cases can be expected to
closely reproduce the behavior of dissipative PDEs. This intuitive
conjecture is confirmed by the analysis in terms of their ECA
equivalent. Thus, Eq. (35) corresponds to rule 54, in the first class,
and Eq. (36) to rule 108, in the second class. Accordingly, the
evolution of their solutions leads to fixed points or to small-period
limit cycles, respectively; in neither case does the N → ∞ limit
display chaotic behavior. We thus expect these connectives to
be good candidates as simple examples of ‘‘correct’’ partial BDE
equivalents of dissipative PDEs.

5.4. Summary on partial BDEs and future work

Our results on classifying finite BDE systems, on the one hand,
and our replacing partial derivatives in PDEs by Boolean operators,
on the other, seem to provide interesting insights into the
correspondence between partial BDEs and PDEs. In Sections 5.1–
5.3 we have only considered relatively easy cases, in which close
correspondence exists between our partial BDEs and ECAs. This
correspondence sheds new light on the known results of certain
cellular automata.

We summarize our results on partial BDEs in Table 2. In the
degenerate case of all delays being equal, θij ≡ θt for all i
and j, partial BDEs are always equivalent to particular CAs in
the limit of infinite size, and their expected behavior can be
obtained from the analogy.We gave examples of dissipative partial
BDEs corresponding to ECAs in different classes of Wolfram’s
classification [11]. In particular, a first-order approximation of the
spatial derivative in the parabolic PDE (28), as well as a second-
order approximation of this derivative in the hyperbolic PDE (27)
yielded the same partial BDE (33), equivalent to ECA 150, which
can behave very differently depending on the starting data. On the
other hand, Eq. (29) gave immediately periodic solutions for all the
starting data; hence this partial BDE is conservative. In the binary
string formulation reviewed in Section 5.3, it corresponds to ECA
rule 170, which is among the ‘‘forbidden’’ rules of Wolfram [11]

because it describes asymmetric interactions. Given its simplicity,
though, Eq. (29) and hence rule 170 seem perfectly legitimate in
the present context.

More difficult situations, such as the case of nonconstant
starting data in the initial interval, are left for future studies. To give
an idea of the possible outcomes, consider the solution of Eq. (31)
with initial data of the Riemann type, with a single jump in u0(z, t)
at z = 0 and t0 = 1/2 < θt , i.e., u0(z, t) = 1 for −∞ < z ≤ 0
and 0 ≤ t ≤ 1/2, and u0(z, t) = 0 in the rest of the initial strip,
{(z, t) : 0 < z < ∞, t < θt}

⋃{(z, t) : −∞ < z ≤ 0, 1/2 <
t < θt}. An obvious conjecture is that the solution will still be a
right- or left-traveling wave, depending on the sign taken in the
rhs of the partial BDE. More generally, certain z-periodic IBVPs will
also be well-posed and, in the more intriguing case of Eq. (33),
additive superposition will provide insight into solution behavior,
which might include certain solutions that exhibit both z- and t-
periodicity.

In the parabolic partial BDE (35) we conjecture instead that the
solution u ≡ 1 will be asymptotically stable, even for rationally
independent θz and θt and nonconstant initial data, at least for
large |z|. Conversely, u ≡ 0 should be asymptotically stable when
replacing the OR operator by AND as in Eq. (36); see Theorem 2.9
in Section 2.5. However, nontrivial solutions of parabolic problems
could be obtained in the presence of time-constant or time-
periodic forcing, like for PDEs.

One further step would consist of looking at the same
connectives with different delays, i.e. different θt values in the
variables in the rhs of the equations. This should in particular allow
one to better understand the classification of partial BDEs into
conservative and dissipative, possibly depending on the open set
of delays under consideration.We conjecture, moreover, that — for
distinct, irrationally related delays— connectives similar to the one
in Eq. (33) could have solutions of increasing complexity. If so, this
would provide us with an even richer metaphor for evolution than
either ordinary BDEs or ECAs.

6. What Next?

The most promising development in the theory and applica-
tions of BDEs seems to be the extension to an infinite, or very large,
number of variables as discussed in Section 4 (n ≈ 103) and Sec-
tion 5 (n → ∞). Inhomogeneous partial BDEs can be easily han-
dled by introducing ‘‘variable coefficients,’’ i.e.multiplication of the
right-hand side by site-dependent Boolean variables or functions.

Another important possibility is the randomization of various
aspects of the BDE formulation. So far, the study of stochastic
aspects in the BDE context has been limited, to the best of our
knowledge, to (i) Wright et al.’s [123] averaging over the ensemble
of BDE solutionswith randomized initial data of a slightlymodified
and simplified Ghil et al. [4]model; and (ii) Zaliapin et al.’s [7,8] use
of random external forcing, as reviewed in Section 4 here. Both the
effect of random initial data and of random forcing require a more
comprehensive study.

It could prove even more interesting to consider the random
perturbation of delays, first in ordinary and then in partial BDEs;
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see also work along these lines in Boolean networks [62]. More
generally, one could study delays chosen completely at random,
with a given probability distribution, and the resulting properties
of the attractors. Even more radically, one might consider random
connectives, i.e. introduce continuous time delays into random
Boolean networks. As mentioned in Section 2.6, the investigations
so far in this direction [62,63] share more similarities with kinetic
logic [20] than with the BDE approach reviewed herein, because of
the use of a minimal time interval.

The introduction of stochasticity can, in principle, lead to a
very different, and possibly simpler, behavior of the solutions.
Such a possibility is suggested by the recent results of Ghil
et al. [129] in the DDS context. These authors applied the recent
theory of random dynamical systems [130] to the Arnol’d family
of circle maps in the presence of noise and found the randomly
perturbed solutions to exhibit smoothed Arnol’d tongues. This
smoothing effect permits a more parsimonious coarse-grained
classification of the model’s phase-parameter space than in the
purely deterministic case. Such a smoothing effect might be
observed in the dDS context of BDEs as well.

Next, an important, but harder goal of the theory will be to
develop inverse methods. In other words, given the behavior of
a complicated natural system, which can be described in a first
approximation by a finite number of discrete variables, one would
like to discover a good connective linking these variables and
yielding the observed behavior for plausible values of the delays.
In this generality, the inverse problem for ODEs, say, is clearly
intractable. But some of the direct results obtained so far — see,
for instance, the asymptotic-simplification results in Section 2.5
— hold promise for BDEs, at least within certain classes and with
certain additional conditions. Intuitively, the behavior of BDEs,
although surprisingly rich, is more rigidly constrained than that of
flows. Certain inverse-modeling successes have also been reported
for cellular automata; see [11] and references there.

From the point of view of applications, BDEs have been applied
fairly extensively by now to climate dynamics [4,66,67,123–126]
and are making significant inroads into solid-earth geophysics [7,
8]. Most interesting are recent applications to the life sciences
(Neumann and Weisbuch [127,128], Gagneur and Casari [13],
Öktem et al., [63]), which represent in a sense a return to the
motivation of the geneticist René Thomas, originator of kinetic
logic [20,38,39]; see also Section 2.6 and Appendix for details.

BDEs may be suited for the exploration of poorly understood
phenomena in the socio-economic realm as well. Moreover, the
robustness of fairly regular solutions in a wide class of BDEs,
for many sets of delays and a variety of initial states, suggests
interesting applications to certain issues in massively parallel
computations.
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Appendix. BDEs and kinetic logic

A mathematical model closely related to BDEs was formulated
by Thomas [38,39] in a slightly different form. The difference can
best be explained in terms of ‘‘memorization variables’’ xij(t) =
xj(t−θij). In our formulation xij(t) is a purely delayed state variable;
that is, xij(t) is determined only by the state of the system at time
t−θij. Thomas allows thememorization variable xij(t) to depend on
the state of the system up to and including time t: when a change
takes place in any variable xk in the time interval (t − θij, t), then
the memorization variable xij may change as well.

Specifically, if for some t ′ ∈ (t − θij, t) the state of the system
is such that

xj(t ′) = fj(x1(t ′), . . . , xn(t ′)) 2= xj(t − θij), (37)

then thememorization variable xij(t), previously equal to xj(t−θij),
is changed to

xij(t) = xj(t ′). (38)

The adjustment of the variables xij is in effect selectively erasing
some of the memory of the system. The resulting solutions are
usually simpler, and hence easier to study than the typical solution
of our BDEs. Referring to the examples shown in Figs. 2 and 3 here,
the increasing complexity of the solution reflects the fact that the
memory of the system contains more and more information as
time goes on.

In Thomas’s kinetic-logic formulation, such solutions of increas-
ing complexity cannot arise. They are due precisely to the ‘‘con-
flicts’’ between variable values that were avoided on purpose in
kinetic logic [13]. Some recent work on Boolean networks [62,63]
use a similar policy of eliminating behavior that appears to be too
complicated, at least for certain purposes, and thus too hard to
capture numerically. Eliminating the selective memory erasure of
Eqs. (37) and (38) seems, on the other hand, to provide a cleaner,
richer and more versatile mathematical theory [1–3].

References

[1] D. Dee, M. Ghil, Boolean difference equations, I: Formulation and dynamic
behavior, SIAM J. Appl. Math. 44 (1984) 111–126.

[2] A.P. Mullhaupt, Boolean delay equations: A class of semi-discrete dynamical
systems, Ph.D. Thesis, New York University [published also as Courant
Institute of Mathematical Sciences Report CI-7-84, 1984, p. 193].

[3] M. Ghil, A.P. Mullhaupt, Boolean delay equations. II: Periodic and aperiodic
solutions, J. Stat. Phys. 41 (1985) 125–173.

[4] M. Ghil, A.P. Mullhaupt, P. Pestiaux, Deep water formation and Quaternary
glaciations, Clim. Dyn. 2 (1987) 1–10.

[5] M. Ghil, A.W. Robertson, Solving problems with GCMs: General circulation
models and their role in the climate modeling hierarchy, in: D. Randall (Ed.),
General CirculationModel Development: Past, Present and Future, Academic
Press, San Diego, 2000, pp. 285–325.

[6] A. Saunders, M. Ghil, A Boolean delay equation model of ENSO variability,
Physica D 160 (2001) 54–78.

[7] I. Zaliapin, V. Keilis-Borok, M. Ghil, A Boolean delay equation model of
colliding cascades. Part I: Multiple seismic regimes, J. Stat. Phys. 111 (2003)
815–837.

[8] I. Zaliapin, V. Keilis-Borok, M. Ghil, A Boolean delay equation model of
colliding cascades. Part II: Prediction of critical transitions, J. Stat. Phys. 111
(2003) 839–861.

[9] G.A. Cowan, D. Pines, D. Melzer (Eds.), Complexity: Metaphors, Models and
Reality, Addison-Wesley, Reading, Mass, 1994, p. 705.

[10] H. Gutowitz, Cellular Automata: Theory and Experiment, MIT Press,
Cambridge, MA, 1991, p. 485.

[11] S. Wolfram, Cellular Automata and Complexity: Collected Papers, Addison-
Wesley, Reading, Mass, 1994, p. 610.

[12] S.A. Kauffman, At Home in the Universe: The Search for Laws of Self-
Organization and Complexity, Oxford University Press, New York, 1995,
p. 338.

[13] J. Gagneur, G. Casari, From molecular networks to qualitative cell behavior,
FEBS Letters 579 (8) (2005) 1867–1871 (special issue).

[14] V.I. Arnol’d, Geometrical Methods in the Theory of Ordinary Differential
Equations, Springer-Verlag, New York, 1983, p. 376.

[15] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967)
747–817.



Author's personal copy

M. Ghil et al. / Physica D 237 (2008) 2967–2986 2985

[16] P. Collet, J.-P. Eckmann, Iterated Maps on the Interval as Dynamical Systems,
Birkhäuser Verlag, Basel, Boston, Birkhäuser, 1980, p. 264.

[17] M. Hénon, La topologie des lignes de courant dans un cas particulier, C. R.
Acad. Sci. Paris 262 (1966) 312–414.

[18] J. von Neumann, Theory of Self-Reproducing Automata, University of Illinois
Press, Urbana, Illinois, 1966, p. 388.

[19] S.A. Kauffman, The Origins of Order: Self-Organization and Selection in
Evolution, Oxford University Press, USA, 1993, p. 734.

[20] R. Thomas (Ed.), Kinetic Logic: ABooleanApproach to theAnalysis of Complex
Regulatory Systems, Springer-Verlag, Berlin, Heidelberg, New York, 1979,
p. 507.

[21] B.H. Arnold, Logic and Boolean Algebra, Prentice-Hall, Englewood Cliffs, New
Jersey, 1962, p. 144.

[22] K. Bhattacharrya, M. Ghil, Internal variability of an energy-balance model
with delayed albedo effects, J. Atmospheric Sci. 39 (1982) 1747–1773.

[23] R.D. Driver, Ordinary and Delay Differential Equations, in: Applied Mathe-
matical Sciences Series, vol. 20, Springer-Verlag, New York, 1977.

[24] J. Hale, Functional Differential Equations, Springer-Verlag, New York, 1971,
p. 238.

[25] N. McDonald, Time Lags in Biological Models, Springer-Verlag, New York,
1978, p. 112.

[26] R. Bellman, K.L. Cooke, Differential-Difference Equations, Academic Press,
New York, 1963.

[27] E. Isaacson,H.B. Keller, Analysis ofNumericalMethods, JohnWiley, NewYork,
1966.

[28] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems and
Bifurcations of Vector Fields, 3rd ed., Springer-Verlag, NewYork, 1997, p. 475.

[29] A.J. Lichtenberg, M.A. Liebermann, Regular and Chaotic Dynamics, 2nd ed.,
Springer-Verlag, New York, 1992, p. 714.

[30] E.N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci. 20 (1963)
130–141.

[31] V.I. Arnol’d, Mathematical Methods of Classical Mechanics, Springer-Verlag,
New York, 1978, p. 462.

[32] F. Varadi, B. Runnegar, M. Ghil, Successive refinements in long-term
integrations of planetary orbits, Astrophys. J. 592 (2003) 620–630.

[33] M. Ghil, S. Childress, Topics in Geophysical Fluid Dynamics: Atmospheric
Dynamics, Dynamo Theory and Climate Dynamics, Springer-Verlag, New
York, Berlin, London, Paris, Tokyo, 1987, p. 485.

[34] H.A. Dijkstra, M. Ghil, Low-frequency variability of the large-scale ocean
circulation: A dynamical system approach, Rev. Geophys. 43 (2005) RG3002.
doi:10.1029/2002RG000122.

[35] A.Ya. Khinchin, Continued Fractions, Univ. of Chicago Press, Chicago, IL, 1964.
[36] A. Andronov, L. Pontryagin, Systèmes grossiers, Dokl. Akad. Nauk. USSR 14

(1937) 247–251.
[37] F. Jacob, J. Monod, Genetic regulatory mechanisms in the synthesis of

proteins, J. Mol. Biol. 3 (1961) 318–356.
[38] R. Thomas, Boolean formalization of genetic control circuits, J. Theoret. Biol.

42 (1973) 563–585.
[39] R. Thomas, Logical analysis of systems comprising feedback loops, J. Theoret.

Biol. 73 (1978) 631–656.
[40] S. Wolfram, Statistical-mechanics of cellular automata, Rev. Modern Phys. 55

(1983) 601–644. also included in [11].
[41] S. Wolfram, Universality and complexity in cellular automata, Physica D 10

(1984) 1–7. also included in [11].
[42] S.A. Kauffman, Metabolic stability and epigenesis in randomly constructed

genetic nets, J. Theoret. Biol. 22 (1969) 437–467.
[43] G. Weisbuch, Complex Systems Dynamics: An Introduction to Automata

Networks, in: Lecture Notes Volume II, Santa Fe Institute, Studies in the
Sciences of Complexity, Addison Wesley, Redwood City, CA, 1991, p. 208.

[44] B. Derrida, Y. Pomeau, Random networks of automata: A simple annealed
approximation, Europhys. Lett. 1 (1986) 45–49.

[45] B. Derrida, G. Weisbuch, Evolution of overlaps between configurations in
random Boolean networks, J. Physique 47 (1986) 1297–1303.

[46] F. Varadi, M. Ghil, W.M. Kaula, Jupiter, Saturn and the edge of chaos, Icarus
139 (1999) 286–294.

[47] L. Correale, M. Leone, A. Pagnani, M. Weigt, R. Zecchina, Core percolation and
onset of complexity in Boolean networks, Phys. Rev. Lett. 96 (2006) 018101-
1–018101-4.

[48] L. Correale, M. Leone, A. Pagnani, M. Weigt, R. Zecchina, Computational
core and fixed-point organisation in Boolean networks, J. Stat. Mech. (2006)
P03002.

[49] M. Mézard, G. Parisi, R. Zecchina, Analytic and algorithmic solution of
satisfiability problems, Science 297 (2002) 812–815.

[50] R. Albert, A.-L. Barabási, Statisticalmechanics of complexnetworks, Rev.Mod.
Phys. 74 (2002) 47–97.

[51] S. Kauffman, C. Peterson, B. Samuelsson, C. Troein, Genetic networks with
canalyzing Boolean rules are always stable, Proc. Natl. Acad. Sci. USA 101
(2004) 17102–17107.

[52] B. Mesot, C. Teuscher, Deducing local rules for solving global tasks with
random Boolean networks, Physica D 211 (2005) 88–106.

[53] B. Samuelsson, C. Troein, Optimization of robustness and connectivity in
complex networks, Phys. Rev. Lett. 90 (2003) 068701-1–068701-4.

[54] B. Drossel, T. Mihaljev, F. Greil, Scaling in critical random Boolean networks,
Phys. Rev. Lett. 94 (2005) 088701-1–088701-4.

[55] T. Mihaljev, B. Drossel, Scaling in a general class of critical random Boolean
networks, Phys. Rev. E 74 (2006) 046101-1–046101-10.

[56] W. Just, G.A. Enciso, Analogoues of the Smale and Hirsch theorems
for cooperative Boolean and other discrete systems, 2007, preprint,
math.DS:0711.0138.

[57] G.A. Enciso, W. Just, Large attractors in cooperative bi-quadratic Boolean
networks. Part I, 2007, preprint, q-bio.MN:0711.2799.

[58] W. Just, G.A. Enciso, Large attractors in cooperative bi-quadratic Boolean
networks. Part II, 2008, preprint, q-bio.MN:0801.4556.

[59] F. Greil, B. Drossel, Kauffman networks with threshold functions, Eur. Phys. J.
B 57 (2007) 109–113.

[60] C. Gershenson, Introduction to random Boolean networks, nlin.AO/0408006,
in: Bedau, M., P. Husbands, T. Hutton, S. Kumar and H. Suzuchi (Eds.),
Workshop and Tutorial Proceeding, Ninth International Conference on the
Simulation and Synthesis of Living Systems (ALife IX), 2004, pp. 160–173.

[61] C. Gershenson, Classification of random Boolean networks, in: R.K. Standish,
M.A. Bedau, H.A. Abbass (Eds.), Artificial Life VIII: Proceedings of the Eight
International Conference on Artificial Life, MIT Press, 2002, pp. 1–8.

[62] K. Klemm, S. Bornholdt, Stable and unstable attractors in Boolean networks,
Phys. Rev. E 72 (2005) 055101-1–055101-4.

[63] H. Öktem, R. Pearson, K. Egiazarian, An adjustable aperiodic model class
of genomic interactions using continuous time Boolean networks (Boolean
delay equations), Chaos 13 (2003) 1167–1174.

[64] A. Gabrielov, V. Keilis-Borok, I. Zaliapin, W.I. Newman, Critical transitions in
colliding cascades, Phys. Rev. E 62 (2000) 237–249.

[65] A.M. Gabrielov, I.V. Zaliapin, V.I. Keilis-Borok, W.I. Newman, Colliding
cascades model for earthquake prediction, J. Geophys. Intl. 143 (2000)
427–437.

[66] M.S. Darby, L.A. Mysak, A Boolean delay equation model of an interdecadal
Arctic climate cycle, Clim. Dyn. 8 (1993) 241–246.

[67] T.M.H. Wohlleben, A.J. Weaver, Interdecadal climate variability in the
subpolar North Atlantic, Clim. Dyn. 11 (1995) 459–467.

[68] H.F. Diaz, V. Markgraf (Eds.), El Niño: Historical and Paleoclimatic Aspects of
the Southern Oscillation, Cambridge Univ. Press, New York, 1993, p. 490.

[69] S.G.H. Philander, El Niño, La Niña, and the Southern Oscillation, Academic
Press, San Diego, 1990, p. 312.

[70] M.H.Glantz, R.W.Katz, N.Nicholls (Eds.), Teleconnections LinkingWorldwide
Climate Anomalies, Cambridge Univ. Press, New York, 1991, p. 545.

[71] D. Maraun, J. Kurths, Epochs of phase coherence between El Niño/Southern
Oscillation and Indian monsoon, Geophys. Res. Lett. 25 (2005) 171–174.

[72] M. Latif, T.P. Barnett, M. Flügel, N.E. Graham, J.-S. Xu, S.E. Zebiak, A review of
ENSO prediction studies, Clim. Dyn. 9 (1994) 167–179.

[73] M. Ghil, N. Jiang, Recent forecast skill for the El Niño/Southern Oscillation,
Geophys. Res. Lett. 25 (1998) 171–174.

[74] J. Bjerknes, Atmospheric teleconnections from the equatorial Pacific, Mon.
Wea. Rev. 97 (1969) 163–172.

[75] P. Chang, B. Wang, T. Li, L. Ji, Interactions between the seasonal cycle and
the Southern Oscillation: Frequency entrainment and chaos in intermediate
coupled ocean-atmosphere model, Geophys. Res. Lett. 21 (1994) 2817–2820.

[76] P. Chang, L. Ji, B. Wang, T. Li, Interactions between the seasonal cycle and El
Niño - Southern Oscillation in an intermediate coupled ocean-atmosphere
model, J. Atmospheric Sci. 52 (1995) 2353–2372.

[77] F.-f. Jin, J.D. Neelin, M. Ghil, El Niño on the Devil’s Staircase: Annual
subharmonic steps to chaos, Science 264 (1994) 70–72.

[78] F.-f. Jin, J.D. Neelin, M. Ghil, El Niño/Southern Oscillation and the annual
cycle: Subharmonic frequency locking and aperiodicity, Physica D 98 (1996)
442–465.

[79] E. Tziperman, L. Stone, M.A. Cane, H. Jarosh, El Niño chaos: Overlapping of
resonances between the seasonal cycle and the Pacific ocean-atmosphere
oscillator, Science 264 (1994) 72–74.

[80] E. Tziperman, M.A. Cane, S.E. Zebiak, Irregularity and locking to the seasonal
cycle in an ENSOpredictionmodel as explainedby the quasi-periodicity route
to chaos, J. Atmospheric Sci. 50 (1995) 293–306.

[81] D.S. Battisti, The dynamics and thermodynamics of a warming event in a
coupled tropical atmosphere/ocean model, J. Atmospheric Sci. 45 (1988)
2889–2919.

[82] H.A. Dijkstra, Nonlinear Physical Oceanography: A Dynamical Systems
Approach to the Large Scale Ocean Circulation and El Niño, 2nd ed., Springer,
New York, 2005, p. 532.

[83] J.D. Neelin, M. Latif, F.-f. Jin, Dynamics of coupled ocean-atmospheremodels:
The tropical problem, Annu. Rev. Fluid Mech. 26 (1994) 617–659.

[84] F.-f. Jin, Tropical ocean-atmosphere interaction, the Pacific cold tongue, and
the El-Niño-Southern Oscillation, Science 274 (1996) 76–78.

[85] F.-f. Jin, J.D. Neelin, Modes of interannual tropical ocean-atmosphere
interaction – A unified view. I. Numerical results, J. Atmospheric Sci. 50
(1993) 3477–3503.

[86] F.-f. Jin, J.D. Neelin, Modes of interannual tropical ocean-atmosphere
interaction – A unified view. II. Analytical results in fully coupled cases, J.
Atmospheric Sci. 50 (1993) 3504–3522.

[87] F.-f. Jin, J.D. Neelin, Modes of interannual tropical ocean-atmosphere
interaction – A unified view. III. Analytical results in fully coupled cases, J.
Atmospheric Sci. 50 (1993) 3523–3540.

[88] M.H. Jensen, P. Bak, T. Bohr, Transition to chaos by interaction of resonances
in dissipative systems. Part I. Circle maps, Phys. Rev. A 30 (1984) 1960–1969.

[89] H.G. Schuster, Deterministic Chaos: An Introduction, Physik-Verlag, Wein-
heim, 1988.



Author's personal copy

2986 M. Ghil et al. / Physica D 237 (2008) 2967–2986

[90] B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, New York,
1982, p. 480.

[91] H.-O. Peitgen, P. Richter, The Beauty of Fractals, Springer-Verlag, Heidelberg,
1986, p. 211.

[92] H. Peitgen, H. Jürgens, D. Saupe, Chaos and Fractals: New Frontiers of Science,
Springer-Verlag, New York, 1992.

[93] E.M. Rasmusson, X. Wang, C.F. Ropelewski, The biennial component of ENSO
variability, J. Mar. Syst. 1 (1990) 71–96.

[94] N. Jiang, J.D. Neelin, M. Ghil, Quasi-quadrennial and quasi-biennial variability
in the equatorial Pacific, Clim. Dyn. 12 (1995) 101–112.

[95] V. Moron, R. Vautard, M. Ghil, Trends, interdecadal and interannual
oscillations in global sea-surface temperatures, Clim. Dyn. 14 (1998)
545–569.

[96] P. Yiou, D. Sornette, M. Ghil, Data-adaptive wavelets and multi-scale SSA,
Physica D 142 (2000) 254–290.

[97] R. Burridge, L. Knopoff,Model and theoretical seismicity, Bull. Seism. Soc. Am.
57 (1967) 341–371.

[98] C.J. Allègre, J.L. LeMouel, A. Provost, Scaling rules in rock fracture and possible
implications for earthquake prediction, Nature 297 (1982) 47–49.

[99] P. Bak, C. Tang, K.Wiesenfeld, Self-organized criticality, Phys. Rev. A 38 (1988)
364–374.

[100] V.I. Keilis-Borok, Earthquake prediction: State-of-the-art and emerging
possibilities, Annu. Rev. Earth Planet. Sci. 30 (2002) 1–33.

[101] V.I. Keilis-Borok, P.N. Shebalin (Eds.), Dynamics of lithosphere and earth-
quake prediction, Phys. Earth Planet. Int. 111 (1999), 179–330.

[102] W.I. Newman, A.M. Gabrielov, D.L. Turcotte (Eds.), Nonlinear Dynamics and
Predictability of Geophysical Phenomena, in: Geophys. Monographs Ser., vol.
83, American Geophysical Union, Washington, DC, 1994, p. 107.

[103] J.B. Rundle, D.L. Turcotte, W. Klein (Eds.), Geocomplexity and the Physics of
Earthquakes, American Geophysical Union, Washington, DC, 2000, p. 284.

[104] D.L. Turcotte, W.I. Newman, A.M. Gabrielov, A statistical physics approach
to earthquakes, in: J.B. Rundle, D.L. Turcotte, W. Klein (Eds.), Geocomplexity
and the Physics of Earthquakes, American Geophysical Union, Washington,
DC, 2000, pp. 83–96.

[105] V.I. Keilis-Borok, Intermediate-term earthquake prediction, Proc. Natl. Acad.
Sci. USA 93 (1996) 3748–3755.

[106] C.H. Scholz, The Mechanics of Earthquakes and Faulting, 2nd ed., Cambridge
University Press, Cambridge, 2002, p. 496.

[107] D.L. Turcotte, Fractals and Chaos in Geology and Geophysics, 2nd ed.,
Cambridge University Press, Cambridge, 1997, p. 412.

[108] A. Press, C. Allen, Pattern of seismic release in the southern California region,
J. Geophys. Res. 100 (1995) 6421–6430.

[109] B. Romanowicz, Spatiotemporal patterns in the energy-release of great
earthquakes, Science 260 (1993) 1923–1926.

[110] A. Mertins, Signal Analysis: Wavelets, Filter Banks, Time-Frequency Trans-
forms and Applications, John Wiley and Sons, Chichester, 1999, p. 330.

[111] V.I. Keilis-Borok, L.N. Malinovskaya, One regularity in the occurrence of
strong earthquakes, J. Geophys. Res. 69 (1964) 3019–3024.

[112] S.C. Jaume, L.R. Sykes, Evolving towards a critical point: A review of
accelerating seismic moment/energy release prior to large and great
earthquakes, Pure Appl. Geophys. 155 (1999) 279–306.

[113] V.I. Keilis-Borok, Symptoms of instability in a system of earthquake-prone
faults, Physica D 77 (1994) 193–199.

[114] G.F. Pepke, J.R. Carlson, B.E. Shaw, Prediction of large events on a dynamical
model of fault, J. Geophys. Res. 99 (1994) 6769–6788.

[115] G.M. Molchan, O.E. Dmitrieva, I.M. Rotwain, J. Dewey, Statistical analysis of
the results of earthquake prediction, based on burst of aftershocks, Phys.
Earth Planet. Int. 61 (1990) 128–139.

[116] L. Knopoff, T. Levshina, V.I. Keilis-Borok, C. Mattoni, Increased long-range
intermediate-magnitude earthquake activity prior to strong earthquakes in
California, J. Geophys. Res. 101 (1996) 5779–5796.

[117] C.G. Bufe, D.J. Varnes, Predictive modeling of the seismic cycle of the Greater
San Francisco Bay region, J. Geophys. Res. 98 (1993) 9871–9883.

[118] D.D. Bowman, G. Ouillon, C.G. Sammis, A. Somette, D. Sornette, An
observational test of the critical earthquake concept, J. Geophys. Res. 103
(1998) 24359–24372.

[119] R. Courant, D. Hilbert, Methods of Mathematical Physics, vol. II, Wiley-
Interscience, New York, London, Sydney, 1962, p. 830.

[120] R.D. Richtmyer, K.W. Morton, Difference Methods for Initial-Value Problems,
2nd ed, Wiley, New York, 1967, p. 420.

[121] B. Van Leer, Towards the ultimate conservation difference scheme. V. A
second order sequel to Godunov’s method, J. Comput. Phys. 32 (1979)
101–135.

[122] O. Martin, A.M. Odlyzko, S. Wolfram, Algebraic properties of cellular
automata, Comm. Math. Phys. 93 (1984) 219–258. also included in [11].

[123] D.G.Wright, T.F. Stocker, L.A. Mysak, A note on Quaternary climatemodelling
using Boolean delay equations, Clim. Dyn. 4 (1990) 263–267.

[124] C. Nicolis, Boolean approach to climate dynamics, Q. J. R. Meteorol. Soc. 108
(1982) 707–715.

[125] L.A. Mysak, D.K. Manak, R.F. Marsden, Sea-ice anomalies observed in the
Greenland and Labrador Seas during 1901–1984 and their relation to an
interdecadal Arctic climate cycle, Clim. Dyn. 5 (1990) 111–113.

[126] W.W. Kellogg, Feedback mechanisms in the climate system affecting future
levels of carbon dioxide, J. Geophys. Res. 88 (1983) 1263–1269.

[127] A. Neumann, G. Weisbuch, Window automata analysis of population
dynamics in the immune system, Bull. Math. Biol. 54 (1992) 21–44.

[128] A. Neumann, G. Weisbuch, Dynamics and topology of idiotypic networks,
Bull. Math. Biol. 54 (1992) 699–726.

[129] M. Ghil, M.D. Checkroun, E. Simonnet, Climate dynamics and fluid
mechanics: Natural variability and related uncertainties, Physica D 237
(2008) 2111–2126. doi:10.1016/j.physd.2008.03.036.

[130] L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998, p. 616.


