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1. Motivation

• Improve ENSO long-lead forecasts (beyond 7–8 months),
unreliable for current state–of–the–art statistical and dynamical
models, by exploiting low-frequency-variability (LFV)
episodic connection to the driving “noise” in empirical
dynamical model.

2. Empirical Model Reduction (EMR)

•EMR methodology attempts to construct low-order nonlinear
system of prognostic equations driven by stochastic forcing,
and to estimate both the dynamical operator and properties of
the driving noise directly from observations or high-level
model simulation:

ẋ = Ax + B(x,x) + L(x, rk
t , ξt, t),

ṙk
t = bk(x, r0

t , ..., r
k
t ) + rk+1

t , k ∈ {0, ..., K} (1)

•x is a state vector, typically principal components of climate
fields. A, B, L are estimated by multiple linear regression
(MLR) by using estimated tendencies ∆x as predictants.
Multi-level modeled multivariate stochastic forcing rk

t

represents unresolved processes, and the linear maps bk are
estimated recursively. The number of levels is determined so
that the lag-0 covariance of the regression residual rK

t

converges to a constant matrix Q = cov(rK
t ), while its lag-1

covariance vanishes. The rK+1
t = ξt, called the (K + 1)th

level’s residual stochastic forcing reconstructs the original time
series exactly.

3. EMR ENSO model.

•A two-level (K = 1) EMR model with seasonal cycle, obtained
by using 20 leading PCs of monthly Tropical Pacific SST
anomalies (Kondrashov et al. 2005), is highly competitive in
intraseasonal ENSO prediction:
iri.columbia.edu/climate/ENSO/currentinfo/modelviews.html

•ENSO quasi-quadriennial (QQ) 4-year and quasi-biennial (QB)
2-year LFV modes are captured by damped oscillatory
eigenmodes of linearized dynamical EMR operator, that are
excited by noise (aka nonnormal growth perturbations) and
interaction with seasonal cycle.

4. Singular spectrum analysis (SSA)

• SSA is a data-adaptive method for spectral estimation and is
extension of classic principal components analysis (PCA) in
time domain. SSA is based on diagonalizing time-laggged
covariance matrix; the set of its eigenvectors is an optimal set
of data-adaptive narrowband filters for decomposing the
variance within sliding time window. It is particularly well
suited for the analysis of time series exhibiting quasi-periodic
LVF behavior. The parts of time series that correspond to
trends, oscillatory modes or noise can be identified by using
reconstructed components (RCs).

4. Past Noise Forecasting (PNF)

• Since EMR estimates the history of the noise ξt that ENSO
“lives” on, it offers an opportunity to refine ensemble mean of
standard EMR prediction, by exploiting pathwise relation of
LFV episodes to the driving noise.

• Since ξt is stationary, we can parameterize the space of
probability Ω by a one-to-one time-dependent family of
transformations. If ξt is known over [0, t∗], we can use sliding
windows of length δ “scanning” the noise over [0, t∗] to derive a
set St∗ of noise “snippets”, which can serve as new realizations
ξt(ω) to compute EMR prediction: x(t∗ + t, t∗,xt∗; ω), t ∈ [0, δ].

•Note that ensemble means of EMR forced by spatially
correlated white noise distributed according N(0, Q), and by ξt

snippets of St∗, are the same. Thus we need to refine St∗!

•To do so, (S1) SSA is applied to select similar episodes in the
history of the LFV phase in PC1 w.r.t. the immediate phase at
time t∗ –start of prediction, and (S2) based on such
occurrences, appropriate noise snippets from the “past noise”
are selected to obtain prediction of EMR model.

• S1. To find similar LFV episodes, we compute RCk as sum of
k leading SSA RCs of PC1, and find times tj < t∗ − ∆ such
that RCk(tj : tj + ∆) is close enough to RCk(t

∗−∆ : t∗) in rms
error and correlation over continuous time interval of size ∆:

T′t∗ :=
{
tj ∈ (0, t∗ − ∆) :

rms(RCk(tj : tj + ∆) −RCk(t
∗ − ∆ : t∗)) ≤ α, and,

corr(RCk(tj : tj + ∆), RCk(t
∗ − ∆ : t∗)) ≥ 1 − β

}
,

(2)

• S2. The refined set of noise “snippets” to compute EMR
prediction from time t∗ is given by following subset of St∗,

S ′
t∗ := {ζ tj ∈ St∗ : tj ∈ T

′
t∗}; (3)

where each ζ tj is a copy of length δ of the residual noise ξt in
the past.

•The PNF prediction for δ = 16 months ahead is given by the
mean over ensemble driven by S ′

t∗.
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Figure 1: Principle of the PNF method: (vertical dashed) time t∗ at which we start prediction,

(red) PC1(t∗ − ∆,t∗ + 16), with ∆ = 5, (black) RC2 of PC1 (that captures most energetic, QQ

mode); (green) RC2 analogues selected by (2); (magenta) corresponding PC1 analogues,

(dashed blue) EMR ensemble mean over whole set of snippets St∗; (cyan) PNF ensemble

plume driven by selected subset of snippets S ′
t∗ in (3), x1(t

∗ + t, t∗,xt∗; ζ
tj)); (thick blue) PNF

ensemble mean over S ′
t∗.

5. Numerical Results and Skill
The proof–of–concept PNF prediction consists of fitting EMR
model and obtaining full set of noise snippets St∗ for 1950–1999
training period, and performing validation in 2000-2009. Drastic
improvement of Niño-3 prediction beyond 6 months by
PNF-EMR is due to its ability to predict energetic LFV episodes
of QQ+QB in 2000-2009.
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Figure 2: Upper panel: Drastic improvement of Niño-3 prediction skill by PNF. Lower panel:
PNF improvement in predicting Niño-3 at 14-month-lead is consistent with energetic phase of
low-frequency modes (QQ + QB) components of Niño-3 (cyan), captured by SSA.

Interpretation: In the EMR ENSO model the chaos is “weak”
(cf. Fig. 4) and the sensitivity w.r.t. the forcing is reasonably
moderate (cf. Fig. 5). The refined set of noise snippets S ′

t∗

corresponds to different initial conditions than at the time t∗ of
immediate forecasting, but is built on similar LFV phase in the
past (training period) preceding this time. Due to the weak
long-lead dependence on perturbations in the noise forcing and
initial conditions, it is thus natural to expect that forecasted
trajectories should “synchronize” with observed LFV (QQ+QB)
in the future at a longer lead as well, thus leading to improvement
in prediction skill.
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Figure 3: The Niño SST anomaly is defined as the area average over the rectangular box. PNF
skill is uniformly better (lower RMS, higher Corr) in the equatorial Tropical Pacific and Indian
Ocean, area where ENSO is active the most.

6. Theoretical justification of PNF method:
pathwise linear response and weak chaos in EMR
ENSO model.
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Figure 4: Weak sensitivity w.r.t. initial data and synchronization by the noise at long lead

times: x-axis is the normalized magnitude ‖x0 − x̂0‖ of a perturbation of an initial condition

x0 taken at time s. The y-axis represents normalized difference ‖x(t, s,x0; ω)− x(t, s, x̂0; ω)‖

at 1 month (t− s = 1, upper-panel) and at 12 months (t− s = 12, lower panel), driven by

same noise realization ω.
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Figure 5: Pathwise linear response of EMR ENSO model to noise perturbation: The

x-axis represents normalized magnitude of noise perturbation [
∫ t

s ‖χu(ω
′) − ξu(ω)‖du]. The

blue dots represent the normalized response of the EMR model’solutions

‖x(t, s,xs; ω) − x(t, s,xs; ω
′)‖ integrated over t− s = 16 months, with initial condition xs

taken at time s, for arbitrary perturbations χt(ω
′) = ξt(ω) + εξt(ω

′) (ε > 0) of the residual

noise from its training period. The red dots correspond to the model’s response

‖x(t∗ + t, t∗,xt∗; ω
′) − x(t∗ + t, t∗,xt∗; ω)‖ integrated over t = 16 months and over the

validation period, for specific perturbations χt(ω
′) ∈ St∗, i.e. from the full set of noise snippets

of the training period; where ξt(ω) is now the residual noise of the validation period. The

magenta dots are the same as the red ones except that χt(ω
′) ∈ S ′

t∗, i.e. the response is assessed

from the refined set of noise snippets obtained by the PNF procedure (cf. S1 & S2) in 4.
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