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Abstract. This study is motivated by problems related to environmen-1

tal transport on river networks. We establish statistical properties of a flow2

along a directed branching network and suggest its compact parameteriza-3

tion. The downstream network transport is treated as a particular case of4

nearest-neighbor hierarchical aggregation with respect to the metric induced5

by the branching structure of the river network. We describe the static ge-6

ometric structure of a drainage network by a tree, referred to as the static7

tree, and introduce an associated dynamic tree that describes the transport8

along the static tree. It is well known that the static branching structure of9

river networks can be described by self-similar trees (SSTs); we demonstrate10

that the corresponding dynamic trees are also self-similar. We report an un-11

expected phase transition in the dynamics of three river networks, one from12

California and two from Italy, demonstrate the universal features of this tran-13

sition, and seek to interpret it in hydrological terms.14

Sciences and Institute of Geophysics and Planetary Physics, University of California Los Angeles,

USA. E-mail: ghil@atmos.ucla.edu.
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1. Introduction

The topology of river networks has been extensively studied over the past decades and15

stream ordering schemes, as well as statistical self-similarity concepts, have been explored16

to a considerable extent [see Horton, 1945; Strahler, 1957; Shreve, 1966; Tokunaga, 1978;17

Mandelbrot, 1983; La Barbera and Rosso, 1987; Marani et al., 1991; Rodriguez-Iturbe et18

al., 1992; Peckham, 1995; Badii and Politi, 1997; Rodriguez-Iturbe and Rinaldo, 1997;19

Turcotte, 1997; Sposito, 1998; Peckham and Gupta, 1999; Pelletier and Turcotte, 2000;20

Burd et al., 2000; Dodds and Rothman, 2000; da Costa et al., 2002; and references therein]21

What has been less studied, however, is how the static topology of a river network affects22

and is affected by the dynamical processes operating over this network. For example,23

consider a directed tree that represents a river network, and assume we are interested in24

the mixing of water, solutes and sediments as they move downstream in reaches of variable25

lengths and merge at junctions of the river network. One might want then to attach a26

“metric” to the nodes of this tree, such as the distance to the nearest source, and consider27

the notion of a dynamic tree, superimposed on the template of the underlying static tree.28

This dynamic tree is likely to have a different hierarchy and topology than the static29

one. Depending on the dynamics, for example, some of the static-tree branches might be30

completely cut off, either due to a blockage that prevents transport along these branches31

or due to the absence of conditions to generate sediment or nutrient for downstream32

transport. In this case, the dynamic tree will have a different hierarchy than the static33

one, and this difference might affect the scaling of fluxes that participate in defining the34

envirodynamics on the network of interest. In general, a static tree of a given Horton-35
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Strahler order could become a dynamic tree of a lesser or higher order, depending on the36

superimposed dynamics.37

The purpose of this paper is to study the dynamic topology of directed trees, starting38

with several simple cases, first synthetic and then realistic. The direction we use is obvi-39

ously “downstream,” i.e., from the leaves to the root of the tree. We focus on a dynamic40

hierarchy built on the concept of “connectivity”: once two streams are connected, they41

both influence the downstream dynamics. One can thus imagine that two order-1 streams42

of different lengths, l1 and l2, merge at a node but do not automatically give rise to an43

order-2 stream, as would be the case in the standard Horton-Strahler ordering scheme;44

instead, we keep track of length and the assigned order becomes 2 only when the running45

index of length becomes max(l1, l2).46

Alternatively, one might keep track of time, rather than length: the two are equivalent47

if the flow velocity is constant along all the branches, which we will assume in the present48

paper, for simplicity’s sake. In other words, a dynamical node of order 2 is created49

only when the fluxes from both order-1 streams do reach the connecting node. Such50

considerations will result in a different ordering of the dynamic tree compared to the51

static one. Moreover, the newly created dynamic tree will be time-oriented, a property52

that is absent in conventional static trees.53

We approach the problem of hierarchical dynamics of river networks using general54

concepts of hierarchical aggregation, which studies how multiple individual particles55

(molecules, species, individuals, etc.) merge (aggregate, collide) with each other to form56

clusters in different physical, chemical, biological, or sociological settings. A major role57

in such studies is played by the notion of cluster dynamics. This concept refers to the58
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situation when a system that contains an infinite number of interacting particles can be59

decomposed into finite clusters that move independently of each other for some random60

interval of time. After this time, the particle interactions give rise to infinite-range cor-61

relations, although the system can be decomposed into another set of finite independent62

clusters, and so on.63

In the 1970s, Ya. G. Sinai developed a self-consistent mathematical formalism and64

proved the existence of cluster dynamics for some particle systems in statistical mechanics65

[Sinai, 1973, 1974]. The ideas of cluster dynamics have been applied to plasma physics,66

economics, and the study of precursory patterns for extreme events in geophysics [Rotwain67

et al., 1997; Molchan et al., 1990; Keilis-Borok and Soloviev, 2003]. Recently, Gabrielov68

et al. [2008] evaluated numerically the cluster dynamics of elastic billiards, leading to the69

detection of what appear to be the first genuine phase transitions and scaling phenomena70

that develop in time, rather than with respect to a control parameter, such as temperature71

T or density; i.e., a transition occurs and scaling develops as time t evolves toward a critical72

value t∗, rather than as the parameter T crosses a critical value T ∗.73

In this paper, we adapt the concept of cluster dynamics to environmental transport on74

river networks. Notably, we obtain a remarkably similar, and equally unexpected, phase75

transition in the cluster dynamics of river networks and attempt to interpret it in this76

context. We also study the statistical properties of the dynamic trees introduced herein.77

It is well known that the static branching structure of river networks can be described78

by self-similar trees (SSTs); we demonstrate, using three actual river basins, that the79

corresponding dynamic trees are also self-similar.80
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This paper is structured as follows. We review in Section 2 the terms and concepts81

relevant to the hierarchical analysis of branching structures, including the Horton-Strahler82

and Tokunaga branching taxonomies. Section 3 introduces the concept of a dynamic tree83

that is associated with a given static tree, by using two examples from river transport.84

Section 4 describes two types of static trees analyzed in this study. The first type reflects85

the well-formed “river network” of a basin. The second type reflects the “unchannelized86

drainage network”; this network is composed of drainage paths that are not permanent87

channels but are perpendicular to the topographic contour lines and follow the steepest88

downstream gradient. In other words, this drainage network is formed by paths of “zero-89

order” basins or hillslopes. Hierarchical aggregation is described in greater depth, and90

with additional examples from several fields, in Section 4, along with an abstract metric91

space setup. Three actual river networks, from California and Italy, are analyzed in92

Section 6. A summary and discussion follow in Section 7.93

2. Main concepts and definitions

This section introduces the main concepts used in the analysis of branching structures,94

along with their definitions and illustrative examples.95

2.1. Trees

A tree T is a set of nodes connected by vertices (also called edges or links) in such a96

way that there are no loops, i.e. there are no closed paths formed by distinct edges (see97

Fig. 1). A rooted tree has one special node designated as a root. In a rooted tree each98

connected pair of nodes has a parent-child relationship, with the parent being the element99

that is closest to the root [Athreya and Ney, 1972]. The nodes with no children are called100
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leaves. The depth di of a node i in a rooted tree is defined as the number of edges between101

this node and the root. The depth D of a tree is the maximum of the depths dl over all102

the leaves l.103

In this study we will work with binary trees. In a binary rooted tree, each node may104

have either two or no children. This means that each internal node i (every node except105

for the root and the leaves) is connected to three other nodes: one is a parent of i, and106

the other two are its children. The root is only connected to two children, and each leaf107

is connected to a single parent. A complete binary tree is a rooted tree such that all its108

leaves have the same depth. Our interest for binary trees is motivated by the observation109

that many natural phenomena exhibit binary branching. For example, in river networks,110

it is unlikely for three or more streams to merge at exactly the same point, while in gas111

dynamics it is unlikely that more than two molecules will collide at the same time.112

In our study of river transport, the tree T will represent a drainage network; see Fig. 1.113

Hence the nodes correspond to the merging points of streams and vertices to the stream114

segments between these points, while the network’s sources are the leaves, and the outlet115

is the root of the tree.116

2.2. Branching-order taxonomies

In many applications, there is a need to order the nodes according to their importance117

in forming the entire hierarchy; this importance often corresponds also to relative size.118

For instance, in a botanical tree the leaves are the most delicate, smallest elements; the119

intermediate levels are formed by consecutively wider branches, while the most heavy,120

robust element of the plant is its trunk. Likewise, one naturally distinguishes in a river121
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network between minor and major tributaries, according to the amount of water that they122

are able to carry.123

In a complete tree, the node ordering task is quite straightforward since a node’s order124

can be chosen to be inversely proportional to its depth: “the deeper, the smaller”. The125

problem, however, becomes more complicated when one deals with an incomplete tree; in126

this case, the depth can no longer serve as a proxy for size, since the leaves, while being127

the smallest elements, will often be assigned indices that are as large as those of much128

heavier internal nodes.129

Horton [1945] developed a convenient way to order hierarchically organized river tribu-130

taries; this method was later refined by Strahler [1957] and further expanded by Tokunaga131

[1978]. Currently, the so-called Horton-Strahler and Tokunaga ordering schemes are stan-132

dard tools of branching analysis.133

2.2.1. Horton-Strahler ordering134

Each leaf in a binary rooted tree is assigned a Horton-Strahler (HS) order r(leaf) = 1;135

see Fig. 2a. Each node p, which is the parent of nodes c1 and c2, is assigned a Horton-136

Strahler order r(p) according to the following rule [Horton, 1945; Strahler, 1957; Newman137

et al., 1997]:138

r(p) =

{
r(c1) + 1 ifr(c1) = r(c2)

max (r(c1), r(c2)) ifr(c1) �= r(c2).
(1)

A branch is defined as a union of connected nodes with the same order. We will denote by139

Nr the total number of branches of order r. Notice that each branch has linear structure:140

two children of the same parent can not belong to the same branch.141

In a tree with n leaves, the longest branch can be formed by (n − 1) nodes; this is the142

case when two leaves merge together to form an order-2 branch and then all other leaves143
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join this branch one by one. We refer to this situation as exhaustive branching. It is144

readily seen that each leaf is always an order-1 branch. An order-2 branch is created by145

merging two leaves and can consist of more that one node, depending on the leaves that146

join it; an order-2 branch that consists of two nodes is highlighted in Fig. 2a. The order147

Ω of a tree is the maximal order of its branches (or nodes).148

In a complete tree, each branch consists of a single node since the children of an order-149

r node always have the same order (r − 1). In such a tree, the HS order is uniquely150

determined by the node depth d via r = D − d + 1, where the tree depth is D = Ω.151

2.2.2. Tokunaga indexing152

Tokunaga indexing [Tokunaga, 1978; Peckham, 1995; Newman et al., 1997] extends153

upon the Horton-Strahler orders; it is illustrated in Fig. 2b. This indexing focuses on154

incomplete trees by cataloging the merging points between branches of different order.155

A first-order branch that merges with a second-order branch is indexed by “12” and the156

total number of such branches is denoted by N12. A first-order branch that merges with a157

third-order branch is indexed by “13” and the total number of such branches is N13, and158

so on. In general, Nij for j > i denotes the total number of order-i branches that join an159

order-j branch.160

The Tokunaga index Tij is the number of branches of order i that merge with a branch161

of order j, normalized by the total number of branches of order j; in other words, Tij is162

the average number of branches of order i < j per branch of order j:163

Tij =
Nij

Nj

. (2)

Merging of branches of different orders is referred to as side branching. It is easily164

seen that side branching is absent in a complete tree, and “a tree with side branching”165
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is synonymous to “an incomplete tree.” For incomplete trees, the side-branching indices166

become increasingly important as they help to define a tree’s structure, possibly indicating167

properties that are unique to specific classes of trees.168

For consistency, we denote the total number of order-i branches that merge with other169

order-i branches by Nii and notice that in a complete binary tree Nii = 2 Ni+1. This170

allows us to formally introduce the additional Tokunaga indices:171

Tii =
Nii

Ni+1

≡ 2.

The set {Tij : 1 ≤ i, j ≤ Ω} of Tokunaga indices provides a complete statistical description172

of the branching structure of an order-Ω tree.173

2.2.3. Other node statistics174

We introduce here two node statistics relevant to our river transport study:175

• the number of nodes (or links) within a branch i is denoted by ci; and176

• the magnitude mi of a node i is the number of leaves that descend from i; in other177

words, the magnitude of a branch is the number of the sources upstream of it.178

Magnitude measures the complexity of the river structure upstream from a given branch.179

We notice that each leaf (source) has unit magnitude, mleaf = 1, and the magnitude of a180

parental node p is the sum of the magnitudes of its children c1 and c2:181

mp = mc1 + mc2 . (3)

Accordingly, a node or order r has magnitude m ≥ 2r−1, with equality being attained182

only for a complete binary tree. The average number of nodes and average magnitude of183

an order-r branch are denoted by Cr and Mr respectively.184
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2.3. Self-similar trees

The concept of self-similarity provides a powerful tool for describing and studying trees.185

A self-similar tree (SST) is defined by the constraint186

Ti,i+k = Tk for k = 1, 2, . . . . (4)

E. Tokunaga was probably the first to study SSTs, and considered an additional con-187

straint on the branching indices [Tokunaga, 1978]:188

Tk+1

Tk

= c, or Tk = a ck−1 for a, c > 0. (5)

The SSTs that satisfy (5) are called Tokunaga trees.189

2.4. Horton laws

Empirically, the average values of branching statistics for the observed river basins190

depend exponentially on the order r:191

Nr = N0 RΩ−r
B , (6)

Mr = Rr−1
M , (7)

Cr = C0 Rr
C (8)

for some positive constants N0 and C0. Such relationships are called Horton laws; the192

bases RB, RM , and RC of the exponential relatonships are called stream ratios.193

McConnell and Gupta [2008] showed that the Horton laws (6), (7) hold asymptotically,194

i.e. for r → ∞, in a self-similar Tokunaga tree; they also proved that RB = RM . Moreover,195

Zaliapin [2009] demonstrated the stream ratio inequality196

RB = RM < RC , (9)
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that had been conjectured by Peckham [1995]. In addition, Zaliapin [2009] demonstrated197

that the Horton laws hold, under some additional assumptions on the Tokunaga indices198

Tk, for self-similar trees that do not necessarily satisfy the Tokunaga condition (5).199

3. Static vs. dynamic trees: Network envirodynamics

The topological structure of a river network is well described by a tree, which we denote200

by TS and call the static tree. To describe the downstream transport on TS we now201

introduce a dynamic tree TD, which can be interpreted as follows. Imagine that we inject202

a dye simultaneously into all the sources of our river network, represented by the leaves of203

TS, and the dye starts propagating down the river, from the sources to the outlet, with the204

same constant velocity along all the streams. The tree TD describes the time-dependent205

history of the mergings of the colored streams.206

Next, we consider two detailed examples that will clarify this important concept. We207

restrict ourselves to the simplest case of constant velocity along all the streams; taking this208

velocity to be unity, time and length scales can be interchanged. An extension to spatially209

or temporally variable velocities is straightforward: we shall see that the dynamic tree TD210

is completely determined by the static tree TS and the set of time delays τi necessary for211

the dye to propagate from a node i to its parent.212

3.1. Synthetic example

Figure 3 shows how to construct the dynamic tree for a basin with four sources a, b,213

c, and d. The static tree for this basin is a complete binary tree shown in the top right214

panel. The same tree with the link lengths explicitly shown is placed in the top row of215

panels; the top left panel indicates the values of these lengths.216
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The consecutive phases of construction of the dynamic tree are shown in the bottom217

row of panels. At step 0 (the leftmost top and bottom panels), all the links in the tree218

are “empty” (dashed lines) and the dye is injected into the sources a, b, c, and d.219

Accordingly, we have four disconnected clusters of colored flux; they correspond to four220

disconnected nodes in the lower left panel. Each step in the figure is a snapshot of the221

process after a unit time interval; recall that we only use constant velocity in this paper222

and, without loss of generality, this velocity equals unity.223

At step 1 the dye has propagated a unit length along each stream, which is depicted by224

solid lines in the top panel. Since all four streams are disconnected so far, the dynamic225

tree still consists of four disconnected branches, each of which corresponds to a colored226

stream of unit length. At step 2 the streams a and b merge. This is reflected in the227

dynamic tree, where the nodes a and b are now connected into a single cluster. Notice228

that the leaves a and b are not directly connected in the static tree; this connection229

reflects a special property of the dye’s downstream propagation.230

At step 3 stream c reaches stream a. Since stream a by that time is already merged with231

stream b, we say that the stream c merges with the cluster of a and b; this is reflected232

in the dynamic tree in the lower panel for this step. Hence, at step 3 there exist two233

connected clusters of the colored flux: one cluster is formed by the streams a, b, and c,234

while stream d alone forms the second cluster. Finally, at step 4, all the colored fluxes235

merge together. The conventional representation of both static and dynamic trees, which236

does not show the link lengths, is given in the two rightmost panels.237

This example shows that the dynamic tree TD can be very different from the correspond-238

ing static tree TS. We notice in particular that in this example the static tree is a tree239
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with no side branching; it has the largest possible Horton-Strahler order, Ω = 3, for a tree240

with four leaves. At the same time, the dynamic tree exhibits exhaustive side-branching;241

accordingly, it has the smallest possible order, Ω = 2, for a four-leaved tree.242

3.2. Realistic example

Here we illustrate the dynamic tree for an order-3 subbasin of the Noyo basin; this basin243

is located in Mendocino County, California, USA, and is described by Sklar et al. [2006].244

The stream network for this subbasin is shown in Fig. 4; its fifteen sources are marked245

by numbers 1 to 15 and fourteen stream joints by letters a to n. The static tree TS for246

this stream network is shown in Fig. 5a; it has the Horton-Strahler order Ω = 3.247

The time-oriented dynamic tree TD is shown in Fig. 5b against the time axis (on the248

ordinate); notice that time can also be interpreted as the distance traveled by the dye249

from each source. This interpretation has a direct connection to the metric properties of250

the basin and we will use it in the subsequent analysis. The order of the dynamic tree is251

Ω = 4. The letter and number marks in Fig. 5 match those in Fig. 4.252

Four snapshots of the dye propagation — at times t = 1, 20, 39, and 60 — are shown253

in Fig. 6. In this example, the dynamic tree shows a larger degree of side-branching254

compared to the static tree; this larger degree is reflected in its larger HS order. We shall255

see in other realistic examples, further below, that this seems to be the case for most256

actual river networks.257

4. Stream vs. hillslope networks

In an actual landscape, channels are initiated when the area upstream suffices to create258

a sustainable source of streamflow and this source imprints a permanent channel on the259
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terrain. Although these channels are typically detectable by field observations, the extrac-260

tion of the channel initiation points, or “channel heads,” from Digital Elevation Models261

(DEMs) has been a subject of intense study. Most commonly, channels are assumed to be262

initiated when the upstream area, or area times a typical slope, exceed a given threshold;263

the parameters of such relationships are field-calibrated. More recently, the availability of264

high-resolution, 1-m elevation data from LIght Detection and Ranging (LIDAR) instru-265

mentation has initiated a new generation of methodologies for the automatic detection of266

channels as “edges” or “features” in the terrain [e.g., Lashermes et al., 2007; Passalaqua267

et al, 2009].268

The channelized paths, i.e. the branches of the river network, are not the only parts269

of the basin by which water or other fluxes — e.g., sediments, nutrients, or pollutants —270

are transported downstream. The unchannelized part of the basin, often called zero-order271

basins or hillslopes, is drained by pathways that have their own topology. In this work,272

we extract (i) stream networks from DEMs by using a critical threshold area Ac, and (ii)273

hillslope networks by assuming that Ac is as small as the DEM resolution.274

Clearly, each stream network is a part of the corresponding hillslope network. For a275

generic river basin, though, the total length of channelized paths is much smaller than276

the total length of unchannelized paths. In the present study, we assume that stream277

networks reflect the properties of channelized paths, while hillslope networks reflect the278

properties of unchannelized paths. The study of unchannelized-path topology below will279

show that it is quite different from the topology of the channelized paths.280

Construction of stream and hillslope static trees is illustrated in Fig. 7. Figure 7a281

shows a small part of a river basin; it is divided into 16 square regions called pixels. The282
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well-defined streams occupy some of the pixels (shaded squares), the rest of the pixels283

(white squares) represent hillslopes, i.e. unchannelized parts of the basin.284

The elevation data can be used to figure out the flux direction from each pixel, whether285

stream or hillslope; this direction is depicted by arrows in Fig. 7b. We assume that there286

is a unique flux direction away from each pixel; at the same time, fluxes can reach a287

given pixel from more than one other pixel. This property allows one to represent the288

directional information by a tree, which is shown in Fig. 7c. Solid nodes and solid lines in289

the figure represent the stream pixels and the stream flow respectively, while open nodes290

and dashed lines represent the hillslope nodes and hillslope flow.291

The final step in creating the static tree of this subbasin is to remove the linear segments292

(chains), that is to remove the nodes with only two connections (except the tree root).293

The resulting static hillslope tree is shown in panel (d). The static stream tree is obtained294

from the hillslope tree by removing the dashed links that represent unchannelized paths,295

and removing the remaining chains; the stream tree for our example is shown in panel296

(e).297

5. The dynamics of hierarchical aggregation

The consecutive merging of river streams discussed in the previous section is a special298

case of a general phenomenon of hierarchical aggregation. This phenomenon is also called299

inverse cascading, and it can be described as follows.300

Consider a process that starts at time t = 0 with N individual particles, which can be301

considered as clusters of unit mass. As time evolves, the clusters start to merge with one302

another, according to a set of suitable rules, thus forming consecutively larger clusters.303

We assume that only two clusters can merge at the same time; thus after each merging304
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the number of clusters decreases by one. The process continues until all particles have305

been merged into a single cluster of mass N . The evolution of the above process can be306

described by a time-oriented binary tree, whose leaves correspond to the initial particles,307

the root to the final cluster of N particles, and each internal node to the merging of a308

particular pair of clusters.309

5.1. Examples

Among the many instances of the above general aggregation scheme, we mention here310

the following four.311

Percolation.: In the site percolation process on an L × L lattice, the initial N = L2
312

particles correspond to the sites of the lattice, while clusters correspond to connected313

patches of occupied sites that are formed during the percolation process [Zaliapin et314

al., 2005]. In fact, the same scheme can be applied to bond percolation, as well as to315

percolation on grids in higher dimensions.316

Billiards.: Elastic billiard on a rectangular table can be used to model gas dynamics317

in two dimensions (2-D). Here the initial particles are the N billiard balls (gas molecules)318

at time t = 0. Each of the balls is assigned an initial position and velocity. The clusters319

at time Δ are formed by balls that have collided during the time interval [0, Δ] [Gabrielov320

et al., 2008]. Formally, two balls are called Δ-neighbors if they collided during the time321

interval [0, Δ]. Each connected component of this neighbor relation is called a Δ-cluster.322

Notice that within an arbitrary Δ-cluster each ball has collided with at least one other323

ball during the time interval [0, Δ]. In other words, a Δ-cluster is a group of balls that324

have affected each other’s dynamics during the time interval of duration Δ. The mass of325

each cluster is simply the total number of balls within that cluster. Upon many collisions326
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of the balls, the whole system will be composed of clusters of different sizes. As time327

evolves, the number of clusters will decrease and their mass increase.328

The same scheme can be applied to a system of particles that interact according to some329

potential U(x). Bogolyubov [1960] suggested that when the interaction of particles is short-330

ranged, the system can be decomposed into finite clusters so that during some random331

interval of time, each cluster moves independently of other clusters as a finite-dimensional332

dynamical system. After this time interval, the system can be decomposed again into333

other dynamically independent clusters and so on. This type of dynamics is called cluster334

dynamics and Sinai [1974] showed analytically that it exists in a one-dimensional (1-D)335

system of statistical mechanics. Numerical results of Gabrielov et al. [2008] describe the336

presence and various properties of cluster dynamics in a 2-D system of hard balls.337

Phylogenetic trees.: Probably the best-known application of hierarchical aggre-338

gation is in constructing phylogenetic trees that describe the evolutionary relationships339

among biological species [Maher, 2002]. Here, a node corresponds to a set of species.340

Two species are connected if they have a direct common ancestor; the link length from341

a species to its direct ancestor equals the time it took to develop the descendant species342

from that ancestor.343

River transport.: The example of interest to us here is the downstream transport344

along a river network. In this case, the initial particles are the environmental fluxes at345

the sources of the network, and clusters are formed by consecutive merging of the streams346

down the river path. That is, new clusters are formed when fluxes from upstream merge347

at the stream junctions. This scheme of describing dynamics along a static tree was348

considered in detail in Section 3, albeit without referring to hierarchical aggregation.349
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5.2. General set-up

Hierarchical aggregation can be described in great generality by using the framework of350

nearest-neighbor clustering in a metric space. Specifically, consider a set S with distance351

d(a, b) for a, b ∈ S; the elements of the set will be called points. The distance d(A,B)352

between two subsets of points A = {ai}i=1,...,NA
and B = {bi}i=1,...,NB

from S is defined as353

the shortest distance between the elements of the sets:354

d(A,B) = min
1≤i≤NA,1≤j≤NB

d(ai, bj).

Nearest-neighbor clustering is a process that combines points from S into consecutively355

larger subsets, called clusters, by connecting at each step the two nearest clusters; this356

process can be described by the nearest-neighbor spanning tree T. Specifically, consider357

N points c0
i ∈ S, i = 1, . . . , N with pairwise distances d0

ij ≡ d(c0
i , c

0
j). These points,358

considered as clusters of unit mass (mi = 1), form N leaves of the time-oriented tree T.359

The first internal tree node is formed at the time t1 = minij d0
ij by merging two closest360

points c0
i∗ and c0

j∗ with (i∗, j∗) = argminij d0
ij, where argminij f(i, j) is defined as a pair361

(i∗, j∗) such that f(i∗, j∗) = minij f(i, j). This merging creates a new cluster of two362

points, with a mass of mi + mj = 2. Hence, at time t1, there exist N − 1 clusters: N − 2363

clusters with unit mass and one cluster of mass m = 2.364

We can now reindex the clusters so as to work with clusters c1
i , i = 1, . . . , N − 1; their365

total mass is
∑N−1

i=1 mi = N and pairwise distances are d1
ij ≡ d(c1

i , c
1
j). The second internal366

node of tree T is formed at time t2 = minij d1
ij > t1 by merging the two closest clusters367

from the set {c1
i }i=1,...,N−1. Thus, at time t2 we have N −2 clusters c2

i such that their total368

mass is N and pairwise distances are d2
ij ≡ d(c2

i , c
2
j). We continue in the same fashion,369

so the k-th internal cluster, for 1 ≤ k ≤ N − 2, is formed at time tk = minij dk
ij > tk−1,370
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and at that time we have (N − k) clusters ck
i , i = 1, . . . , N − k with masses mi such that371

∑N−k
i=1 mi = N . Finally, at time tN−1 we create a single cluster of mass N that combines372

all points c0
i ; this cluster forms the root of the tree T.373

Consider two nodes a and b from the nearest-neighbor tree and let ta and tb be their374

time marks; recall that the tree is time-oriented by the definition of the successive times375

tk = minij dk
ij > tk−1 at which the cluster mergers occur. The ancestors of a node are its376

parent, the parent of that parent, and so on, all the way to the root. Clearly, the time377

mark for an ancestor is larger than that of a descendant. The nearest common ancestor378

p of nodes a and b is their common ancestor with the minimal time mark tp.379

The distance u(a, b) along the the nearest-neighbor tree is defined as the maximum of380

the values u(a, p) ≡ tp − ta and u(b, p) ≡ tp − tb. This distance satisfies two of the381

usual distance axioms, symmetry and strict positivity, but the triangle inequality can be382

replaced by a more stringent one, namely383

u(a, b) ≤ max [u(a, c), u(c, b)],

which holds for any three nodes a, b and c. Such a distance function is called an ultrametric384

[Rammal et al., 1986; Schikhof, 2007]. Ultrametric spaces have many peculiar properties;385

for instance, one can rename any triplet a, b, c of nodes in such a way that386

u(a, c) = u(b, c).

These unusual properties give ultrametric spaces considerable flexibility in applications,387

and point sets connected via nearest-neighbor clustering are a representative example of388

such spaces.389
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In the billiard example of Section 5.1, the space S is the set of N billiard balls and the390

ultrametric distance function u(a, b) equals the time before the first collision of the balls391

a and b. Naturally, their distance depends on the initial positions and velocities of the392

two balls a and b, but it is affected by the global billiard dynamics: our two balls may393

be set to collide at a given time t∗ in the absence of other balls, but may be hit by some394

other ball at time t < t∗, thus postponing the collision of a with b.395

In our river transport problem, the space S is the set of all river sources. The ultrametric396

distance u(a, b) between two sources is defined as the time necessary for the corresponding397

fluxes injected into these two sources to meet down the river path. If the static river398

geometry is described by the tree TS — and we assume, as previously stated, that fluxes399

move with unit speed downstream — the traditional distance d(a, b) between two sources400

equals the maximal length along the tree to their nearest common parent in TS. The401

nearest-neighbor spanning tree of hierarchical-aggregation theory becomes what we called402

so far, in the context of river transport, the dynamic tree TD. As previously stated, this403

dynamic tree differs, in general, from the static tree TS and depends not only on the404

topology of the latter, but also on the actual length of the links. If the velocities vary405

in time or space, then the spanning tree TD will depend on the specific dynamics of the406

processes operating on the static tree.407

To better understand transport on river networks, we will elucidate in the next section408

the connection between the statistical properties of TS and those of TD.409

6. Analysis of drainage networks

In this section we quantify similarities and differences between the branching topology410

of static and dynamic trees, both at the stream and hillslope network scale.411
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6.1. Data description

We have analyzed three river basins: Upper Noyo (Mendocino County, California, USA),412

Tirso (Sardinia, Italy), and Grigno (Trento, Italy). Infomration about the physiographic413

and geologic characteristics of these basins can be found in, respectively, Sklar et al.414

[2006], Pinna et al. [2004], and Guzzetti et al. [2005]. The available DEMs were at a415

resolution of 10×10 m2 for the Noyo basin, 30×30 m2 for the Grigno basin, and 100×100416

m2 for the Tirso basin. Since the focus of this study is not the extraction of the most417

accurate river network from the available DEMs, we felt comfortable adopting a simple418

criterion for channel initiation as 100 pixels for all basins. Our main conclusions about419

the comparison between the static and dynamic trees would not be affected by changing420

the critical threshold areas within reasonable ranges.421

The static trees we extracted from these DEMs for the three stream networks are shown422

in Fig. 8. Using the procedure described earlier, we also extracted the static trees for423

the hillslope networks, which drain every pixel of a basin, by using a steepest gradient424

algorithm. The corresonding dynamic stream and hillslope trees were then constructed425

for each basin, assuming a constant unit speed of downstream propagation for the fluxes.426

Thus, we analyzed four different kinds of tree — static stream, dynamic stream, static427

hillslope, and dynamic hillslope – for each basin.428

6.2. Self-similar properties

Figures 9 and 10 show the distributions of the number Nr, average magnitude Mr, and429

the average number Cr of links for branches of order r. The results in Fig. 9 refer to the430

stream trees; the results in Fig. 10 to the hillslope trees.431
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Despite the small-sample fluctuations, the figures demonstrate a large degree of con-432

sistency among the branching indices for the trees from different classes. All considered433

branching statistics are closely approximated by the Horton laws. Moreover, the results434

suggest that the relationship (9) holds in all the considered cases. Furthermore, we ob-435

serve that the values of the stream ratios for static trees are higher than the corresponding436

values for dynamic trees; and the values of the stream ratios for stream trees are smaller437

than the corresponding values for hillslope trees.438

The only indices that considerably deviate from the Horton laws at higher orders are Cr439

(average number of nodes within an order-r branch) for the Noyo basin and this warrants440

special investigation in the future. Apart from this discrepancy, overall we conclude that441

the four classes of trees, dynamic vs. static and stream vs. hillslope, can be closely442

approximated by the Tokunaga SSTs.443

6.3. Phase transition in hierarchical dynamics

Here we ask the question as to whether the river network connectivity (in terms of444

elements of the network participating in transport) exibits a phase transition akin to those445

found in other systems. Figure 11 shows the fractional magnitudes mi/N of the branches446

in the dynamic trees (stream and hillslope trees of the three river basins) as a function447

of the distance d traveled by the dye. Recall that this distance can also be interpreted as448

the time t when the node was created by merging of upstream branches. Altogether we449

consider six cases; in all of them one observes the following scenario. We start at distance450

d = 0 (or time t = 0) with N branches (clusters) of unit magnitude corresponding to the451

most outer nodes of the transport tree. As distance increases (time evolves), the number of452

clusters decreases while their magnitudes become larger and exhibit prominent variability.453
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In particular, at the small distances the maximal magnitude increases exponentially with454

distance; this is reflected by an approximately linear form of an upper envelop of the455

points in the figures (the envelop is not shown). Furthermore, we notice that at the small456

distances (times) the magnitude distribution is “continuous” in a sense that it does not457

have significant gaps. However, at some critical time t∗ (translated here to distance d∗ for458

easier interpretation), the distribution undergoes a serious qualitative change: a prominent459

maximal cluster appears, such that its magnitude becomes significantly larger than that460

of the second larger cluster. Moreover, while the magnitude of the largest cluster keeps461

growing, the rest of the distribution is fading off so after some time all clusters present462

at d = 0 merge with the largest cluster. An interesting observation is that at the critical463

distance d∗ the magnitude of the largest cluster is just about 10% of the total magnitude464

N of the system. Notably, this number is universal for all the considered examples.465

Figure 12 shows the magnitude distribution of the clusters that existed when the dye466

traveled a given distance d. The analysis is done for the critical distance d∗ and a smaller467

distance d ≈ d∗/2; they are both indicated by vertical lines in Fig. 11. In all six cases, we468

see that the magnitude distribution at the smaller distance (squares) has an exponential469

tail, while at the critical distance (circles) it is a power law. Recall that, in a log-log plot,470

power-law behavior shows up as a straight line, while exponential behavior becomes a471

convex curve. This change indicates that a phase transition occurs at the distance d∗.472

This phase transition is further illustrated in Fig. 13, which shows three snapshots of473

the dye propagating down the Noyo basin. The distances traveled by the dye at these474

snapshots are marked by vertical lines in Fig. 14; the figure shows the number of clusters475
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(dotted line) and the magnitude of the largest cluster for the Noyo dynamic tree (solid476

line), as a function of downstream propagation distance.477

The values of the six critical distances d∗ shown in Fig. 11 vary over two orders of478

magnitude and depend strongly on the particular network being analyzed. Nevertheless,479

we notice a very good power-law fit for the value of d∗ in terms of the average link length480

L̄ of the corresponding static tree (see Fig. 15):481

d∗ ≈ 3.5 L̄. (10)

This relationship can be interpreted as follows in terms of the transport on river networks:482

the giant cluster of connected streams is formed when each flux traveled approximately483

3.5 links downstream from a source. We conjecture that: (a) this is a universal property484

of downstream transport on Tokunaga trees with rich branching, i.e. Tokunaga SSTs485

with c > 1 in Eq. (5); (b) the coefficient of proportionality in (10) may depend on the486

Tokunaga parameters, but only weakly; and (c) this coefficient is larger than or equal to487

2 for any binary tree. An in-depth investigation of this issue is left for future study.488

7. Concluding remarks

7.1. Summary

This study focused on the statistical description of environmental transport on self-489

similar river networks. We approached the problem by considering downstream transport490

on such a network as a particular case of nearest-neighbor hierarchical aggregation; the491

so-called ultrametric induced by the branching structure of the river network provides the492

distance function with respect to which the downstream flow gives rise to clusters that493

decrease in number and increase in size with time.494
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We described the static topological structure of a drainage network by the type of495

tree structure that goes back to the pioneering studies of Horton (1945), Strahler (1957)496

and Shreve (1966), and referred to it as a static tree, to distinguish it from the associated497

dynamic tree. This novel concept introduced herein describes downstream transport along498

the static tree.499

We studied the statistical properties of both static and dynamic trees using the Horton-500

Strahler (HS) and Tokunaga (1978) branching taxonomies. Using three river networks —501

the Noyo, Grigno and Tirso — we showed that both static and dynamics trees can be well502

approximated by Tokunaga self-similar trees (SSTs). The HS and Tokunaga parameters503

of these two types of trees differ significantly, though, for each of the three basins. This504

difference supports the relevance of the dynamic tree concept; its parameter values depict505

important properties of the transport on a given river network that are not captured by506

the conventional, static tree.507

A striking result of this study is the phase transition we found in river network dynamics:508

as one fills an empty river network through its sources, or injects a dye into a water-filled509

one, the number of clusters of connected nodes decreases and the size of the largest cluster510

increases, until a dominant cluster of connected streams forms. During this process, the511

time-dependent size distribution of the connected clusters changes from an exponential to512

a power-law function as the critical time approaches.513

This phenomenon, which may seem rather unexpected in the present, hydrological set-514

ting, can be better understood within the framework of complex networks. This frame-515

work has been explored in many natural and socio-economic settings, ranging from the516

functioning of a cell to the organization of the internet [Albert and Barabasi, 2002]. The517
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mathematical theory of complex networks considers a group of nodes that can be con-518

nected with each other according to some problem-specific rules, thus forming a graph. In519

the simplest case, the node connections are independent of each other and can be specified520

by the probability p that two randomly chosen nodes are connected. There exists a critical521

value pc such that for p < pc the network consists of isolated clusters, while a single giant522

cluster appears as p crosses pc, and spans the entire network. The appearance of this523

giant cluster is remarkably reminiscent of infinite-cluster formation in percolation theory524

[Stauffer and Aharony, 1994]. Albert and Barabasi [2002] provide a comprehensive review525

of parallels and differences between complex-network theory and percolation theory.526

It readily follows from the analysis of Section 3 that the transport on river basins fits527

rather naturally the complex-network paradigm. Formally, each river source is represented528

by a node and two streams are considered to be connected when their respective fluxes529

join downstream. This is exactly the scheme we used to define a dynamic tree, with the530

only difference that we ignored the node connections within already formed clusters. This531

difference does not affect the process of cluster formation, so all the results of complex-532

network theory do apply to the envirodynamics of river basins.533

There is an important difference, though, between complex networks in general and534

the dynamic trees considered in this study. Our dynamic trees, unlike general networks,535

are time-oriented, i.e., their nodes can be ordered according in “time” or with respect536

to a “distance” parameter. The ultrametric distance along such trees satisfies a stronger537

triangle inequality than ordinary distance (see Section 5.2). Spaces equipped with an538

ultrametric u, instead of a traditional distance d, have therefore interesting properties [e.g.539

Schikhof, 2007]. As shown in Section 5, hierarchical aggregation via nearest-neighbor540
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clustering provides a common framework for many apparently different processes — e.g.,541

billiards, river transport, and percolation — in the setting of ultrametric trees, and thus542

may provide novel insights into these processes.543

In percolation models, the cluster-size distribution at phase transition is given by a544

power law, whose index is a function of the system’s dimension alone. In our three river545

networks, this index differs from the one to the other, and from the river to the hillslope546

network for the same basin. In our hierarchical aggregation on dynamic trees, different547

clustering rules may correspond to different effective “dimensions” of the system. At the548

same time, it is known that the critical percolation indices are universal for systems in high549

dimensions [Hara and Slade, 1990] and trees are a simple model for infinite-dimensional550

systems [Albert and Barabasi, 2002]. Thus, one expects to see the same values of the551

critical indices when working with percolation on a tree. From this perspective, the fact552

that our critical exponents vary from basin to basin, and from river to hillslope trees, still553

needs to be understood.554

7.2. Discussion and further work

In this study we considered only the simplest clustering rules for the river streams: two555

streams belong to the same cluster if there is a connected path from one stream to another556

along the river network. This approach is patterned after percolation studies and allows557

for a straightforward treatment. It might however result in a situation when two streams558

belong to the same cluster despite the fact that the respective fluxes are not mixed yet559

(think of two short streams that merge with a spatially extended cluster at about the560

same time). Formulating a physically more appropriate set of clustering rules might yield561

more realistic results for a wealth of river networks with differing properties.562
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So far, we only investigated dynamic trees that have the same set of leaves as the563

corresponding static tree; this corresponds to injecting a flux through the sources. At the564

same time, it might happen that a flux of interest is injected into an internal node, e. g.,565

an industrial pollutant from a plant or nutrient production from a local biotic activity.566

Such situations can be easily modeled by considering a dynamic tree whose set of leaves567

samples the entire river network.568

To construct a richer theoretical framework for transport on river networks one may also569

model the transport along real and synthetic networks by using Boolean delay equations570

(BDEs). In BDEs, the discrete state variables describe the flux through the river branches;571

naturally, the rules for updating these variables inherit the child-parent relationship of the572

stream’s static tree. The parent variables are updated based on the values of the children573

variables, after delays that correspond to time of flux propagation from a child to its574

parent. Ghil et al. [2008] reviewed recently BDEs and their applications to climate and575

earthquake modeling. We expect such modeling to shed further light on the complex and576

important problems of river transport.577
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Figure 1. Tree representation of a river network: (a) hypothetical river network; and (b) its

representation by a binary tree. The network sources and the respective tree leaves are marked

by the same letters in both panels. The figure also illustrates the terminology used in our river

transport study.

Figure 2. Example of (a) Horton-Strahler ordering, and (b) Tokunaga indexing.
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Figure 3. Constructing a dynamic tree. The initial static tree and the final dynamic tree are

shown in the rightmost pair of panels. The dynamic tree reflects the propagation of a flux from

leaves to the root of the static tree at a constant velocity. The top row of panels shows the static

tree at different steps of this process; for visual convenience we explicitly show the static tree’s

link lengths. The bottom row shows the corresponding phases of the dynamic tree. The top

leftmost panel indicates the lengths of the links in the static tree; each step in the figure takes

one time unit, that is the flux propagates one unit of length downstream. See Section 3.1 for

details.
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Figure 4. Stream network for an order-3 subbasin of the Noyo river basin, Mendocino county,

California. Sources are marked by letters, stream merging points by numbers. The same marks

are used in Figs. 5 and 6 that show the static and dynamic trees for this stream.

Figure 5. Static and dynamic trees for the Noyo subbasin of Fig. 4. (a) Static tree TS and

(b) dynamic tree TD. Letter and number marks are the same as in Fig. 4.
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Figure 6. Three snapshots of the evolution of the dynamic tree (heavy solid lines) on the

static tree (light solid lines) for the stream of Fig. 4. Letter and number marks are the same as

in Fig. 4.
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Figure 7. Construction of a static tree that represents the topology of hillslope (unchannelized)

and stream (channelized) drainage paths. (a) Pixelized river basin; the shaded pixels (cells)

correspond to the stream location (solid line), the white pixels – to the valleys or hillslopes. (b)

Flux direction obtained from the elevation data. (c) Tree that describes the drainage topology:

solid nodes and links correspond to the stream pixels and stream flow; open nodes and dashed

links – to the hillslope pixels and hillslope flow. Notice that this tree contains several purely

linear segments, with no branching. (d) The same tree, from which the linear segments have

been removed: it describes the topology of both hillslope paths and stream paths, and is referred

to as the hillslope tree. (e) The subset of the tree in panel (d) that describes the topology of the

stream paths only; this tree is referred to as the stream tree.
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Figure 8. Static trees for the stream networks of the three basins analyzed in this study. a)

Noyo, Mendocino County, California, USA; the outlet is marked by a ball; b) Grigno, Trento,

Italy; c) Tirso, Sardinia, Italy. See Section 6.1 for details of channel initiation.
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Figure 9. Branching statistics for the stream trees of Noyo, Grigno, and Tirso basins. Number

Nr and average magnitude Mr for static (panel a) and dynamic (panel c) trees and average

number Cr of links within a branch for static (panel b) and dynamic (panel d) trees.
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Figure 10. Branching statistics for the hillslope trees of Noyo, Grigno, and Tirso basins.

Number Nr and average magnitude Mr for static (panel a) and dynamic (panel c) trees and

average number Cr of links within a branch for static (panel b) and dynamic (panel d) trees.
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(b) Noyo hillslope
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(c) Grigno stream
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(d) Grigno hillslope
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(e) Tirso stream

Figure 11. Fractional branch magnitudes mi/N as a function of the distance di traveled by

the dye at the branch creation instant. Notice that the distance di can be interpreted as the

time ti necessary to create the branch. a) Noyo stream; b) Noyo hillslope; c) Grigno stream; d)

Grigno hillslope; e) Tirso stream; f) Tirso hillslope.
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Figure 12. Distribution of branch magnitudes mi at the critical distance d∗ (balls) and at an

earlier time (squares) in dynamic trees for the three basins. a) Noyo stream; b) Noyo hillslope;

c) Grigno stream; d) Grigno hillslope; e) Tirso stream; f) Tirso hillslope. Each panel shows two

distributions, the corresponding distances are depicted by vertical lines in Fig. 11. Notice that

the value of the critical distance d∗ can be interpreted as the critical time t∗ necessary to create

the critical cluster. The downward deviations from the pure power laws are due to the finite-size

effect.
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Figure 13. Transport down the Noyo stream network. Three snapshots of flux propagation

from the stream sources to the outlet, at (a,d) d = 200, (b,e) d = 500, and (c,f) d = 1000. Panels

(a)–(c) show the entire Noyo basin, while panels (d)–(f) zoom onto an order-4 subbasin located

in the lower right part of the entire basin. See also Fig. 14.

D R A F T January 30, 2009, 10:17pm D R A F T



ZALIAPIN ET AL.: TRANSPORT ON RIVER NETWORKS X - 47

0 500 1000 1500
10

0

10
1

10
2

10
3

Distance  d, [m]

N
o.

 o
f c

lu
st

er
s,

 M
ag

ni
tu

de

Max. magnitude
No. of clusters

Figure 14. Cluster evolution for the Noyo downstream flux transport: number (dotted line)

and largest-cluster size (solid line). Vertical lines correspond to the three snapshots in Fig. 13.
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Figure 15. Critical distance d∗ as a function of the average link length L̄ for the six dynamic

trees shown in Fig. 11. The line in the figure corresponds to d∗ = 3.5 L̄.
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