Models and observations of North Atlantic atmospheric circulation and oscillatory climate modes induced by the Gulf Stream front

Andrew W. Robertson¹, Yizhak Feliks², Michael Ghil^{3, 4}

¹ International Research Institute for Climate and Society, Columbia University, Palisades, NY, USA.

² Department of Mathematics, Israel Institute of Biological Research, Ness Ziona, Israel.

³ Dept. of Atmospheric & Oceanic Sciences and Institute of Geophysics & Planetary Physics, UCLA, Los Angeles, CA, USA.

⁴ Geosciences Department and Laboratoire de Météorologie Dynamique (CNRS and IPSL), Ecole Normale Supérieure, Paris, France.

Outline

- spectral analyses of the SODA reanalysis SST field in two regions along the Gulf Stream front, 1958-2007
 - prominent and statistically significant interannual oscillations
- mechanistic model of atmospheric response to SST fronts
 - marine ABL + QG free atmosphere
- atmospheric model response to SODA monthly history
 - two extreme states of the atmospheric simulations
 - eastward extension of the westerly jet associated with the front
 - quiescent state of very weak flow
 - similar interannual periodicities to those found in SST

The North Atlantic Oscillation and our weather ...

... and hopes for "near-term" decadal climate prediction?

Simple models of the ocean gyres and eddies

Satellite image of the sea surface temperature (SST)

Simonnet, Ghil, Dijkstra (2005)

... could the ocean be driving the NAO through oscillations in the Gulf Stream SST front?

spectral analyses of the SODA

- SST (-5m), 1958-2007, monthly, 0.5° (SODA v2.0.2-4), Cape Hatteras and Great Banks regions analyzed separately
- annual cycle removed using 12month running average
- multi-channel singular spectrum analysis (MSSA) of gridded SST
- statistical significance assessed against red noise null-hypothesis

CHR: 34N-43.50N, 75W-60W GBR: 42N-50N, 55W-35W

Cape Hatteras SST Spectrum

(*M* = 150 months)

Phase composites of 8.5-yr mode Cape Hatteras SST

 large scale meander of front

• 5.2 and 3.8-yr modes exhibit similar structure

Grand Banks Region SST spectrum

(M = 150 months, detrended)

extension/contraction of the current

• 5.7 and 3.2-yr modes exhibit similar structure

Atmospheric model

Atmospheric boundary layer model:

constant-depth, wellmixed moist boundary layer in equilibrium with the underlying SST field

$$\frac{1}{\rho_0}\frac{\partial p}{\partial y} = \frac{1}{\rho_0}\frac{\partial}{\partial y}p(H_E) - \frac{g}{\theta_0}(H_E - z)\frac{\partial\theta}{\partial y}.$$
$$k_0\frac{\partial^2 v}{\partial z^2} - fu - \frac{1}{\rho_0}\frac{\partial p}{\partial y} = 0.$$

Response to an idealized SST front

FIG. 1. Prescribed SST pattern for an oceanic front of length 600 km with strength $T^* = 6.1^{\circ}$ C and frontal-width parameter d = 50 km; see Eq. (15). Contour interval (CI) is 2°C, starting at ±6°C; positive contours are solid; negative and zero contours dashed. Axes in nondimensional units of Δx counts, where $\Delta x = \Delta y = 50$ km/*L*, *L* being the length scale; see Eq. (1).

Total circulation: stronger and longer jet in the upper layer than in the lower

Feliks et al (2007)

Interpretation of atmospheric response

330

$$\frac{H}{H_{a}}\frac{d}{dt}\left[\frac{\partial}{\partial z}\left(\frac{1}{S}\frac{\partial\psi}{\partial z}\right)\right] = \frac{H}{H_{a}}w_{a}(x, y, z = 0, t)$$

$$= \gamma \nabla^{2}\psi - \alpha \nabla^{2}T,$$

$$SST_{a}$$
front driven pumping drives
$$= \frac{1}{2}H\tilde{e}rmally \text{ direct circulation}$$

$$= \frac{1}{2}VV^{2}\psi - \alpha \nabla^{2}T,$$

"Jet streak"

Response to SODA: Steamfunction snapshots

 $SST^{\mu}O^{\beta}W(H_E)$

20 80 60 40 20 0 min= -7.7 max= 6.60 time=1977.6

Spectrum of atmospheric response

Structure of 8.2-yr mode at the surface

Bi-spectra of observed and simulated NAO index

Atmospheric response when driven by spatiallysmoothed SODA SST

Surface streamfunction snapshots

MSSA Spectra

Overall energy is much weaker

Summary

- spectral analyses of the SODA reanalysis SST field in two regions along the Gulf Stream front, 1958-2007
 - prominent and statistically significant interannual oscillations
- mechanistic model of atmospheric response to SST fronts
 - marine ABL + QG free atmosphere
 - transverse thermally direct circulation spins up QG jet over front
 - anticyclonic vorticity to the south and cyclonic to the north of the jet axis gives rise to Ekman damping and spin down
- atmospheric model response to SODA monthly history
 - two extreme states of the atmospheric simulations
 - eastward extension of the westerly jet associated with the front
 - quiescent state of very weak flow
 - similar interannual periodicities to those found in SST

additional slides

Phase composites of Grand Banks SST: 10.5-yr mode

 extension/ contraction of the current

• 5.7 and 3.2-yr modes exhibit similar structure

The JJG model's equilibria

Jiang, Jin and Ghil, JPO, 1995

Observed and simulated NAO indices

