SC1.Tipping Points in the Geosciences

Vienna, 23 April 2012

A Case Study of Tipping Points: The Wind-Driven Double-Gyre Problem

Michael Ghil

Ecole Normale Supérieure, Paris, and University of California, Los Angeles

Please visit these sites for more info. http://www.atmos.ucla.edu/tcd/ http://www.environnement.ens.fr/

Motivation

- The North Atlantic Oscillation (NAO) is a leading mode of variability of the Northern Hemisphere and beyond.
- It affects the atmosphere and oceans on several time and space scales.
- Its *predictive understanding* could help interannual and decadal-scale climate prediction over and around the North Atlantic basin.
- The *hierarchical modeling* approach allows one to give proper weight to the understanding provided by the models vs. their realism, respectively.
- Back-and-forth between "toy" (conceptual) and detailed ("realistic") models, and between models and data.

Joint work with F. Codron, H. A. Dijkstra, Y. Feliks, S. Jiang, F.-F. Jin, H. Le Treut, E. Simonnet, S. Speich, and S. Wang

Outline, Tipping Points II

- The NAO and the oceans' wind-driven circulation
- The low-frequency variability of the double-gyre circulation
 - bifurcations in a toy model
 - → multiple equilibria, periodic and chaotic solutions
 - some intermediate model results
- Atmospheric impacts
 - simple and intermediate models + GCMs
- Some data analysis atmospheric and oceanic
- Some very promising NAO results
- Conclusions and bibliography

An example of bifurcations and hierarchical modeling: The oceans' wind-driven circulation

The mean surface currents are (largely) wind-driven

Kuroshio Extension (KE) Path Changes

 Monthly
 36°N

 paths from
 28°N

 paths from
 36°N

 altimeter:
 36°N

 32°N
 36°N

 32°N
 36°N

 Stable vs.
 36°N

 unstable
 36°N

 periods
 36°N

Qiu & Chen (*Deep-Sea Res.*, 2009)

"Limited-contour" analysis for atmospheric low-frequency variability

10-day sequences of subtropical jet paths: blocked vs. zonal flow regimes

Kimoto & Ghil, JAS, 1993a

FIG. 1. Limited contour analysis of Northern Hemisphere (NH) flows. Daily contours of a prescribed height (2940 m in this case—roughly corresponding to the jet axis) are superimposed for successive 10-day intervals during NH winter 1978/79. Persistence is illustrated by some of the punels (see text for details).

Outline

Introduction: the NAO and the oceans' wind-driven circulation

- The low-frequency variability of the double-gyre circulation
 - bifurcations in a toy model
 - => multiple equilibria, periodic and chaotic solutions
 - some intermediate model results
- Atmospheric impacts
 - simple and intermediate models + GCMs
- Some data analysis atmospheric and oceanic
- Some very promising NAO results
- Conclusions
 - The coupled climate system: is it the tail or the dog?
 - Natural climate variability: a source of decadal predictability?

The double-gyre circulation and its low-frequency variability

An "intermediate" model of the mid-latitude, wind-driven ocean circulation: 20-km resolution, about 15 000 variables Shallow-water model

$$\begin{split} \frac{\partial U}{\partial t} + \nabla \cdot (\mathbf{u}U) &= -g'h\frac{\partial h}{\partial x} + fV + \underline{\alpha_A}A\nabla^2 U - RU - \underline{\alpha_\tau}\frac{\tau^x}{\rho}\\ \frac{\partial V}{\partial t} + \nabla \cdot (\mathbf{u}V) &= -g'h\frac{\partial h}{\partial y} - fU + \underline{\alpha_A}A\nabla^2 V - RV\\ \frac{\partial h}{\partial t} &= -(\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y}) \end{split}$$

where

 $U\hat{e_x} + V\hat{e_y} = h\mathbf{u} = h(u\hat{e_x} + v\hat{e_y})$

- g': reduced gravity $(=g(\rho_2 \rho)/\rho)$
- A: viscosity coefficient $(= 300 \text{ m}^2 \text{s}^{-1})$
- R: Rayleigh coefficient $(= 1/200 \text{ day}^{-1})$
- τ^x : wind stress = $\tau_0 \cos 2\pi / L(\tau_0 = 1 \text{ dyn cm}^{-2} \& L = 2000 \text{ km})$

The JJG model's equilibria

Nonlinear (advection) effects break the (near) symmetry: (perturbed) pitchfork bifurcation?

Subpolar gyre dominates

Subtropical gyre dominates

Time-dependent solutions: periodic and chaotic

To capture spacetime dependence, meteorologists and oceanographers often use Hovmöller diagrams

Time-dependent solutions

1. Periodic, w/ interannual period (2.8 years)

Poor man's continuation method

Bifurcation diagram

Perturbed pitchfork + Hopf + transition to chaos

Position of Merging Point (km)

Interannual variability: relaxation oscillation

Global bifurcations in "intermediate" models

Bifurcation tree in a QG, equivalent-barotropic, high-resolution (10 km) model: pitchfork, mode-merging, Hopf, and homoclinic

Figure 1. Schematic bifurcation diagram of an equivalent-barotropic QG model, plotted in terms of an asymmetry measure Δ_E (see Section 3a further below) vs. wind-stress intensity. The limit cycles are schematically drawn for illustrative purpose and the streamfunction patterns corresponding to the three steady-state branches—subtropical, antisymmetric, and subpolar (from top to

Homoclinic orbit: numerical and analytical

939

2005]

Figure 2. Unfolding of the relaxation oscillations induced by the gyre modes, shown in the plane spanned by the total potential energy of the solution E_p and the difference Δ_E between the subpolar potential energy and the subtropical one (see text for details). The orbits of several limit cycles are

941

Figure 3. Bifurcation diagram of the highly truncated, four-mode model (5), projected onto the $(A_1 + A_3, A_2)$ plane for $\mu = 1$ and s = 2; *P* stands for pitchfork bifurcation at $\sigma = \sigma_P = 7.61$, while $\sigma = \sigma_{hc} \simeq 10.4299$ at the homoclinic bifurcation. The branches of periodic orbits are replaced by several explicitly computed limit cycles.

The double-gyre circulation: A different rung of the hierarchy

Another "intermediate" model of the double-gyre circulation: slightly different physics, higher resolution – down to 10 km in the horizontal and more layers in the vertical, much larger domain, ...

Bo Qiu, U. of Hawaii, pers. commun., 1997

Quasi - geostrophic model
2.5-layer model
$\frac{\partial}{\partial t} (\nabla^2 h_1 - \lambda_1^2 (h_1 - h_2)) + \beta \frac{\partial h_1}{\partial x} = -\frac{g'}{f_0} J[h_1, \nabla^2 h_1 - F_1 (h_1 - h_2)]$
+ $A_h \nabla^4 h_1 - C \nabla^2 (h_1 - h_2) + \frac{f_0}{\rho_0 q' H_1} curl \vec{\tau}$
$\frac{\partial}{\partial t} (\nabla^2 h_2 - \lambda_2^2 (h_2 - h_1)) + \beta \frac{\partial h_2}{\partial x} = -\frac{g'}{f_0} J[h_2, \nabla^2 h_2 - F_2 (h_2 - h_1)]$
+ $A_h \nabla^4 h_2 - C \nabla^2 (h_2 - h_1) - R \nabla^2 h_2$
where he has beight around a farmer has a line of the second seco
h_1, h_2 : height anomaly for upper and lower layer (stream functions)
H_1, H_2 : mean neight for upper and lower layer
λ_1, λ_2 : Rossby radius of deformation $\equiv \sqrt{h' H_1/f_0^2}, \sqrt{h' H_2/f_0^2}$
$ au: ext{ wind stress} \\ A_h: ext{ viscosity coefficient} ext{ }$
C, R: Rayleigh coefficient for interface and lower layer
f_0, β : Coriolis and beta parameters
$ \rho_0, g' $: mean density and reduced gravity
$H_{1} + h_{1}$ $H_{2} + h_{2}$ $H_{3} >> H_{1} + H_{2}$

Model-to-model, qualitative comparison

Model-and-observations, quantitative comparison

Spectra of 2005] Simonnet et al.: Quasi-geostrophic double-gyre circulation 947 (a) kinetic energy of a) Model spectrum 2.5-layer shallow-water model in North-Atlanticshaped basin; and (b) Cooperative Ocean-Atmosphere Data Set Frequency (month⁻¹) (COADS) Gulf-Stream 99.A Reconstruction 15°C SST meridional deviation (MEM = 40 axis data Latitude (from 4f N) N ias es exe Necesence intentit Time (months)

Figure 7. Comparison between low-frequency variability in an idealized double-gyre model and in observations of the Gulf Stream axis. (a) Spectral results for a 2.5-layer SW model for a basin that approximates the North Atlantic in size and shape, using an idealized wind stress. Maximum

More spatio-temporal data

Multi-channel SSA analysis of the UK Met Office monthly mean SSTs for the century-long 1895–1994 interval

Marked similarity with the 7–8-year "gyre mode" of a full hierarchy of ocean models, on the one hand, and with the North Atlantic Oscillation (NAO), on the other: explanation?

Figure 8. Phase composites of the reconstructed 7-8-year SST oscillation. The MSSA window length is 40 year and the contour interval is 0.02°C.

Outline

Introduction: the NAO and the oceans' wind-driven circulation The low-frequency variability of the double-gyre circulation - bifurcations in a toy model => multiple equilibria, periodic and chaotic solutions some intermediate model results Atmospheric impacts - simple and intermediate models + GCMs Some data analysis – atmospheric and oceanic Some very promising NAO results Conclusions - The coupled climate system: is it the tail or the dog? Natural climate variability: a source of decadal predictability?

- A quasi-geostrophic (QG) atmospheric model in a periodic β-channel, first barotropic (Feliks *et al.*, JAS, 2004; FGS'04), then baroclinic (FGS'07).
- Marine atmospheric boundary layer (ABL), analytical solution.
- Forcing by idealized oceanic SST front.

Ocean-atmosphere coupling mechanism (II)

Vertical velocity at the top of the marine ABL

• The nondimensional $w(H_e)$ is given by

$$w(H_e) = \left[\gamma \zeta_g - \alpha \nabla^2 T
ight],$$

with $\gamma = c_1(f_0L/U)(H_e/H_a)$ and $\alpha = c_2(g/T_0U^2)(H_e^2/H_a)$, where H_a is the layer depth of the free atmosphere (~ 10 km), and ζ_g the atmospheric geostrophic vorticity.

 Two components: one mechanical, due to the geostrophic flow ζ_g above the marine ABL and one thermal, induced by the SST front.

The 7–8-yr mode in atmospheric data Likewise a contentious issue

Simulate atmospheric response to SODA data over the Gulf Stream region

- Use SST (-5 m) data from the SODA reanalysis (50 years)
- Use the FGS'07 QG model in periodic β-channel
 - baroclinic + marine ABL
- Figure shows NAO index:
 - simulated (solid)
 - observed (dashed)

Concluding remarks

- Tipping points and bifurcations: do they really help?
 Yes, if properly understood and carefully applied!
- Can we predict them?

– Yes, depending on the problem and the data!

Some references

- Brachet, S., F. Codron, Y. Feliks, M. Ghil, H. Le Treut, and E. Simonnet, 2011: Atmospheric circulations induced by a mid-latitude SST front: A GCM study *J. Clim.*, 25, 1847–1853.
- Dijkstra, H. A., and M. Ghil, 2005: Low-frequency variability of the large-scale ocean circulation: A dynamical systems approach, *Rev. Geophys.*, **43**, RG3002, doi:10.1029/2002RG000122.
- Feliks, Y., M. Ghil and E. Simonnet, 2004: Low-frequency variability in the mid-latitude atmosphere induced by an oceanic thermal front. *J. Atmos. Sci.*, **61**, 961–981.
- Feliks, Y., M. Ghil, and E. Simonnet, 2007: Low-frequency variability in the mid-latitude baroclinic atmosphere induced by an oceanic thermal front, *J. Atmos. Sci.*, **64**(1), 97–116.
- Feliks, Y., M. Ghil, and A. W. Robertson, 2010: Oscillatory climate modes in the Eastern Mediterranean and their synchronization with the NAO, *J. Clim.*, **23**, 4060–4079.
- Feliks, Y., M. Ghil and A. W. Robertson, 2011: The atmospheric circulation over the North Atlantic as induced by the SST field, *J. Clim.*, **24**, 522–542.
- Ghil, M., M.D. Chekroun, and E. Simonnet, 2008: Climate dynamics and fluid mechanics: Natural variability and related uncertainties, *Physica D*, **237**, 2111–2126.
- Hurrell, J.W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation, *Science*, **269**, 676–679.
- Jiang, S., F.-F. Jin, and M. Ghil, 1995: Multiple equilibria, periodic, and aperiodic solutions in a wind-driven, double-gyre, shallow-water model, *J. Phys. Oceanogr.*, **25**, 764–786.
- Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R.J. Small (2008), Influence of the Gulf Stream on the troposphere, *Nature*, *452*, 206–209.
- Veronis, G., 1963: An analysis of wind-driven ocean circulation with a limited number of Fourier components. *J. Atmos. Sci.*, **20**, 577–593.

Reserve slides

Climate models (atmospheric & coupled) : A classification

• Temporal

- stationary, (quasi-)equilibrium
- transient, climate variability
- Space
 - 0-D (dimension 0)
 - **1-D**
 - vertical
 - latitudinal
 - **2-D**
 - horizontal
 - meridional plane
 - 3-D, GCMs (General Circulation Model)
 - Simple and intermediate 2-D & 3-D models

Coupling

- Partial
 - unidirectional
 - asynchronous, hybrid
- Full

Hierarchy: from the simplest to the most elaborate, iterative comparison with the observational data

Radiative-Convective Model(RCM)

Energy Balance Model (*EBM*)

Modeling Hierarchy for the Oceans

Ocean models

- 0-D: box models chemistry (BGC), paleo
- 1-D: vertical (mixed layer, thermocline)
- 2-D meridional plane THC

 → also 1.5-D: a little longitude dependence
 horizontal wind-driven
 → also 2.5-D: reduced-gravity models (n.5)
 - 3-D: OGCMs simplified - with bells & whistles ("kitchen sink")

Coupled 0-A models

- Idealized (0-D & 1-D): intermediate couple models (ICM)
- Hybrid (HCM) diagnostic/statistical atmosphere
 - highly resolved ocean
- Coupled GCM (3-D): CGCM

Forced 7-year cycle in the FGS'04 model

Slow amplitude modulation of 1 °C in the SST front

Low-energy phase

High-energy phase

Spin-up of atmospheric jet

SST front: $L_{oc} = 600 \text{ km},$ $\Delta T = 3.5 \,{}^{0}\text{C},$ d = 50 km

Atmospheric jet spins up from $L_a = 2000$ km to $L_a = 4000$ km, much greater speed and strong recirculation

Can we, nonlinear people, help?

The uncertainties might be *intrinsic*, rather than mere "tuning problems"

If so, maybe stochastic structural stability could help! Might fit in nicely with recent taste for "stochastic parameterizations"

The DDS dream of structural stability (from Abraham & Marsden, 1978)