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ABSTRACT

We report on accurate, long-term numerical simulations of the orbits of the

major planets in our solar system. The equations of motion are directly inte-

grated by a Störmer multi-step scheme, which is optimized to reduce round-off

errors. The physical models are successively refined to include corrections due to

general relativity and the finite size of the lunar orbit. In one case, the Earth–

Moon system is resolved as two separate bodies and the results are compared

to those based on analytically averaging the lunar orbit. Through this compar-

ison, a better analytical model is obtained. The computed orbits are in good

agreement with those of previous studies for the past five million years but not

for earlier times. The inner planets exhibit chaotic behavior with a Lyapunov

time of exponential separation of nearby orbits equal to about 4 million years.
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Modeling uncertainties and chaos in the inner solar system restrict the accuracy

of the computations beyond the past 50 million years. We do not observe marked

chaos in the motion of the Jovian planets in our 90-million year integration, and

infer that the Lyapunov time for those planets is at least 30 million years.

Subject headings: methods: N-body simulations — solar system: general

1. INTRODUCTION

1.1. Background and Motivation

The long-term evolution of the orbits of the major planets is an important problem for

astronomy, as well as the geosciences. Numerical simulations of planetary orbits have become

fairly common in the past decades, but their main goal so far has been the understanding of

orbital dynamics and not necessarily very high accuracy. It does not particularly matter for

an astronomer whether Earth’s orbital eccentricity was low or high at a given time, as long

as the reasons for its variations are well understood. For the geosciences, however, the actual

numbers are more important since geological records of isotope ratios are routinely compared

to and interpreted using orbital variations (Hays, Imbrie & Shackleton 1976; Berger et al.

1984; Imbrie et al. 1992, 1993). The exact connections between Earth’s orbital variations,

its climate evolution, and its geological record are still a matter of debate (Ghil 1994; Gildor

& Tziperman 2000; Zachos et al. 2001). Paleoclimatologists need therefore more accurate

orbital data, covering longer time intervals, as they try to unravel the complex, evolving

interactions between Earth’s orbital parameters and climate.

For achieving high accuracy, we had to carefully consider both the physical model used

in computing accelerations and the simulation methodology. Our choice for the latter is

an improved version of the classical Störmer scheme (e.g., Quinlan 1994), which two of

the present authors had used in previous studies (Grazier et al. 1995; Varadi, Ghil &

Kaula 1999a). The real difficulty is with the physical model. There are a number of small

corrections to the equations of motion which could have noticeable effects on the long-term

evolution of orbits (e.g., Quinn, Tremaine & Duncan 1991; Laskar 1999).

Our approach here is to gradually refine the physical model, until corrections become

unimportant compared to integration errors and the effects of chaos. We have not reached

that point yet. At present, it is the uncertainties in modeling the Earth–Moon system that

limit the validity of our simulations and not integration errors. This is so even without

considering tides, as we treat the planets as point masses for now. Chaos (e.g., Lichtenberg



– 3 –

& Lieberman 1992), however, further constrains the validity of our numerical results, making

them less reliable beyond about 70 million years (Myr). Overall, we believe that the details

of our computations can be trusted for the past 50 Myr, except for Mercury’s position along

its orbit.

Accuracy can also be important for astronomers, however. For certain problems of

solar system dynamics, more accurate orbital computations can make not only quantitative

but also qualitative differences. When the numerical evidence that is available to draw a

conclusion is only marginal, one has to worry about small effects. For instance, in our most

elaborate physical model the motion of the Jovian planets does not appear to be chaotic.

This contradicts, on the face of it, the results of Sussman and Wisdom (1992) and Murray

and Holman (1999) who used simpler models, different simulation methods, different initial

data, and a different way of detecting chaos. We also have to emphasize that our 90-Myr

simulations are not long enough to rule out chaotic behavior with Lyapunov time (i.e., inverse

of leading Lyapunov exponent) longer than about 30 million years. Furthermore, the solar

system as a whole is chaotic since the inner solar system is chaotic. The effect of the latter

on the motions of the Jovian planets might be difficult to detect, for two reasons: (i) the

relatively small mass of the inner planets; and (ii) the fact that their effect has to compete

with integration errors.

Before going any further, it is worth demonstrating the differences between our results

and earlier ones. In Fig. 1, Earth’s orbital eccentricity is compared for a short time inter-

val (0.3 Myr) around 24 Myr in the past, which is the traditionally accepted age for the

Oligocene–Miocene boundary in geology (23.8 Myr, according to Berggren et al. 1995; but

see also Shackleton et al. 2000 for a different view). Laskar’s (1990, 1999) solution appears to

be quite different from ours, even when we use the analytical Earth–Moon model of Quinn et

al. (1991), which is supposedly very similar to the one used by Laskar (see also Laskar, Quinn

& Tremaine 1992). Moreover, our results, when using the model of Quinn et al. (1991), still

disagree to a noticeable extent with the present paper’s simulation in which the Earth and

the Moon are resolved as separate bodies. Our improved analytical model, obtained through

such comparisons, seems to work much better, in a sense that will be explained in Secs. 5.3

and 6.

In the next subsection, we briefly discuss orbital and climate variations. In Sec. 2, we

consider the problem of achieving high accuracy, both in terms of methodology and physical

models. The numerical scheme and the code are described in Sec. 3, while the accuracy of

our simulations and the effects of chaos are analyzed in Sec. 4. The details of the physical

models are discussed in Sec. 5. Comparisons between simulation results are made in Sec. 6

and conclusions follow in Sec. 7. Most of the technical details regarding long-term, direct
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integrations of orbits by multi-step schemes have been presented in other papers (e.g., Quinn

et al. 1991) and we do not repeat them here. Several data sets from our simulations are

freely accessible1. and others can be made available upon request.

1.2. Orbital and Climate Variations

Since the present study is partly motivated by problems in paleoclimatology, a brief

sketch of this field is worth a digression. The largest climate changes in the past few Myr

were in the form of transitions between warmer, relatively ice-free episodes like the present

and the much cooler, glacial episodes when large portions of North America, northern Europe

and Asia were covered with ice sheets. The astronomical theory attempts to explain the oc-

currence and cyclicity of ice ages by purely external causes, namely, variations in the Earth’s

orbit and rotation axis (Milankovitch 1941; Imbrie & Imbrie 1986; Zachos et al. 2001).

Such changes modulate the amount of solar radiation reaching the Earth’s surface, both its

globally averaged value and its spatio-temporal distribution. For instance, an increase in

obliquity results in larger differences between the seasons, especially for high latitudes.

There are three astronomical variables used in paleoclimatology: the obliquity, the

eccentricity multiplied by the sine of the longitude of perihelion, measured from the vernal

equinox, and eccentricity itself. The annually averaged insolation integrated over the whole

surface of the Earth is a function of eccentricity and semi-major axis. Since fractional

variations of the latter are very small for Earth, the main astronomical variable of interest

in paleoclimatology is eccentricity.

The theory explains many features observed in the geological record of the past 2.5

Myr. Obliquity cycles, of about 40,000 years, for instance, can be detected in various ice

and deep-sea drill core data. But the largest variations, with periods around 100,000 years,

remain difficult to explain by orbital variations alone, as are large variations with periods as

short as a few thousand years (Ghil & Childress 1987; Ghil 1994). Nevertheless, it is routine

in the geosciences to interpret geological records in terms of orbital variations and even to

tune (Imbrie et al. 1992, 1993; Shackleton et al. 1999) or calibrate (Renne et al. 1994) the

age of the records according to these variations. This is partly through necessity since only

stratigraphic thickness can be reliably measured in geology and its relationship to age has

to be inferred indirectly.

There are other theories of glaciation cycles, which take into account the internal dy-

1http://www.astrobiology.ucla.edu/SSO
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namical processes of the climate system, while not discounting orbital forcing. Changes in

ice cover lead to variations in planetary albedo, which, in turn, affects temperature (Budyko

1969; Sellers 1969). The latter influences the hydrological cycle and, hence, the growth of ice

sheets (Ghil & Le Treut 1981; Gildor & Tziperman 2000). Another important component

is the isostatic rebound of the lithosphere after the melting of ice sheets (Weertman 1976;

Birchfield & Ghil 1993). Some models with such feedbacks can reproduce the 100,000-year

cyclicity as a result of nonlinear interactions between very small insolation changes due to

variations in Earth’s orbital parameters and the internal oscillations of the climate system

(Ghil 1994; Gildor & Tziperman 2000).

The ultimate explanation for the 100,000-year cyclicity in glaciations that dominated the

past few Myr is yet to be found. Nevertheless, the astronomical calibration of the geological

record is already in progress for the much older Oligocene and Miocene times, part of which

is shown in Fig. 1. Interestingly, the prolonged eccentricity minimum around 23.9 Myr in our

results appears to be very close to the traditional age of the Oligocene–Miocene boundary

(23.8 Myr), as well as to the Mi-1 cooling event which is represented by extreme values in

δ18O and δ13C records (Zachos et al. 2001). Shackleton et al. (2000) used Laskar’s (1990,

1999) orbital simulations to calibrate the Oligocene–Miocene time scale and concluded that

the boundary between the two is about 1 Myr younger than the traditionally accepted age.

This discrepancy will be dealt with in detail elsewhere.

2. GENERAL CONSIDERATIONS

2.1. Analytical vs. Numerical Methods

There are two main approaches to compute planetary orbits accurately for long times.

Laskar (1990) first orbitally averaged the mutual perturbations between planets, based on

the work of Duriez (1982), and then numerically integrated the resulting secular system. The

latter is represented as truncated series expansions in planetary masses, orbital eccentricities

and inclinations. Laskar’s results have replaced to a large extent the classical ones of Berger

(1978) and Bretagnon (1982) as the main reference in the geosciences for the past evolution

of planetary orbits (see above).

The other approach is the direct integration of the equations of motion. We consider

the work of Quinn et al. (1991) to be the most advanced in this direction and we follow it in

many respects. Since their work, however, there has been considerable increase in the speed

of computers, allowing more extensive studies and much longer simulations.

For the most part, the technical details of our simulations are straightforward. As
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opposed to Laskar’s (1990) averaging, we directly integrate the equations of motions, as did

Quinn et al. (1991). We have carried out orbital averaging in the past for various problems,

sometimes using series expansions with hundreds of thousands of terms (Varadi, Ghil &

Kaula 1995; Ghil, Varadi & Kaula 1996). We found that straightforward averaging over

the orbital time scale fails for the case of our solar system because Jupiter and Saturn are

too close to the 5:2 mean-motion resonance (Varadi et al. 1995, 1999a). It is this same

5:2 near-resonance between Jupiter and Saturn that led Laskar (1990) to adjust his secular

system to better match his results to those of direct numerical integrations. Hence, we follow

Quinn et al. (1991), but employ a new, improved integrator and faster computers. In one

simulation, we even resolved the Earth–Moon system as two separate bodies, resulting in a

ten-fold decrease in speed. Such a simulation would have been quite impractical until now.

2.2. Numerical Issues

The goals regarding accuracy have to be realistic. Despite progress in the past decade,

we face essentially the same problems as Quinn et al. (1991). We use double-precision float-

ing point arithmetical operations on ordinary digital computers since quadruple-precision

floating point arithmetic is not available in off-the-shelf hardware. At every step there is a

loss of information in the form of round-off error, as only a finite number of digits can be

retained for subsequent integration steps. These errors accumulate over time and their ef-

fects can only be minimized, but not completely overcome. The presence of chaos, moreover,

severely limits the accuracy of orbital integrations on the time scale of millions of years.

Chaos causes initial errors to grow exponentially in time, and so the simulated orbits diverge

from the correct ones.

Since we had to integrate for millions of years and carry out several simulations, we had

to select a relatively fast integration scheme. This, together with the goal of high accuracy,

naturally led us to a multi-step scheme. We use a Störmer scheme (Quinlan 1994) because its

properties are well-known and we are familiar with it. Another possibility would have been

to use a symmetric method (Quinlan & Tremaine 1990), which has several advantages, but

also a major drawback: the principal roots of the method on the unit complex circle can lead

to resonant interactions, as shown by Quinlan (1999). When the number of steps per orbit

is resonant, the integration error is orders of magnitude larger than that for a comparable

Störmer scheme. It is difficult to avoid these resonances.

We have also used various versions of the Wisdom & Holman (1991) mapping in other

projects (e.g., Musotto et al. 2002), but not in the present one. The mapping is a symplectic

scheme specific to perturbed planetary motions which, as the name implies, preserves the
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symplectic structure (Arnold 1978, 1988) associated with the Hamiltonian equations of mo-

tion. The mapping has two main advantages over other, more general schemes, as pointed

out by Kinoshita et al. (1991). One is that the unperturbed Keplerian motions are com-

puted analytically and not numerically. The other one is that the error is proportional to the

magnitude of the perturbations due to interactions. This advantage is diminished, however,

for higher-order versions of the mapping, as was shown by Kinoshita et al. (1991) as well.

Higher orders imply higher powers of the step size in the leading error terms, which are also

multiplied by the magnitude of the perturbations. Hence, error becomes strongly dependent

on step size and less dependent on the magnitude of perturbations. Essentially the same

argument applies to higher-order mapping schemes (e.g., Laskar & Robutel 2001).

The Wisdom-Holman mapping now has a number of variants. For instance, Varadi,

Ghil & Kaula (1999b) showed that using mass-weighted symplectic forms naturally removes

singularities associated with vanishingly small masses. Malhotra (1994) discussed nonsym-

plectic versions. Saha and Tremaine (1994) introduced a Hamiltonian for general relativity

effects, although the equations of motion that correspond to their Hamiltonian are not the

same as the ones used by Quinn et al. (1991) and us. A particular feature of mapping tech-

niques is that a large part of the error is in the form of spurious, high-frequency oscillations

associated with the discrete nature of mappings. Adjusting both initial data and integration

output is a way to reduce the amplitude of such oscillations. The initial-data problem can

be dealt with by “warming up” the integrations (Saha and Tremaine 1992). Symplectic cor-

rectors (Wisdom, Holman & Touma 1996) can correct both initial data and the integration

output. These correctors, however, do not reduce long-term errors since they eliminate only

high-frequency variations from the integration output; nor are they simple to implement.

Perhaps the least understood aspect of the Wisdom-Holman mapping is step-size res-

onances, which are similar to those in symmetric multi-step schemes. While their effects

should decrease very rapidly with decreasing step size (Wisdom & Holman 1992), we are not

convinced that the issue is fully resolved. It appears, therefore, that adopting an improved

version (Grazier et al. 1995; Goldstein 1996) of the trusted Störmer integration scheme

serves the goals of this project the best.

2.3. Physical Model Design

We can only simulate the solar system as we know it today, without drastic changes in

its basic properties. We cannot completely rule out that additional planets existed and were

ejected in the past. Likewise, relatively close encounters with a number of stars could have

taken place in the past 200 Myr (Garcia-Sanchez et al. 2001). It is certain that small bodies
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collided with the major planets and caused small changes in their orbits, but we cannot

model those impacts individually. The cumulative effect of small impacts can be modeled

through orbital averages, allowing to study their influence on orbital evolution and resonances

(Wolansky et al., 1998). To obtain robust answers, however, we would have to compute a

large ensemble of simulations with random initial data and parameters of the system, as well

as stochastic forcing for impacts and the effects of passing stars. Such large ensembles of

predictions are routinely used today in extended-range weather prediction (Kalnay 2002),

but are beyond our computational resources in celestial mechanics.

It is difficult, even in principle, to estimate the importance of small corrections in the

equations of motion on the long-term evolution of planetary orbits. Comparing the mag-

nitude of such terms to those representing Sun–planet gravitational forces is meaningless:

consideration of the latter terms only leads to a degenerate problem since the orbit of the

planet does not change in time. Any additional force, e.g., perturbations by other planets,

breaks this degeneracy and allows the orbit to evolve. Furthermore, the goal here is to com-

pute secular changes and hence variations on the orbital time scale are not so important.

For this reason, Laskar (1999) compares the estimated secular effects of small corrections to

the secular effects of planet–planet interactions. Short-periodic variations, however, interact

with each other and can contribute sizable secular changes. It seems that the most reliable

way to assess the effect of a small correction is to include it in the equations of motion

directly and carry out simulations.

Our approach in this project is to gradually refine the physical model until the resulting

changes in the orbits are smaller than the uncertainties caused by chaos and numerical errors.

Even if one finds our simulation errors to be larger than desired, they are still much smaller

than the effects of the small corrections in the equations of motion that we discuss in this

paper.

Some of the refinements we introduce can only be approximations, since we do not

have accurate models for all the forces acting on solar system bodies. Nevertheless, one can

employ even relatively poor approximations for small model corrections in order to assess

the effect of these corrections. Next, one can try to improve the physical modeling of what is

found to be important and may ignore the rest. Laskar (1999) provides an excellent overview

of many small corrections that one might have to take into account, but even his list does

not include, for instance, the interaction of the solar wind with planetary magnetospheres.

J. Raeder’s (2001, private communication) order-of-magnitude estimate of this effect gives

an acceleration that is comparable to photon radiation pressure.

Besides Newtonian gravitation between point masses, the majority of our simulations

include corrections due to general relativity for Sun–planet accelerations and the finite size of
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the lunar orbit. In order to assess the effects of such small corrections, they were incorporated

into increasingly more elaborate models, starting with the case of Newtonian gravitation only.

We compare Earth’s smoothed orbital eccentricity across simulations since this is the main

variable of interest. Except for the improved model of the Earth–Moon system, our equations

of motion are the same as in Quinn et al. (1990).

The simulations we performed are summarized in Table 1. Their differing lengths are

due to several factors. When the Earth and Moon are resolved (R5), the simulation makes

very slow progress and hence it is short compared to others. The first integration, R1, was

a test case and is used only as a base line for comparisons. The others were allowed to run

until a decision could be made regarding the next simulation. The numerical accuracy of

the simulations was assessed by comparing the results of R2 and R3. These two simulations

share the same physical model, which appears to be sufficiently accurate for such a purpose,

and differ only in the step size (see Figs. 2 and 3 and their discussion in Sec. 4).

3. THE NUMERICAL SCHEME AND THE CODE

We employed a modified Störmer scheme, which is an explicit method for systems of

second-order differential equations. The Störmer scheme is analogous to the well-known

explicit Adams methods (Gear 1971) that are widely used for systems of first-order equations.

The coefficients of the classical Störmer scheme, however, exhibit large oscillations (Quinlan

1994). We employed an improved version that is optimized for reducing round-off errors

(Grazier et al. 1995; Goldstein 1996). The new scheme has been used in previous studies

(Grazier et al. 1995, 1999a,b; Varadi et al. 1999a) and the source code of a particular

implementation in C is provided by the first author of the present paper (Varadi 19972).

The actual code used in the present work is a modified version of the one above. The

integrations are carried out on ordinary Sun workstations and a Pentium-processor-based

PC.

There are a number of issues that affect accurate, long-term simulations. The initial

array of positions, which has to be determined with high accuracy, was computed by us-

ing quadruple precision numbers and a Stoer-Bulirsch-Gregg extrapolation scheme (Hairer,

Norsett & Wanner 1993). As the integration progresses, the array of positions and velocities

was updated at each integration step and saved, along with other data, at certain time inter-

vals and in binary format. This allowed the simulation to be continued without any loss of

information after inevitable interruptions. The entire simulation output was saved in binary

2http://www.astrobiology.ucla.edu/∼varadi/NBI/NBI.html
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format; particular results of interest were extracted using a separate code. When necessary,

the latter also performs simple transformations, such as rotation from the J2000 coordinate

frame used in the integration to another one aligned with the invariable plane of the solar

system.

Any numerical scheme has both truncation and round-off errors. The numerical solution

can be expressed as a truncated power series in the step size and the number of terms which

match the actual solution corresponds to the order of the method. The remainder of the

series is the local truncation or systematic error. Round-off is due to having only finitely

many digits to represent a real number on a digital computer. This leads to the loss of least

significant digits in each arithmetic operation. Smaller step sizes imply smaller truncation

but a larger accumulation of round-off errors and, hence, there is always an optimal step size

(Isaacson & Keller 1994).

The optimal step size for our modified Störmer scheme corresponds to about 1000 steps

per Keplerian orbit (Grazier et al. 1995; Goldstein 1996). With this choice, the integration

error for a single step is smaller than the smallest number in double-precision representation.

When the range of orbital periods in the system is large, the step size should be optimized

for the smallest orbital period. This choice leads to larger round-off error for planets with

larger orbital periods. The present work used the new Störmer scheme at order 14, with step

sizes of 0.3125 or 0.25 days in most cases. These values are nearly optimal for Venus and

Earth and slightly suboptimal for the other planets. With these step sizes, it takes about

one wall-clock day to integrate the motion of the major planets for one Myr. When the

motions of Earth and Moon are resolved, the step size was taken to be 0.03125 days, with a

corresponding ten-fold decrease in speed and an increase in accumulated round-off error.

Although positions and velocities are available at each simulation step, saving all of

them is impossible because of file size limitations. It is customary (Quinn et al. 1991) to

compute orbital elements every twenty or so days and save them only every few hundred

years. One has to ensure that the final, undersampled output is free of signal aliasing (Proakis

and Manolakis 1996). Furthermore, the goal is to compute the low-frequency variations in

orbital elements and, hence, the high-frequency contributions can be discarded. The low-

frequency variations were computed by standard low-pass filtering. We refer to the low-pass

filtered orbital elements as smoothed and call the instantaneous, unfiltered orbital elements

unsmoothed.

The smoothed orbital elements were computed as follows. First, the output was deci-

mated to have the positions and velocities of all the bodies every 25 days. From these, we

determined the semi-major axes and the components of the angular momentum and Laplace

vectors. Except in the case when the Earth–Moon system was resolved into two separate
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bodies, there were no large variations with periods shorter than 25 days in these orbital

elements. Hence the primary decimation, with output every 25 days, is not expected to

introduce any aliasing.

Next, a standard low-pass filter (Proakis and Manolakis 1996) with 60,000 coefficients

was applied to the 25-day simulation output, which eliminates all variations with periods

shorter than 342 years. The low-pass filtered signal was then decimated in turn to produce

the final output of orbital elements every 342 years. It is worth noting that a single output

value when using the 25-day sampling rate contributes only to 13 output values at the

342-years sampling rate. Hence, the overhead associated with low-pass filtering is barely

noticeable. Smoothed orbital elements are not available for the first 4,400 years, because of

the filter’s broad window.

When resolving the Earth–Moon system, we computed the orbital elements of the Earth–

Moon barycenter, rather than those of Earth’s orbit. The motion of the Moon introduces

changes in the orbital elements which are not removed by low-pass filtering. These additional

variations, however, have very small amplitudes and do not change the results noticeably.

4. NUMERICAL ACCURACY AND CHAOS

Many routine tests were carried out to validate the code, e.g., by comparing its output

to those of other methods. A more fundamental way to test the code and estimate actual

integration errors is to compute the same orbits with the same physical model but with

two different step sizes. This provides a much more reliable estimate of integration errors

than monitoring first integrals, such as total energy. The latter is not even conserved in

our physical models due to the effects of general relativity. It is not clear, though, which

variables best describe long-term accuracy.

We are interested primarily in the shape and orientation of orbits in an average, secular

sense and much less in short-periodic changes. The position of a planet along its orbit

reflects both short- and long-term changes. It also has the largest errors since longitude

along the orbit is a linear function of time, being essentially the time integral of the semi–

major axis. Even when the errors in the latter are uniformly small over the full length of

the integration, the error in the longitude will grow. In contrast, shape–orientation orbital

elements, especially their smoothed version, are expected to have much smaller errors.

Quinn et al. (1991) estimated errors by computing fractional position differences which

are dominated by differences in longitudes. In their simulations, such differences were of the

order of 10−5 or less after one Myr. In the case of Mercury, however, they were of order 0.1;
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these authors also estimated that after 3 Myr the probable error in Mercury’s longitude is

about 1 radian. It appears, as they note, that this error was due to an instability in their

integration scheme. Step-size resonances (Quinlan 1999) might explain this instability.

We computed fractional position differences between two simulations, R2 and R3 (see

Table 1) with step sizes of 0.3125 and 0.25 days, respectively. In Fig. 2a, one can observe that

after 1 Myr the errors are around 10−5 for all planets shown, including Mercury. Therefore,

our integration is more accurate for Mercury than that of Quinn et al. (1991): it performs

in every respect as expected of a high-order multi-step scheme. Mercury is the worst case in

our simulations, having estimated longitude errors around 0.1 after 10 Myr.

For longer time intervals, up to about 55 Myr ago (Fig. 2b), the errors remain below

10−3, except in the case of Mercury, where they grow to unity after 30 Myr. Our step size

was chosen to be optimal for the Earth and it is larger than optimal for Mercury, leading

to larger truncation errors. Yet these errors do not degrade the accuracy of the simulations

for the other planets, since Mercury’s mass is quite small. One can also observe a steep

increase in the differences between the simulations, for Mercury, Venus and Earth, which

starts around 55 Myr ago.

Compared to the longitudes, our results are much more accurate for the shape and

orientation of orbits. In Fig. 3, the magnitude of the differences in vector eccentricities

are plotted for the three planets, both smoothed and unsmoothed, using the same two

integrations as in Fig. 2. Vector eccentricity is defined as the Laplace vector divided by the

semi-major axis. Overall, vector eccentricity errors are much smaller than position errors,

even when taking into account that vector eccentricity has a smaller average value. In the case

of Mercury (panel a), the unsmoothed vector eccentricity exhibits larger initial differences

because it includes short-periodic longitude errors. The differences grow polynomially in

time for the first 50 Myr, at which point they are overtaken by smoothed vector eccentricity

differences; the latter have smaller initial values but grow exponentially, i.e., linearly on the

logarithmic scale of the plot.

The results for the Earth (Fig. 3b) are similar to those for Mercury, only the growth in

the unsmoothed vector eccentricity errors at the beginning is slower. For both planets, the

initially very small differences in the smoothed vector eccentricities grow exponentially. The

nearly straight line up to 50 Myr is due to the chaotic nature of the orbital dynamics of the

inner solar system.

Integration errors accumulate polynomially in time and are responsible for the initially

logarithmic behavior of differences in Fig. 3. The presence of these errors, however, is

analogous to integrating the system with slightly different initial data. Deterministic chaos
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causes the exponential separation of the two solutions, which eventually overwhelms the

additional integration errors that grow polynomially (see also Laskar 1999). Chaos also

explains the sudden increase in the fractional position errors around 55 Myr (Fig. 2b). The

Lyapunov time scale of the observed chaos, given by the inverse of the leading Lyapunov

exponent, is about 4 Myr. This is in agreement with previous results (Laskar 1990; Sussman

and Wisdom 1992) and goes to show that what really limits the accuracy of the simulations

is not integration errors but chaos.

In Fig. 3c, we plot the differences in vector eccentricities for the case of Uranus. For

about the first 30 Myr the differences are larger than in the case of Earth. Since the inte-

gration step size is smaller than the optimal value for Uranus, the round-off error is larger.

There are also large, position-dependent perturbations between the Jovian planets, such

as the 5:2 orbital near-resonance between Jupiter and Saturn and the 2:1 near-resonance

between Uranus and Neptune, which are not removed by smoothing.

The overall behavior of the curve for Uranus appears to be logarithmic. This behavior

indicates the absence of chaos up to 90 Myr and seemingly contradicts the results of Murray

and Holman (1999), who detected chaotic behavior with a Lyapunov time around 7 Myr.

There are important differences, however, between their study and the present paper. Our

physical model includes the inner planets and also detailed corrections due to general rela-

tivity, while theirs did not. According to M. Holman (2001, private communication), their

initial data were also different, which might play a role in a system whose phase space con-

tains both chaotic and regular regions (Lichtenberg & Lieberman 1992). This is reinforced

by the earlier results of Sussman and Wisdom (1992) who found that the Lyapunov time for

the Jovian planets in their simulations depended on the integration method and the step size

they used and varied from 3 Myr to infinity; the latter means absence of chaotic behavior.

We also note that we do not observe the effect of inner solar system’s chaotic behavior on

the motions of the outer planets because it is too small compared to integration errors.

Most importantly, we may not be able to observe chaos in a 90-Myr integration if its

Lyapunov time is long enough. Furthermore, the Lyapunov time can only be estimated from

a relatively short model run even when the motion is undoubtedly chaotic. As a general

rule, the initial portion of the simulation output is dominated by integration errors and,

hence, the curves such as those in Fig. 3 initially exhibit logarithmic behavior. When the

motion has sufficiently strong chaotic components, one expects to see linear increase after

the initial logarithmic one. The picture is complicated by fluctuations, such as temporary

decreases as the phase-space trajectory passes near hyperbolic structures (e.g., Varadi et

al., 1999a). Sometimes (e.g., Sussman and Wisdom 1992) there are changes in the slope of

linear increase. The curve of smoothed differences in vector eccentricities for Earth, shown
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in Fig. 3b, gives 4.2 Myr as the Lyapunov time when computed for the time interval between

5 and 55 Myr. In the case of Mercury, the initial logarithmic component dominates until

25 Myr and the Lyapunov time is 3.5 Myr when computed for the time interval between

25 and 60 Myr. Given the uncertainties in computing Lyapunov times, our values are not

significantly different from the 4 Myr reported by Sussman and Wisdom (1992) or even the

5 Myr of Laskar (1990).

The curve for Uranus Fig. 3 could be interpreted as either purely logarithmic behavior

with fluctuations or initially logarithmic behavior overtaken by a very small linear increase.

Assuming linearity for the time interval between 30 and 90 Myr yields 30 Myr as the Lya-

punov time. This represents therefore a lower bound on Lyapunov time in the case of the

Jovian planets.

In summary, our simulation errors behave as expected. Fractional position errors are

around 10−3 or smaller for the first 50 Myr, except for Mercury. Eccentricities exhibit much

smaller errors, which indicates that the main error is in the longitudes and not in the shape

and orientation of orbits. The ultimate obstacle to achieving higher accuracy is chaos and

not simulation errors, assuming that we have a sufficiently accurate physical model.

5. PHYSICAL MODELS

5.1. Initial Data

For accurate initial data, one has to rely on planetary orbital ephemerides (Seidelmann

1992), such as DE405 (Standish 19983). The DE405 ephemerides are based on what is

probably the most accurate physical model, but we cannot employ this model in our work,

as it is too computationally expensive for long-term integrations. In DE405, corrections for

general relativity are included for all planets and the Moon, leading to force terms in which

three bodies are involved, as opposed to our model’s two-body interactions.

We took the actual numbers for masses, positions and velocities directly from the binary

ephemeris files. The integrations start at the same epoch as DE405. The Digital Ephemeris

uses Astronomical Units and days as units for distance and time, respectively, which we also

adopted. By definition, one ephemeris year is 365.25 ephemeris days (Seidelmann 1992);

this is only a matter of practical convention and has no bearing on the length of the year in

terms of Earth’s rotation.

3ftp://navigator.jpl.nasa.gov/ephem/export/de405.iom
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5.2. General Relativity Effects

We assume general relativity — as opposed to one of the competing theories — to be

correct and use standard post-Newtonian approximations (Will 1981; Soffel 1989), as did

Quinn et al. (1991). Only corrections for Sun–planet interactions are taken into account. In

Fig. 4, we plot Earth’s orbital eccentricity for a model with corrections arising from general

relativity (R3) and one without (R1). The discrepancy grows quite rapidly and after 2 Myr

the two curves bear only an overall, qualitative resemblance to each other.

The general relativity effects are much smaller for the outer planets but not negligible.

In Fig. 5, we plot the difference in Jupiter’s orbital eccentricity between the same two sim-

ulations. One can observe a pattern which is typical when the difference in the two time

series is due to slightly different frequencies. The amplitude of the difference grows linearly

in time; oscillations due to the beating between the two frequencies are superimposed on

this linear trend. After about 80 Myr, the difference is almost 4% of Jupiter’s present orbital

eccentricity. It is obvious, once more, that our outer solar system, which does not appear to

be chaotic, is different from the chaotic one of Murray and Holman (1999).

5.3. The Earth–Moon System’s Effects

The Moon is the largest satellite relative to its planet in the solar system; it also has

a relatively large orbital radius. In the simplest approximation, one can replace the Earth

and the Moon with a fictitious body at their barycenter, as it was done in our simulations

R1–3. Next, averaged models for the lunar orbit can be used, as we did starting with the R4

simulation. We followed therein the work of Quinn et al. (1991) and used the same model,

which is based on a simplified version of Hill’s lunar theory (Brouwer and Clemence 1961).

In R4, we added the same force term as in Quinn et al. (1991), but did not adjust the initial

data. To test the accuracy of the averaged model, we resolved the Earth and the Moon

as two separate bodies in R5, assuming that they are point masses with only Newtonian

gravitation acting between them.

The three cases — R3, R4 and R5 — were compared around 24 Myr ago in Fig. 1.

Closer to the present day, the differences are small but still noticeable, as illustrated in

Fig. 6. While the analytical model of Quinn et al. (1991) works quite well for a few Myr, it

is not accurate enough for longer time intervals.

In principle, the analytical averaging of the lunar orbit should be supplemented by

adjusting the initial positions and velocities to their averaged values. We carried out this

in the case of R6, following the procedure of Quinn et al. (1991). We found very little
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improvement, i.e., R4 and R6 are much closer to each other than they are to R5 (not

shown).

There is one factor in the formula of Quinn et al. (1991), denoted by f in their Eq.

(6), which they estimated by order-of-magnitude considerations. It is designed to take into

account effects which are not included in their model, such as the eccentricities and inclina-

tions of the orbits of the Moon and the Earth. We carried out a series of short integrations,

on the time scale of tens of thousands of years, with different values of f . After a while it

became apparent that f has a strong effect on the results.

We adjusted the value of f , by trial and error, until we found a better agreement with

the simulation R5. Our best value for f is f0 = 0.8525, used in R7 and in later cases, as

opposed to the value 0.9473 calculated by Quinn et al. (1991). They note that their f is

probably within 1% of the actual value. We checked their derivations and found no errors.

The reason for obtaining a different f by our a posteriori method is not clear, although

we suspect that Earth’s orbital eccentricity is a major contributor to the discrepancy. In

Table 1, averaged model (AM) refers to the case when the value f = 0.9473 of Quinn and

colleagues is used, while modified averaged model (MAM) refers to f = f0. The long-term

comparison between R5 and R7 is shown in Fig. 7. The differences are still about two orders

of magnitude larger than the estimated integration errors.

In order to obtain an even better model, we also derived a new formula for adjusting

the initial data. The model of Quinn et al. (1991) can be regarded as the result of averaging

the problem over a single, short-periodic forcing function, given by the main terms in Hill’s

lunar theory for the non-Keplerian motion of the Moon around the Earth in the Earth–

Moon–Sun three-body problem. One can use Lie series (e.g., Varadi 1998) to compute the

transformation between the initial data of the original and averaged system. We did so in

R8 but found no apparent improvement (not shown). Hence, we surmise that is is best

to use the modified value of f = f0 in the Quinn et al. (1991) model when modeling the

Earth–Moon system, at least for now.

6. COMPARISONS

While Fig. 1 shows large differences between our results and those of Laskar (1990)

around 24 Myr ago, the disagreement is much smaller for the past 5 Myr (Fig. 8). The

latter comparison partially validates our computations. There are no surprising features

that would indicate any major problem with our physical model or integration method.

Laskar’s (1990) results for the past 20 Myr can be obtained from the Web site of the U.S.



– 17 –

National Oceanic and Atmospheric Administration’s National Geophysical Data Center4.

The U.K. Delphi Project has a data depository for marine geological paleoclimate research

and provides Laskar’s (1990) results for 12–34 Myr through their Web pages5.

We compare the evolution of smoothed orbital eccentricities for the inner planets in

Fig. 9. The pattern of variations changes in the case of Mars, but no visible change occurs

for Earth or Venus. For Mercury, the characteristics of the time series change markedly

around 65 Myr. It appears that the amplitude of an oscillatory component with a period of

about 10 Myr becomes smaller as the simulations reach that particular point in time. Such

transitions between different dynamical regimes are presumably induced by chaos, such as

separatrix crossings or chaotic itinerancy (Arecchi et al. 1990; Otsuka 1990; Kaneko 1991;

Itoh and Kimoto 1996).

Orbital inclinations relative to the system’s invariable plane are plotted in Fig. 10. While

the case of Mercury is the most remarkable, there are perceptible changes in the cases of

Venus and Earth as well. The oscillatory patterns have more high-frequency content after

65 Myr than before. Mars, moreover, exhibits a single amplitude cycle in its oscillations,

between 110 and 40 Myrs.

Laskar (1990, 1999) argued for the presence of chaos in the inner solar system through

changes in secular frequencies and certain resonance variables which are not easy to inter-

pret. Sussman and Wisdom (1992) also used resonance variables and noted the difficulty of

interpreting changes in such variables. The macroscopic changes in the evolutionary patterns

of Mercury’s orbital elements (Figs. 9 and 10 here) are a direct proof of chaotic behavior in

the inner solar system.

7. CONCLUSIONS

Despite considerable progress in the last two decades, we still do not know the details of

the evolution of planetary orbits on the time scale of tens of millions of years. The present

work addressed some of the most pressing issues and provides further gains in both numerical

accuracy and physical insight, but there is still room for improvement.

Integration errors are now considerably smaller than the divergence of solutions due

to genuine chaos in the system. The main uncertainty in the physical model is due to the

4http://www.ngdc.noaa.gov/paleo/forcing-orbital.html

5http://delphi.esc.cam.ac.uk/coredata/wwwcoredata/ODP/LEG154/orbits.html
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modeling of the Earth–Moon system and its effect exceeds that of numerical errors. For the

past 50 Myr, our results are quite reliable and appear to be more accurate than previous

ones. We attribute this progress mainly to improvements in integration methodology and in

the modeling of the Earth–Moon system.

No serious mistakes are apparent in our results, but coding errors, as well as those

in handling input and output data, are not easy to avoid. The present results, therefore,

need to be checked by researchers who work independently of our group and use different

simulation methodologies, if possible. New integration schemes are being developed, thanks

to the renewed interest of numerical analysts in planetary orbital dynamics (Sharpe 2001).

Perhaps an independent study could use one of these new techniques.

Our results confirm the presence of chaos in the inner solar system. Despite being

chaotic, orbital evolution in the inner solar system appears to have been quite uneventful for

the past 50 Myr. The transition between different dynamical regimes around 65 Myr ago

certainly deserves more attention, since it could have affected the asteroid belt and produced

the bolide impact that occurred at the Cretaceous-Tertiary boundary (Alvarez et al. 1980).

The macroscopic change in the evolution of Mercury’s orbit makes it plausible that similar

changes took place in the case of some asteroids. The rate of asteroids impacting the Earth

could be related to chaotic transitions in the motion of the inner planets. This conjecture

and the details of the chaotic transitions will be discussed in a separate paper.
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Simulation Modeling of Step size Length

designation Moon (days) (Myr)

R1 barycenter 0.25 100

R2 barycenter 0.3125 212

R3 barycenter 0.25 89

R4 AM 0.3125 123

R5 resolved 0.03125 45

R6 AM+IDA 0.3125 6

R7 MAM 0.3125 207

Table 1: Summary of the simulations’ properties. Except for R1, all include the effects of

general relativity for each Sun–planet pair. The following abbreviations are used: AM–the

averaged Earth–Moon model of Quinn et al. (1991); MAM–the modified averaged model;

IDA–initial data are adjusted for consistency with the averaged model, following Quinn at

al. (1991); See main text for details.

This preprint was prepared with the AAS LATEX macros v5.0.
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Fig. 1.— Earth’s orbital eccentricity according to Laskar (1990) and our simulations with

three physical models: one with the Earth–Moon model of Quinn et al. (1991), another one

with these bodies resolved, and the last one with our improved Earth–Moon model. The

time axis in all our figures runs from the present at the left toward the past at right, as is

customary in geology and paleoclimatology.
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Fig. 2.— Fractional position error estimated from the difference between two integrations,

R2 and R3: (a) over 10 million years (Myr); (b) over 100 Myr. The two runs differ only by

their step size. Except for Mercury, the errors are less then 10−3 for the past 60 Myr.
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Fig. 3.— The combined effects of chaos and integration errors on the orbit of three planets:

(a) Mercury, (b) Earth, and (c) Uranus. The differences between R2 and R3 in these plan-

ets’ smoothed and unsmoothed vector eccentricities are plotted, i.e., the magnitude of the

difference in (Laplace vectors)/(semi-major axis). See the main text for discussion.
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Fig. 4.— The effects of general relativity on Earth’s orbital eccentricity: the two runs, R1

and R3, are identical except for R3 including these forces, while R1 does not.
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Fig. 5.— The difference in Jupiter’s orbital eccentricity, between R1 and R3.
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Fig. 6.— Comparison of R3, R4, R5; see Table 1 for a description of these three simulations.



– 30 –

0 10 20 30 40 50
Time (Myr before present)

−0.0005

−0.0004

−0.0003

−0.0002

−0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

D
iff

er
en

ce
 in

 E
ar

th
’s

 s
m

oo
th

ed
 o

rb
ita

l e
cc

en
tr

ic
ity

Fig. 7.— The difference in Earth’s orbital eccentricity, between R5 and R7; the former model

resolves the Earth–Moon system as two bodies, while the latter uses an averaged model with

optimized f = 0.8525 (see Table 1 and main text).



– 31 –

0 1 2 3 4 5
Time (Myr before present)

0

0.02

0.04

0.06

E
ar

th
’s

 o
rb

ita
l e

cc
en

tr
ic

ity

Laskar  (1990)
R7

Fig. 8.— Comparison of Laskar’s (1990) results and R7; the physical model of R7 most

closely matches Laskar’s.
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Fig. 9.— Comparison of the inner planets’ smoothed orbital eccentricities in R7.
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Fig. 10.— Comparison of orbital inclinations relative to the invariable plane, in R7.


