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Motivation

1.
 Geophysical time series have typically broad peaks on top of a continuous,
       “warm-colored” background  Method

2.
 Connections to dynamics   Theory

3. 
 Need for stringent statistical significance tests   Toolkit

4.
 Applications to analysis and prediction   Examples

Joint work with M. Ghil and many others

http://www.atmos.ucla.edu/tcd
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Motivation & Outline

1..Data sets in the geosciences are often short, contain noise (errors) and are 
gappy:: this is both an obstacle and an incentive.

2. Phenomena in the geosciences often have both regular (“cycles”) 
    and irregular (“noise”) aspects.

3. Different spatial and temporal scales: 

 

 one person’s noise is another person’s signal..

4. Need both deterministic and stochastic modeling. 

5. Regularities include (quasi-)periodicity  spectral analysis via “classical” 
  and novel methods - singular spectrum analysis (SSA).

 7. Does some combination of the two, + deterministic and stochastic 
modeling, provide a pathway to prediction?

     Empirical model reduction 

For details and publications, please visit:
TCD — http://www.atmos.ucla.edu/tcd/ 2/32

6. Reconstruction of gappy data with SSA.

8. Be prepared to answer questions...

http://www.atmos.ucla.edu/tcd/
http://www.atmos.ucla.edu/tcd/


Spatio-Temporal Variability

Standard view    Binary thinking: 

Trend  Predictable (completely), deterministic, reassuring, good;  

Variability  Unpredictable (totally), stochastic, disconcerting, bad. 

In fact, these two are but extremes of a spectrum of, more or less predictable, 
types of behavior, between the totally boring & the utterly surprising. 

(Linear) Trend = Stationary > 

Periodic > Quasi-periodic > 

Deterministically aperiodic >  

Random Noise

Here “>” means “better, more predictable”, & 

Variability = Trend+ Periodic + Quasi-periodic + 

               Aperiodic + Random
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Spectral Density (Math)/Power Spectrum (Science & Engng.)

Wiener-Khinchin Theorem  <->  Blackman-Tukey Correlogram

Time-domain<->frequency domain: lag-autocorrelation function 
& the spectral density are Fourier transforms of each other. 

Continuous background 
+ peaks (poles) 

R(s) = lim
L→∞

1
2L

L∫

−L

x(t)x(t + s)dt

S(f) =
1
2π

∞∫

−∞

R(s)e−ifsds ≡ R̂(s)

S(f)

f
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Variance   vs. frequency 



Power Law for Spectrum (cont’d)

Nonlinear climate hypothesis: “Poles” correspond to the least 
unstable periodic orbits

Major clue to the physics  that underlies the dynamics

Orbits are not necessarily elliptic, i.e. not

but phase and amplitude modulation and intermittent behavior.

(a)“unstable limit cycles” “Poincaré section”

(x, y) = (afsin(ft), bfcos(ft))
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(x , y) = (af (t)sin(ft + φ(t)), bf (t)cos(ft) + Ψ(t))



Power Law for Spectrum

            S(f) ~ f – p + poles

i.e. linear in log-log coordinates

For a 1st-order Markov process or “red noise” p = 2

“Pink” noise, p = 1 (1/f , flicker noise) 

“White” noise, p = 0 

It is a challenge for short and noisy geophysical time 
series to distinguish between poles and red noise.

Tradeoff for spectral methods: resolution (spurious 
peaks) vs. robustness (power leakage) 
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ẍ = −ω
2
x vs. ẋ = −λx



Synthetic example 
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         Q: Is there a periodicity and what is its frequency?

         A: What is the underlying noise “null hypothesis”?

         Hint: It is a periodic signal contaminated by noise...



Classical Spectral Methods 
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Advanced Spectral Methods
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Singular Spectrum Analysis
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- Singular spectrum analysis 
(SSA)and Multi-taper method 
(MTM).

- detection of periodic signals: 
phase and amplitude modulation, 
intermittent behavior, large noise. 

- use data-adaptive orthogonal 
basis in frequency domain 
(MTM) and time domain (SSA). 

- significance tests for spectral 
peaks. 
 



Anybody guessed it right?
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Signal
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Singular Spectrum Analysis (SSA)

Spatial EOFs, Principal Component 
Analysis (PCA)

Spatio-temporal EOFs, SSA

x – space 
s – lag 

k

λ

Statistical dimension

Pairs  oscillations
(nonlinear) sine + cosine 
pair Vautard & Ghil (1989: VG) 

Physica, 35D, 395-424 Empirical Orthogonal Functions (EOFs) 
are the most optimal patterns to capture 
the variance. 

EOFs are statistical features, but may 
describe some dynamical (physical) mode(s) 
in low-order dynamical systems

Cφ(x,y)=Eφ(x,ω)φ(y,ω)

=
1
T

Z T

o
φ(x, t)φ(y, t)dt

CX(s)=EX(t + s,ω)φ(s,ω)

=
1
T

Z T

o
X(t)X(t + s)dt
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SSA Power Spectra & Reconstruction

A. Transform pair: 

      For given window M, ek’’s are adaptive filters (empirical orthogonal functions)

                  the ak’’s are filtered time series, principal components in time domain. 

B. Power spectra

C. Reconstruction

in particular:  

ak(t) =
M∑

s=1

X(t + s)ek(s), ak(t)− PC

X(t + s) =
M∑

k=1

ak(t)ek(s), ek(s)− EOF

XK(t) =
1
M

∑

k∈K

M∑

s=1

ak(t− s)ek(s);

12/32

K = {1, 2, ....., S} or K = {k} or K = {l, l + 1;λl ≈ λl+1}

SX(f) =
M∑

k=1

Sk(f); Sk(f) = R̂k(s); Rk(s) ≈
1

T

∫ T

0

ak(t)ak(t + s)dt



SSA of Nino-3 index (El-Nino)

SSA decomposes (geophysical & other) 
time series into 

Temporal EOFs (T-EOFs) and 
Temporal Principal Components (T-PCs), 
based on the series’ lag-covariance matrix

Selected parts of the series can be 
reconstructed, via 

Reconstructed Components (RCs)

Time series

RCs

T-EOFs

• SSA is good at isolating oscillatory behavior via paired eigenelements.
• SSA tends to lump signals that are longer-term than the window into 

–one or two trend components.
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SSA of Southern Oscillation Index (El-Nino)

•Powerful noise filter: Break in slope of SSA spectrum 
distinguishes “significant” from “noise” EOFs
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•Formal Monte-Carlo test identifies 4-yr and 2-yr ENSO oscillatory modes (SSA 
pairs).  A window size of M = 60 is enough to “resolve” these modes in a monthly 
SOI time series. 



SSA Forecast (Sunspot cycle)

Forecast principal components of “signal” 
with AR(M) model and do reconstruction.

Perform cross-validation to find optimum 
number of  “signal” components.  

Correlations are both advantage and 
limitations of empirical models.

Can be improved with multivariate series.
15/32

Reconstruction/Prediction

Data

Sunpsot number prediction
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Future of “Space Weather”?
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Forecast of Nino-3 index 1-yr ahead, and recent performance.   

Real-time forecasting is tough even with many good models and plentiful 
observations!



Dealing with

Missing

Data
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w/o data assimilation



Historical records are full of “gaps”....

Annual maxima and minima of the water level at the nilometer on Rodah 
Island, Cairo. 18/32



Why are there data missing?

Hard Work

• Byzantine-period mosaic from Zippori, the capital of Galilee (1st century 
B.C. to 4th century A.D.); photo by Yigal Feliks, with permission from the 
Israel Nature and Parks Protection Authority )

19/32• Is there 14-yr cycle there (fat and lean years?) 



... and now on Earth... 

SST (AMSR-E),     
daily 2x2, June 
2002 – February 
2007: 38.2% of 
missing points

Wind (QuikSCAT), 
daily 2x2, July 
1999 -- February 
2007:17.2% of 
missing points 

Gaps: satellite coverage, precipitation and clouds. 
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... and in Space!

Gaps: satellite coverage, malfunctions. 
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How SSA can help with the gaps: synthetic example
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1. Choose window M and set K=1. 
Flag fraction of dataset X(t)(t=1:N) as 
“missing” for cross-validation.                                                                                        

D =













X(1) X(2) . . X(M)
X(2) X(3) . . X(M + 1)

. . . . .

X(N ′
− 1) . . . X(N − 1)

X(N ′) X(N ′ + 1) . . X(N)













CX =
1

N ′
D

t
D;CXEk = λkEk

Ak(t) =
∑M

j=1
X(t + j − 1)Ek(j)

RK(t) = 1

Mt

∑
k∈K

∑Ut

j=Lt
Ak(t − j + 1)Ek(j);

4. If convergence, K = K +1.  Check cross-
validation error, and Go to Step 2 if 
necessary.  

 2. Update mean and covariance, 
find leading K EOFs           
                                                                                            

3. Reconstruct missing points using K EOFs        
                                                                                            

Utilize both spatial and temporal 
correlations to iteratively compute 
self-consistent lag-covariance 
matrix => can be applied to very 
gappy data. 

Follows expectation maximization 
(EM) procedure for finding 
maximum likelihood estimates of 
mean and covariance matrix.   

A few K leading EOFs correspond 
to the “smooth”  modes, while the 
rest is noise. 

Provides both spectral analysis and 
estimates of missing data. 

SSA gap-filling

D. Kondrashov and M. Ghil, 2006: 
Spatio-temporal filling of missing points 
in geophysical data sets,
Nonl. Proc. Geophys., 13, 151-159.



Synthetic I: Gaps in Oscillatory Signal 

• Very good gap filling for smooth modulation; OK for sudden 
modulation.
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Synthetic II: Gaps in Oscillatory Signal + Noise

x(t) = sin( 2π
300 t) ∗ cos( 2π

40 t + π
2 sin 2π

120 t)
25/32

! "!! #!! $!!
!%

!

%
&'()*++*,-(-&.(/

0
! "!! #!! $!!

!%

!

%

0

1'()*++*,-(-&.(//

2! %!! %2!

!"
!
"

0

3'()*++*,-(-&.(/

"!! "2! 4!! 42!

!"
!
"

0

5'()*++*,-(-&.(//

" # $ 6 %!

%

%7!2

897(9:(;95<=

<'(>?9==!@&+*5&0*9,(ABC(<??9?

! !7!" !7!#

%!
!

:'(CCD(=.<30?E;F(BG"!!

)?<HE<,3I



 Filed-in Nile River Records

Kondrashov D., Y. Feliks and M. Ghil (2005): Oscillatory modes of extended Nile River records 
(A.D. 622-1922), Geophys. Res. Let., 32, L10702, doi:10.1029/2004GL022156
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Significant Oscillatory Modes in Nile 
records

SSA reconstruction of the 7.2-yr mode in the 
extended Nile River records: 

(a) high-water, and (b) difference.
Normalized amplitude; reconstruction in the 

large gaps in red.

Instantaneous frequencies of the oscillatory
pairs in the low-frequency range (40–100 yr).

The plots are based on multi-scale SSA 
[Yiou et al., 2000]; local SSA performed in each

window of width W = 3M, with M = 85 yr.
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Radiation belts: synthetic gaps
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Filled-in Southern Ocean data

Cross-validation error for M=2 (u-wind)

Rank (ST-EOFs)
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Gap-filling needs to respect physical 
limits

Complete dataset with full statistics 
indicates important nonlinear 
features. 29/32



•Freeware ported to Sun, Dec, SGI, PC Linux, and Mac OS X
•Graphics support for IDL and Grace (free) 
•Includes Blackman-Tukey FFT, Maximum Entropy Method, Multi-

Taper Method (MTM), SSA and M-SSA. 
•Spectral estimation, decomposition, reconstruction & prediction.
•Significance tests of “oscillatory modes” vs. “noise.”  
•Gap-filling coming shortly. 
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SSA-MTM Toolkit

http://www.rsinc.com/
http://www.rsinc.com/
http://plasma-gate.weizmann.ac.il/Grace/
http://plasma-gate.weizmann.ac.il/Grace/


• Data management with named vectors & matrices.

• Default values. 
•   Precompiled binaries are available at www.atmos.ucla.edu/ tcd/ssa 31/32

SSA-MTM Toolkit (cont’d)

http://www.atmos.ucla.edu/tcd/ssa/form.html
http://www.atmos.ucla.edu/tcd/ssa/form.html
http://www.atmos.ucla.edu/tcd/ssa/form.html
http://www.atmos.ucla.edu/tcd/ssa/form.html
http://www.atmos.ucla.edu/tcd/ssa/form.html


• Ghil M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, M. E. Mann, 
A. Robertson, A. Saunders, Y. Tian, F. Varadi, and P. Yiou, 2002: 
"Advanced spectral methods for climatic time series," Rev. Geophys.,
40(1), pp. 3.1-3.41, 10.1029/2000RG000092.

• D. Kondrashov and M. Ghil, 2006: Spatio-temporal filling of missing 
points in geophysical data sets,
Nonl. Proc. Geophys., 13, 151-159.

• more at http://www.atmos.ucla.edu/tcd/ssa
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