
Low-cloud fraction, lower-tropospheric stability and

large-scale divergence

YUNYAN ZHANG1,2∗, BJORN STEVENS1,3,BRIAN MEDEIROS1, MICHAEL GHIL1,4

1Department of Atmospheric and Oceanic Sciences

University of California at Los Angeles, Los Angeles, California

2Lawrence Livermore National Laboratory, Livermore, California

3Max Planck Institute for Meteorology, Hamburg, Germany

4Geosciences Department and Laboratoire de Météorologie Dynamique de CNRS/IPSL,

Ecole Normale Supérieure, Paris, France

To be submitted to Journal of Climate

∗Corresponding author: Lawrence Livermore National Laboratory, Mail Code L-103, P.O. Box 808, Livermore,

CA 94551 Email: zhang25@llnl.gov



ABSTRACT

This paper explores the capability of the mixed-layer model (MLM) to represent

the observed relationship between low-cloud fraction and lower-tropospheric stability;

it also investigates the influence of large-scale meteorological fields and their variabil-

ities on this relationship. The MLM’s local equilibrium solutions are examined subject

to realistic boundary forcings that are derived from reanalysis data of European Cen-

ter for Medium Range Weather Forecasts (ERA-40). The MLM is successful in re-

producing the positive correlation between low-cloud fraction and lower-tropospheric

stability. The most accurate relationship emerges when the forcings capture synoptic

variability, in particular the daily varying large-scale divergence is a leading factor in

improving the regression slope.

The feature of the results is mainly attributed to the model cloud fraction’s intrin-

sic nonlinear response to the divergence field. Given this nonlinearity, the full range

of divergence must be accounted for, since a broad distribution of divergences will

give a better cloud fraction overall, although model biases might still affect individual

MLM results. The model cloud fraction responds rather linearly to lower-tropospheric

stability; and the distribution of the latter is less sensitive to sampling at different

timescales than divergence. The strongest relationship between cloud fraction and

stability emerges in the range of intermediate stability values. This conditional de-

pendence is evident in both model results and observations. The observed correlation

between cloud fraction and stability may thus depend on the underlying distribution

of weather noise, and hence may not be appropriate in situations where such statistics

can be expected to change.
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1. Introduction

Low-level stratiform clouds have long been recognized as essential to Earth’s radiative balance.

Their parametric representation in large-scale models, such as global climate models (GCMs) and

numerical weather prediction models, has proved challenging; in part due to the difficulty of rep-

resenting the structure of the environment in which they are found, and the processes operating

therein. The main challenge proves to be an accurate representation of the temperature inversion

that caps these cloud layers, thereby limiting mixing with the free troposphere, which in turn allows

moisture to accumulate within the marine boundary layer and clouds to form.

Empirically motivated parameterizations have long attempted to take advantage of the rela-

tionship between low-cloud fraction (or amount) and the strength of the temperature inversion, so

as to better represent these clouds. For instance, Slingo (1987) proposed diagnosing low-cloud

fraction (LCF) from the strength of the modeled temperature inversion. Klein and Hartmann

(1993) (hereafter KH93) showed that the lower-tropospheric stability (LTS), which they defined as

the potential temperature difference between surface and 700 hPa, provides a remarkable indicator

of low-cloud fraction on seasonal timescales. Their result is reproduced in Figure 1 and shows their

linear regression between seasonal area mean LTS and LCF for the six subtropical stratocumulus

regions identified in Figure 2. Also shown is a modern reconstruction of this relationship using

different data sources. This remarkable association has begun to be used as the basis for parameter-

izations of low clouds in some large-scale models (e.g., Collins et al. 2004). Some reasons why this

might not be a good idea are that: (i) the association breaks down on shorter time-scales (Klein and

Hartmann 1993; Klein et al. 1995; Klein 1997); (ii) because lower-tropospheric stability is dimen-

sional, to the extent the relation expresses a climate truth, this truth may well depend on the climate

state; (iii) the association varies regionally (Stevens et al. 2007). A more attractive solution would

be a theory, or physically based model, that when integrated in a global climate model, yielded the

observed association between low-cloud fraction and lower-tropospheric stability. Such a theory

would have the benefit of helping understand what underlies this correlation.

For decades, our understanding of the stratocumulus-topped boundary layer (STBL) has been
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rooted in the mixed-layer theory of Lilly (1968), and it seems likely that any parameterization will

incorporate important elements of these ideas. Some groups (Suarez et al. 1983; Randall et al.

1985; Moeng and Stevens 1999; Medeiros et al. 2005) have attempted to implement Lilly’s ideas

directly, by introducing the mixed-layer model (MLM) directly as a GCM parameterization. Others

have been experimenting with approaches which relax to the MLM in certain limits (Lock 2001;

Grenier and Bretherton 2001). Because the mixed-layer concept dominates our thinking about

how to parameterize stratocumulus, off-line studies have explored the capability of the MLM to

represent the STBL. For instance, Stevens (2002) used such a model to evaluate a variety of pro-

posed entrainment parameterizations. With weak entrainment rates, the MLM is able to simulate

a reasonable diurnal evolution of well-mixed STBL (Zhang et al. 2005) and is characterized by

equilibrium states comparable to observations (Stevens et al. 2005). Bretherton and Wyant (1997)

further showed that a MLM can be used to evaluate the point at which the cloud layer “decouples”

(thermodynamically differentiates itself) from the sub-cloud layer, thereby invalidating the under-

lying assumptions in the model. However it still remains a question whether the MLM is able to

reproduce the observed relationship between low-cloud fraction and lower-tropospheric stability;

and if so, what meteorological parameters and variabilities make the representation of the observed

relationship more precisely?

In this study, we endeavor to answer these questions by exploring local equilibrium solutions

of a MLM subject to realistic boundary forcings derived globally from the European Center for

Medium Range Weather Forecasts (ECMWF) Reanalysis (ERA-40, Uppala et al. 2005) averaged

over a variety of timescales.

The choice of local equilibrium solutions, wherein advective tendencies are prescribed inde-

pendently of the solution at neighboring points, is motivated by practical and theoretical consid-

erations. From a practical perspective, equilibrium solutions are much easier to obtain, in part

because they no longer depend on solutions at neighboring grid points. This proves necessary

as there are circumstances where a mixed-layer solution may not be a good representation of the

boundary layer, and so removing the dependence of solutions on one point from solutions at other
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points avoids the problem associated with unphysical solutions within the domain. From a theoret-

ical perspective the equilibrium solutions are attractive as they remove time as a variable, and thus

facilitate attempts to relate the statistics of the model to the statistics of the underlying forcing.

The disadvantage of focusing on equilibrium solutions is that they are not a realistic repre-

sentation of the expected state of the boundary layer. Such solutions would only be expected to

be physically representative in the limit when the adjustment timescale of the boundary layer is

much shorter than the timescale over which the forcing changes. Schubert et al. (1979) showed

that the adjustment time scale to MLM equilibrium is about one week for boundary layer depth

and one day for thermodynamic fields, which implies that the history is important to any partic-

ular realization of the boundary layer state. Even so, one could imagine that the equilibrium of

the MLM is at least a good indicator of the expected state of any particular realization, i.e., cloud

equilibria are likely to be cloudy, and cloud-free equilibria are likely to be cloud free, especially

when the model forcing time scale is long, such as seasonal or monthly mean. This motivates our

working hypothesis, which is that the statistics of the MLM equilibria capture essential aspects of

the actual boundary layer. Given this distinction, we note that the failure of the MLM to reproduce

the observed climatological relationships may just as well stem from the failure of our equilibrium

hypothesis as from an intrinsic shortcoming of the MLM.

We organize the remainder of this paper as follows: the methodology employed is presented in

section 2, including a discussion of our implementation of the MLM, its boundary conditions and

the set-up of simulations, as well as the data sources used to force and evaluate it. The equilibrium

climatology of low-cloud fraction is presented and interpreted in section 3; section 4 provides

a framework for discussing our findings in relation to observations; a summary and conclusions

appear in section 5.
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2. Methods

a. Data

The meteorological state used in our calculations and data-analysis is derived almost entirely

from the ERA-40 6-hourly data. Previous work has shown this analysis to provide an adequate

representation of the remote marine boundary layer, at least in the stratocumulus region west-

southwest of California (Stevens et al. 2007). Based on ERA-40 sea surface temperature (SST),

pressure and 10 m winds, we calculate the large-scale divergence, D, surface wind speed, ‖U‖,

and surface values of the liquid-water static energy and total water specific humidity, which we

denote by sl,0 and qt,0, respectively. While the MLM is most suitable for marine stratocumulus

boundary layers, we also include the Chinese stratus region, where most of the domain is over

land, to maintain consistency with KH93. In the Chinese stratus region, surface air temperature is

used instead of SST.

Cloud fraction is taken from the International Satellite Cloud Climatology Project (ISCCP,

Rossow and Schiffer 1999). In our analysis the correlation between low-cloud fraction and lower-

tropospheric stability is not as strong and the slope of the regression is somewhat weaker (5%

cloud fraction per degree Kelvin in our case as compared to 6% per degree Kelvin) than reported

by KH93. Differences may have a number of origins: (i) low-cloud fraction is measured differently

by ISCCP than it was by KH93, who used the cloud climatology derived from the surface observer

network; (ii) the ISCCP low-cloud fraction is taken as the sum of stratocumulus and stratus cloud

fraction below 680 hPa, in which no cloud overlap is considered; (iii) we use a different source

of data for estimates of the lower-tropospheric stability; (iv) we are exploring a slightly different

epoch (or temporal period). In the following we evaluate the MLM results with the ISCCP re-

gression line, with the knowledge that the true low-cloud climatology exhibits some quantitative

dependence on the data source. Finally, we note that although Wood and Bretherton (2006) show

that seasonal means of reconstructed (or estimated) inversion stability more strongly correlate with

low-cloud fraction than lower-tropospheric stability, this largely arises from improved behavior in
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the extra-tropics. Because our study focuses almost exclusively on the subtropical stratocumulus

regions (as shown in Figure 2), where such reconstructions have less effect and because we began

before we became aware of their results, we maintain our emphasis on the traditional definition of

lower-tropospheric stability.

b. The MLM

The structure of well-mixed stratocumulus-topped boundary layer is illustrated in Figure 3

from Stevens et al. (2007). The MLM consists of three prognostic equations for mass (h, the

height of the stratocumulus-topped boundary layer, also the cloud top height), liquid water moist

static energy (sl = cpT + gz − Lvql), and the total moisture (qt = qv + ql, the sum of waver vapor

and liquid water specific humidity). Both sl and qt are adiabatic invariants of the system. In the

following, 〈X 〉 = 1
h

∫ h

0
Xdz, stands for the vertically averaged, or bulk value, and X ∈ {sl, qt, ũ},

where ũ is the horizontal wind vector. The equations we wish to solve are as follows:

dh

dt
= E −Dh − ˜〈u〉 · ∇h (1)

d

dt
〈sl〉 =

1

h
[V (sl,0 − 〈sl〉) + E(sl,+ − 〈sl〉) −4FR] − ˜〈u〉 · ∇〈sl〉 (2)

d

dt
〈qt〉 =

1

h
[V (qt,0 − 〈qt〉) + E(qt,+ − 〈qt〉)] − ˜〈u〉 · ∇〈qt〉 (3)

The evolution of the cloud top height, h, is represented as a balance between the entrainment

velocity E, downwelling large-scale flow Dh (which we scale with the surface divergence), and

large-scale advection. The evolution of sl is affected by surface fluxes, entrainment, the cloud-top

radiative flux divergence 4FR, and advection. In the absence of precipitation, the evolution of

qt is determined by surface fluxes, entrainment and advection. Subscript 0 and + denote surface

values and the states just above cloud top respectively. Surface fluxes are calculated by a bulk

aerodynamic formula, where V = CD‖U‖, with ‖U‖ the surface wind speed, and CD the surface

exchange coefficient, which is assumed constant. Here, ∆FR = fp(1 − e−κL). The cloud liquid-
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water path, L, is diagnosed based on h, sl and qt, while κ is an empirical coefficient equal to

85 m2 kg−1 (Stevens et al. 2003b) and fp = 40 Wm−2 is chosen to represent a diurnally averaged

value of this quantity, and is loosely based on observations during The Second Dynamics and

Chemistry of Marine Stratocumulus field study (DYCOMS-II Stevens et al. 2003a).

To close Eqs. (1)–(3) requires the specification E. We use a composite formula which incor-

porates both buoyancy and wind-shear. For the buoyancy component, the scheme from Lewellen

and Lewellen (1998) is adopted with the entrainment efficiency η = 0.25 (Stevens et al. 2003b).

The wind-shear component is assumed proportional to an e-folding profile as follows:

Ew = Cwe−z/500 (4)

where z is the height; Cw = 0.61 mm s−1, is an empirical constant.

Allowing both processes to contribute to entrainment yields multiple-equilibria shown in Fig-

ure 4. For a certain range of large-scale conditions, such as D, the MLM has two stable solutions,

cloudy and clear sky, in which the final states are determined by the position of the initial state

relative to the unstable solution (Randall and Suarez 1984; Stevens et al. 2005). An example is

shown in Figure 5. The cloud fraction is reduced about 13 % averaged over the California stra-

tocumulus region when initial conditions are changed from cloudy to clear-sky states. Because in

the stratocumulus regions we are familiar with, alongshore flow is more common than offshore

flow, in our study, all the calculations are initiated from cloudy states.

c. Implementation

1) LARGE-SCALE BOUNDARY CONDITIONS

Most of the boundary conditions and forcings are straightforward to apply. Exceptions include

the advection terms, and the specification of sl,+. In lieu of calculating advection directly (which

would require knowledge of the solution at the upwind grid point), we advect the surface properties

of the upwind grid–points into the domain, and surface properties of the local grid out of the do-
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main. That is, thermodynamic gradients within the boundary layer are assumed to follow gradients

in surface properties. This assumption is good in the limit of weak entrainment, but is more prob-

lematic in situations where entrainment fluxes are more substantial and we anyway do not expect

stratocumulus. Mass advection, as represented by the ˜〈u〉 ·∇h term, is modeled through the use of

the ERA-40 boundary layer height. The absolute value of h is significantly underestimated by the

ERA-40 representation of the stratocumulus region of the north-east subtropical Pacific, however

such underestimation is distributed consistently, thus ∇h appears reasonable in the climatology

and motivates the model used here (cf. Stevens et al. 2007).

The inversion strength at the top of cloud depends in part on sl,+. Because of the long-wave

radiation flux divergence, the air cools just above the cloud top. Due to this fine-scale process, a

linear extrapolation based on the upper troposphere temperature and the lapse rate overestimates

the temperature by 2-5 K at the cloud top (Siems et al. 1993; Stevens et al. 2003b; Caldwell and

Bretherton 2008). Therefore, a 4 K offset is added to the linear extrapolation in order to capture

the curvature of θl at the bottom of the inversion just above the cloud top shown in Figure 3. Some

sensitivity to this offset is evident in the solutions; 4 K appears to be a reasonable value based on

previous modeling and simulation work.

2) SOLUTION METHOD

Solving for the equilibria of the model is not trivial. Although analytic solutions exist for

some simple models of the entrainment velocity, we were not able to derive solutions given our

representation of entrainment. Hence we look for equilibria by integrating the model in time.

Integrations are conducted for 200 days, and convergent solutions are identified as those which

do not change by more than 0.01% over thirty minutes. We only seek solutions for values for

D > Dc = 0.5× 10−6 s−1; Dc is a critical value for divergence; its sole purpose is to help limit the

domain over which solutions are sought and thus minimize the computational expense. Even so,

for weak stability and values of D near Dc the model equilibria can be unphysically deep. Thus we
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further set a threshold depth of zc = 2000 m, so that equilibria with h > zc are discarded. Regions

without acceptable equilibria are assigned a missing value, and are assumed to be cloud free. In

reality they may be cumulus capped, but given the generally small value of cumulus cloud cover

(e.g., about 10%, Siebesma et al. 2003), and (more importantly) the fact that cumulus clouds are

not intended to contribute to the ISCCP low-cloud fraction as defined here, such an assumption

appears appropriate.

It would be more reasonable to use physical criteria such as the buoyancy-flux integral ratio to

determine decoupling (Turton and Nicholls 1987; Bretherton and Wyant 1997; Wyant et al. 1997;

Stevens 2000). To estimate this, we used a similar diagnostic parameter, radiative entrainment

efficiency α, as a measure of decoupling. Previous work (Zhang et al. 2005) suggests α represents

the contribution to turbulence kinetic energy generation from surface fluxes and radiative driving;

α > 1 leads to decoupling. However this criteria did not discriminate well the MLM equilibria,

we think the reasons are that: i) the common decoupling mechanisms such as diurnal varying

radiative driving or drizzling are not included; ii) the transition might be more evident in transient

evolution with continuously time-varying boundary conditions and hence sensitive to initial data.

This certainly requires further research by improving the sophistication of the model. Possible

approaches would be to investigate the low-cloud climatology by the Lagrangian integration along

the backward trajectory starting with realistic initial conditions (Bretherton and Wyant 1997) or

to use predictor-corrector schemes to calculate large-scale advection tendencies based on ERA-

40 data and MLM simulations. Such approaches might also improve liquid water path, which is

largely overestimated in equilibrium states.

Clearly a number of these choices are not ideal, and while physically motivated, they introduce

a number of arbitrary parameters. We have attempted to insure that our findings do not depend

essentially on these choices, and recognize the limitations of our study, many of which stem from

the lack of a compelling theory or unified model of cloud-topped boundary layers, as this prohibits

us from exploring non-equilibrium solutions as continuous functions of space and time.
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3) SOLUTION DOMAIN

The MLM simulation domain is a gaussian grid with a spacing of about 1.5◦ by 1.5◦. This cor-

responds to the NCAR Data Support Section refined T85 grid, on which the ERA-40 products used

here have been regridded. Solutions are sought at a variety of timescales ranging from timescales

of daily (1 day) to seasonal (90 days). Integrations are performed using 12 years of data (1990 –

2001), yielding 12 independent estimates of climatological cloud fraction for a seasonal run and

about 1080 calculations for the daily run per grid–point per season. The low-cloud fraction is

diagnosed as 1 or 0 based on equilibrium cloud liquid water path for each estimate, hence cloud

fraction only emerges by averaging over the ensemble of solutions. Further, because most of our

focus is on the roughly 50 ERA-40 grid–points in each of the six subtropical stratiform regions in

Figure 2, our sample space increases accordingly.

We define a “control run” as one in which all the large-scale boundary conditions are averaged

and used to force the MLM at the same timescale. A “sensitivity run” is defined to be set of

calculations in which large-scale boundary conditions are averaged and used to force the MLM

at different timescales, e.g. daily-varying lower-tropospheric stability is used to force the MLM

while other boundary conditions are fixed at their seasonal mean value. Unless otherwise stated,

simulations should be understood to be “control” runs.

3. MLM Equilibrium Low-Cloud

a. The seasonal cycle of low-cloud fraction

The MLM climatology of seasonal low-cloud fraction compares favorably with the ISCCP

observations. This is true for solutions forced with both seasonal and daily varying data, although

the latter compare more favorably with the observations. This is evident in Figure 6, in which the

seasonal climatology produced from the daily runs follows the seasonal climatology from ISCCP

more closely than the climatology from the seasonal runs. The seasonal climatology of daily
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runs is deficient in some regions and some seasons, most markedly in the Atlantic, where the

Namibian stratocumulus region shows the most pronounced differences between what is modeled

and observed.

The equilibria of the MLM also credibly differentiate the stratocumulus regions from regions

where other cloud regimes prevail. This is evident on maps of seasonal mean low-cloud fraction,

as shown in Figure 7.

A more statistical view, which better corresponds to Figure 1 is presented in Figure 8. Again

both seasonally and daily forced runs credibly represent the climatology; although the regression

slope from the runs forced by daily data is in better accord with the observations. It is noteworthy

that the results based on the seasonal forcing are more regionally distinct than those based on daily

forcing, with different regions evincing more distinct relationships between low-cloud fraction and

lower-tropospheric stability. This suggests that the large magnitude of regression in the seasonally

forced climatology comes from differences among regions rather than seasons. For instance, low-

cloud fraction for all the seasons in California and Namibia are above the regression line while the

low-cloud fraction from Peru and China are all below the regression line. Individual points from

climatologies derived from daily forcing are more evenly distributed along the regression line.

These findings suggest that: (i) the positive correlation between low-cloud fraction and lower-

tropospheric stability is well reproduced by equilibria of the MLM; and (ii) when subject to daily

variations in the ERA-40 boundary conditions, the regression slope is more consistent with data.

Because the relationship between low-cloud fraction and lower-tropospheric stability is not di-

mensionally consistent, there exists the possibility that the empirical correlation evident between

the two quantities is mediated by a dimensional variable that may vary with changing climato-

logical conditions. Exploring such relationships using the MLM allows us to explore the space

of its solutions in terms of appropriate non-dimensional representations of the model, the details

of which are presented in an appendix. It comes as little surprise that our main finding is that

the simple variable1 that captures the most variance over the stratocumulus regions is the stability
1Although we have yet to find one, it remains possible that a combination of the non-dimensional variables we
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across the stratocumulus-topped boundary layer normalized by the surface temperature, and the

correlation of this variable with low-cloud fraction is commensurate with the correlation between

low-cloud fraction and lower-tropospheric stability.

b. Contributions to the simulated climatology of low-cloud fraction

Here we attempt to understand what aspects of the forcing contribute most to the improvement

in the representation of the low cloud climatology as one progressively includes finer temporal

scales. We explore this question by first asking how much variability in the forcing is necessary

for the MLM to capture the observed climatology, and then systematically compare sensitivity runs

constructed using seasonally–varying forcing in all but one field, for which daily–varying forcing

is applied.

The general behavior of the climatology improves systematically as higher frequency forcing is

included, through periods of about three days. This finding is illustrated in Figure 9, showing the

regression slope and correlation coefficients between low-cloud fraction and lower-tropospheric

stability for runs forced at increasingly higher frequencies. Although the regression slope between

low-cloud fraction and lower-tropospheric stability for runs forced on daily timescales looks more

like our analysis of the observations (i.e., the point labeled ISCCP in the figure), the difference is

not large relative to the uncertainty in the observed relationship (i.e., between ISCCP and KH93).

Moreover, the correlation coefficient does not improve relative to runs forced with three-day aver-

aged data.

In Figure 9, sensitivity tests also show that among the variety of forcings (LTS, surface temper-

ature, free troposphere temperature and humidity, advections, divergence), those which contribute

directly to the evolution of the mass field (subsidence as represented by daily variations in diver-

gence, and advection of boundary layer depth) are more important to a good representation of the

identify in the appendix captures the variance in the solutions somewhat better than the normalized stability across the

stratocumulus-topped boundary layer.
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low-cloud climatology.

The extent of variability of the divergence on daily timescales is large. Figure 10 shows the pat-

tern of D on seasonal and daily timescales. The familiar pattern of subtropical divergence focused

over eastern boundary currents is apparent in the seasonal average, but not on daily timescales.

This reminds us that the weather noise is as strong as the spatial variability, and that coherent

patterns of D only emerge on longer timescales. Such synoptic variability effectively broadens

the probability distribution of divergence, incorporating such variability within the MLM helps it

sample a broader state space as it builds up the low-cloud climatology.

Similar benefits are not as apparent when the thermodynamic forcing incorporates variability

from shorter timescales. For instance, lower-tropospheric stability is shown in Figure 11. Here the

decorrelation between the patterns averaged over short- and long-time periods is less evident than

it was for the divergence. Yet it is precisely the stability of the lower troposphere which correlates

uncannily with low-cloud fraction in the observational data. Why do the equilibria of the MLM

reproduce the observed correlations between low-cloud fraction and lower-tropospheric stability

and improve most when the synoptic variability of D is incorporated?

Part of the answer is that the full distribution of thermodynamic variables is relatively better

sampled by the seasonal variability than the divergence. This point is made by Figure 12 and 13

which show the standard deviation of daily mean and seasonal mean data relative to the long-term

seasonal area-means. For example, in June, July and August at California region, the ratio of

standard deviations between daily and seasonal data is about 0.7 for lower-tropospheric stability

while only 0.3 for divergence. In general this ratio is higher for stability than divergence, however

there are exceptions: two seasons in Peru and one season in Namibia. Long-term divergence value

is approximately between 2.5 to 4×10−6 s−1 and the daily standard deviation could be as large as

4×10−6 s−1.

Figure 14 presents the expected behavior of the MLM for the sub-ensemble consisting of grid–

points in stratocumulus regions whose seasonal area-mean values of divergence fall between 2.5

to 4×10−6 s−1 and whose lower-tropospheric stability is between 16 to 22 K , ranges in which
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most long-term seasonal area-means are found (cf. Figure 12 and 13). The seasonal variance

of divergence is significantly less than the variance apparent on daily timescales, thereby further

quantifying what we inferred previously.

On average, cloud fraction increases nonlinearly as a function of divergence, hence the width

of the distribution matters. This point is also made in Figure 14, whose interpretation benefits

from the introduction of some notation. Let Ds denote the seasonal area-mean value of D for a

sub-ensemble of grid points, and xφ the state vector exclusive of φ, so (for instance) xD represents

all the state variables except divergence. Then the conditional cloud fraction is

c(D;Ds) =

∫

∞

−∞

c(D, xD;Ds) dxD, (5)

which is plotted as the light solid line in the top panel of Figure 14. The conditional cumulative

distribution follows as
∫

D

−∞
c(D′;Ds) dD′ and is shown as the dark solid line in the figure. The

dashed lines show p(D;Ds), the probability density function of D conditioned on Ds, both for the

daily (dark) and seasonal (light) data. The lower panel in Figure 14 shows analogous quantities

but now retaining the lower-tropospheric stability as the random variable.

Generally the MLM produces more cloud with increasing divergence, at least until a point,

after which the increasing probability of solutions consisting of shallow, but cloud-free, boundary

layers becomes apparent. Because the breadth of the distribution of D is large as compared to the

response of the model, c(D) is a non-linear function of D over a representative range of D. The

same is not true for lower-tropospheric stability (LTS, also denoted by ∆sl in the following). The

distribution of LTS is quite similar when sampled at daily versus seasonal timescales. Moreover,

across the range of observed ∆sl, c(∆sl;Ds) varies more or less linearly. This means that: (i)

estimates of c which do not sample the full distribution of D will be biased; and (ii) estimates of c

are likely to be less sensitive to the distribution of ∆sl, both because the distribution broadens less

at small timescales, and because over the range of ∆sl, c(∆sl;Ds) is effectively linear.

Because c(D) is non-linear, the breadth of the distribution also insulates against model biases.

To appreciate this point, approximate the probability density function of D as normally distributed
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about its seasonal value such that

p(D) =
1

σ
√

2π
e−(D−Ds)2/(2σ2), D ∈ (−∞,∞) (6)

and suppose that the conditional cloud fraction can be written as a Heaviside function, such that

c(D) =















0, D < Dc

1, D ≥ Dc

, (7)

then it is a straightforward matter of integration to show that the expected value of the cloud

fraction, C takes the form

C =

∫

∞

−∞

c(D) p(D) dD =
1

2

[

1 − erf

(Dc −Ds

σ
√

2

)]

. (8)

This shows that in the case when Ds ≈ Dc biases in the cloud model (for instance as represented

by biases in Dc) are amplified if the variance in D is undersampled. Thus including the full breadth

of the distribution of D in our estimates may lead to a better correspondence with the data for the

simple reason that it reduces the sensitivity of the results to biases in the model (which in terms of

the above arguments could be construed as errors in the modeled value of Dc).

c. On the emergence of low-cloud fraction and lower-tropospheric stability relationships

Figure 14 also helps explain why correlations between low-cloud fraction and lower-tropospheric

stability are more evident than, say, correlations between low-cloud fraction and divergence. In ef-

fect it says that for a sub-ensemble constructed for grid–points with seasonal area-mean values of

D falling within a narrow range, the cloud fraction, c(∆sl), varies roughly linearly with lower-

tropospheric stability, ∆sl; given a value of ∆sl over the range of ∆sl in the sub-ensemble, the

confluence of other factors is more likely to produce cloud equilibria of the MLM at larger values

of ∆sl as opposed to smaller values. The same is not true for divergence. Because individual

solutions of the MLM are either zero or one, the slope of c(∆sl) in the lower panel of Figure 14,

reflects the underlying distribution of x∆sl
, i.e., components of the state vector exclusive of ∆sl.

15



Because there is no reason to suspect these distributions to be universal, one should not expect

dc(∆sl)/d∆sl to be universal.

This raises the question as to whether the correlation between lower-tropospheric stability and

cloud fraction that is so evident in the data is also valid locally, or only emerges through a com-

position of data from different regions. This question is interesting to ask of the MLM, even if we

know such relationships do not hold in the data, because by evaluating its equilibria we mitigate

against the effects of weather noise. To provide an answer we calculate dc(∆sl)/d∆sl for each

region and each season, and plot the local slope along with the global regression in Figure 15.

For the most part the local slopes follow the global regression, especially for intermediate values

of lower-tropospheric stability. Although in each case it must be emphasized that the correlation

underlying these local relationships may not be large, there does tend to be a robustness to such

relationships more locally.

The tendency of the local slopes to be flatter at the more extreme values of lower-tropospheric

stability is not unlike what we see in Figure 14 for the sub-ensemble based on grid–points with

similar values of Ds. To the extent that the equilibria of the MLM capture the essence of real

stratocumulus, one could infer from this exercise that: (i) the failure of individual stratocumulus

regions to show a robust correlation between low-cloud fraction and lower-tropospheric stability

on shorter temporal scales reflects the effect of weather noise; (ii) and while the relationships may

be valid given sufficiently restricted conditions, parameterizations based on observed correlations

emerging on seasonal timescales are not likely to be valid outside of this range—for instance away

from well identified stratocumulus regions, or across changing climate regimes.
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4. On the generality of low-cloud fraction and lower-tropospheric

stability relationships

To expand on these ideas from the mixed-layer model we return to the observational data

and ask: (i) within stratocumulus regimes how robust is the data to our choice of sub-ensemble

to composite? (ii) to what extent does the relationship between low-cloud fraction and lower-

tropospheric stability depend on one’s choice of regime?

The first question is explored by looking at the distribution of the slopes of the regression lines

derived by random sampling of seasonal means in the set of points (location and year) comprising

four of the stratocumulus regions (Australia, Peru, Californian and Namibian). Our choice to only

draw samples from these four regions was motivated by the fact that climatologically these regimes

appear most similar and Canarian region is not included because its lower-tropospheric stability is

relatively lower than others (cf. Figure 13). The distribution of regression slopes from the MLM

is similar to that for the data, although markedly weaker (Figure 16), perhaps reflecting the poor

behavior of the MLM equilibria over the Namibian region.

This result hints that the relationship between low-cloud fraction and lower-tropospheric sta-

bility depends on how different regimes are sampled. This point emerges more clearly when we

expand upon this strategy, constructing the distribution of regression slopes by randomly select-

ing points from regions favoring marine stratocumulus. Here we define a stratocumulus point

as maritime regions satisfying: lower-tropospheric stability ≥ 18.55 K, ω500 ≥ 10 hPa/day, and

ω700 ≥ 10 hPa/day in at least one season of a particular year, where ωp is the seasonally averaged

vertical velocity at some pressure level, p, which measure in hPa. Points satisfying these criteria

in their climatological annual cycle are shown by the gray scale in Figure 2. Figure 16 shows that

the distribution of regression slopes is somewhat narrower and slightly stronger than when the four

geographical stratocumulus regions above are used as the only constraint. This relatively narrow

distribution reflects the strength of the criteria used, which select points with similar conditions,

and probably a very narrow range of seasonal average divergence, allowing the linear relationship
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between low-cloud fraction and lower-tropospheric stability to emerge. If we expand our criteria to

more broadly capture low-cloud regimes (by relaxing the constraint on lower-tropospheric stability

to include all points with at least one season ≥ 15 K, cf., Figure 2) the distribution of regression

slopes broadens, becoming similar to that constructed by sampling the four geographic stratocu-

mulus regions. These results support the idea that the relationship between low-cloud fraction and

lower-tropospheric stability, so evident in the seasonal statistics of stratocumulus regions, is likely

the signature of the particular dynamics of these regimes.

5. Conclusion

We have used the equilibrium statistics of a mixed-layer model, forced by estimates of varying

states at different time scales, to explore the relationship between low-cloud fraction and lower-

tropospheric stability in subsidence, or low-cloud, regions in subtropics. Boundary conditions for

the model were derived from the 40 year reanalysis of meteorological data by the European Cen-

ter for Medium Range Weather Forecasts. Notwithstanding a number of simplifying assumptions,

many of which can and should be improved upon, the model climatology seems to capture essential

aspects of the low-cloud climatology as represented by ISCCP. In particular the positive correla-

tion between low-cloud fraction and lower-tropospheric stability that is so evident in the data also

emerges from the equilibrium of the model. When forced over states that capture synoptic vari-

ability, e.g. forcing time scale less than a week, the relationship becomes most comparable to the

data. Sensitivity tests show that among individual meteorological parameters and their variabili-

ties, incorporating daily variations in large-scale divergence improves the behavior of the model

most markedly. We believe the behavior of the mixed-layer model improves when the solutions

incorporate the full distribution of divergence for two reasons. First, cloud fraction in the model

is a strongly non-linear function of divergence. Hence the model cloud fraction depends on repre-

senting the full variability in the distribution of divergence for a given value of lower-tropospheric

stability, and this receives substantial contributions from variability at short times scales. Second,
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given this non-linearity, a broad distribution of divergence reduces the sensitivity of the results to

biases in the model. Such improvement in representing the relationship is less sensitive to ther-

modynamic fields because model’s response to them is rather linear and their distribution changes

less than the factors influencing mass fields as sampling frequency increases.

Further exploration of factors influencing the relationship between the fraction of low clouds

and the stability of the lower troposphere suggests that within stratocumulus regimes, i.e., regions

of prevailing subsidence with values of lower-tropospheric stability centered near 18 K, such rela-

tionships are relatively consistent. However away from such regions the relationships might not be

valid. These results suggest that such relationships (correlations) are likely proxies for the statistics

of the underlying forcing (or boundary conditions) of the marine boundary layer, and might not

be universal when changing dynamic regimes. Fortunately, based on these results, it appears that

physically based models that incorporate important elements of mixed layer theory have a good

chance of representing the observed empiricism on low-cloud fraction (if suitably forced).
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APPENDIX

Nondimensional analysis

Equilibrium solutions to the MLM model take the nondimensional form:

he

h0

= βh − µh (A1)

〈sl〉e
sl,0

= 1 +
βs

1 + βh

(βh − (βh − µh)µs − σ) (A2)

〈qt〉e
qt,0

= 1 +
βq

1 + βh

(βh − (βh − µh)µq) (A3)

h0 = V/D (A4)

βh = E/V (A5)

βs = (sl,+ − sl,0)/sl,0 (A6)

βq = (qt,+ − qt,0)/qt,0 (A7)

µh =
˜〈u〉 · ∇h

V
(A8)

µs =
˜〈u〉 · ∇〈sl〉

V (sl,+ − sl,0)/h0

=
˜〈u〉 · ∇〈sl〉

D(sl,+ − sl,0)
(A9)

µq =
˜〈u〉 · ∇〈qt〉

V (qt,+ − qt,0)/h0

=
˜〈u〉 · ∇〈qt〉

D(qt,+ − qt,0)
(A10)

σ =
∆FR

V (sl,+ − sl,0)
(A11)

In the above, h0 combines the effect from divergence, D, and wind speed, V ; βs represents the nor-

malized stability across the stratocumulus-topped boundary layer (STBL), i.e. between surface and

just above the STBL, which roughly captures the trend in lower-tropospheric stability or estimated

inversion stability ( Wood and Bretherton, 2006) in subtropics; βq is the normalized moisture jump

between the free troposphere and surface; µh, µs and µq denote normalized advective terms and σ

20



stands for the combined effect from V and stability, normalized by the cloud-top radiative cooling,

∆FR, which we take as almost a constant in this study.

All the nondimensional parameters (A4 – A11) can be expressed in terms of large-scale bound-

ary conditions except βh represents the entrainment exchange velocity normalized by the surface

exchange velocity.

In addition to these parameters, the occurrence probability of insufficient divergence, $D =
∫

Dc

−∞
p(D)dD, likely has a strong influence on the statistics of the equilibria. Although, βs stands

out at the seasonal timescale to correlate with low-cloud fraction most. As observed in Figure 6, 8

and 15, Namibia MAM (March, April and May) and Canary JJA (June, July and August) tend to be

outliers with their seasonal means well away from the regression and more independent of βs lo-

cally. Figure 17 shows that in both regions, low-cloud fraction is highly correlated to βh/(1−$D).

This suggests in these two regions, low-cloud fraction is affected by the divergence distribution and

how we specify the growth rate of the stratocumulus-topped boundary layer. Departures from the

observed climatology may thus equally reflect errors in the forcing distribution (especially for

Namibia) as much as problem with the model.
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16 Top: Distribution of regressions between low-cloud fraction (LCF) and lower-tropospheric

stability (LTS) from randomly sampled points from within four of the KH93 stratocu-

mulus regions (Australia, Peru, Californian, Namibian) in Figure 2. Bars show results

from the MLM equilibria LCF forced with daily data; the black curve shows the result

from sampling the ISCCP data. Four sets of points are drawn from the 12 years within

these geographic regions, each set contains approximately the same number of locations
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is drawn from a single year). The bottom panel shows similar distributions based on six
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MLM equilibrium solutions forced by ERA-40 daily mean data in 12 years (1990 to 2001). 46
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FIG. 1. The least-square regression (solid line) between low-cloud fraction (LCF) from the International

Satellite Cloud Climatology Project (ISCCP) and lower-tropospheric stability (LTS) from ECMWF Reanal-

ysis (ERA-40). Different markers denote 12-year (1990-2001) seasonal means in six subtropical regions

as shown in Figure 2. The dashed line is the regression between LCF and LTS from Klein and Hartmann

(1993).
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FIG. 2. Boxes show the subtropical stratocumulus regions from Klein and Hartmann (1993): California

(20◦-30◦N, 120◦-130◦W), Canarian (15◦-25◦N, 25◦-35◦W), China (20◦-30◦N, 105◦-120◦E), Peruvian (10◦-

20◦S, 80◦-90◦W), Namibia (10◦-20◦S, 0◦-10◦E), and Australia (25◦-35◦S, 95◦-105◦E). Shading denotes

locations where the climatological (1987-2001) conditions are suggestive of low-cloud conditions in at least

one season, based on ECMWF Reanalysis (ERA-40) vertical motion in the mid- and lower-troposphere

and the lower-tropospheric stability (LTS). Light shading uses LTS > 18.55 K while dark shading uses

LTS > 15 K.
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FIG. 3. Well-mixed stratocumulus-topped boundary layer based on the mean state measured by DYCOMS-

II, from Stevens et al. (2007).
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Cloudy Solution

Clear-sky Solution

FIG. 4. A conceptual illustration for the MLM’s multiple equilibria behavior, after Randall and Suarez

(1984). Two solid lines are the stable solutions: cloudy and clear-sky. Dashed line is the unstable solution.
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FIG. 5. Low-cloud fraction (in percent) offshore of southern California, July 2001 from MLM equilibrium

simulation forced by ERA-40 daily mean data. The top panel shows the results with cloudy initial states

while the bottom one shows the difference (decrease) if using clear-sky initial states.
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FIG. 6. Seasonal cycles of subtropical low-cloud fraction (LCF) from ISCCP data (dark dashed), MLM

daily run (dark solid) and MLM seasonal run (light solid). Light dashed line denotes the LCF diagnosed

from lower-tropospheric stability (LTS) based on the regression between ISCCP LCF and ERA-40 LTS in

Figure 1.
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FIG. 7. Seasonal mean low-cloud fraction measured by ISCCP (left) and indicated from the mixed-layer

model equilibria with daily forcing (right) over ocean averaged in 12 years (1990-2001).
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FIG. 8. The least-square regression between seasonal area-mean lower-tropospheric stability (LTS) and

low-cloud fraction (LCF) from the MLM equilibria forced by ERA-40 daily data (top) and seasonal averages

(bottom). Markers denote different stratocumulus regions in Figure 2. The dashed line is the regression

between ISCCP LCF and ERA-40 LTS from Figure 1.
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FIG. 9. Transition (gray dashed line) from MLM seasonal (90 days) run to MLM daily (1 day) run in

representing the relationship between the MLM equilibrium low-cloud fraction (LCF) and ERA-40 lower-

tropospheric stability (LTS): the regression slope (vertical axis) and the correlation coefficient (horizontal

axis). Numbers along the dashed line denote the number of days over which daily data is averaged to

produce large-scale forcings for the MLM. The gray crosses denote the sensitivity runs in which all the MLM

boundary conditions are seasonal averages except one boundary condition, which varies daily; specifically

the square denotes the sensitivity run with daily varying divergence; the triangle denotes a similar sensitivity

run, but with daily forcing for both divergence and horizontal mass advection. The intersection of the two

gray solid lines, denoted by “ISCCP”, represents the regression between ISCCP LCF and ERA-40 LTS in

Figure 1. “KH93” represents the regression from Klein and Hartmann (1993).
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FIG. 10. Large-scale divergence over ocean inferred from ERA-40. Top panel shows the seasonal mean of

June, July and August in 2001. Bottom panel shows the daily mean on July 16th, 2001.
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FIG. 11. Same as in Figure 10 but for lower-tropospheric stability over ocean.
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FIG. 12. Short horizontal lines denote long-term seasonal area-mean divergence. Dark (light) vertical

spans denote standard deviation (STD) of divergence for daily (seasonal) mean data. Solid (dashed) vertical

lines denote seasons in which the STD ratio between seasonal and daily mean data of divergence is less

(greater) than the one of lower-tropospheric stability. Notice the Y-Axis for China region is different from

others.
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FIG. 13. Same as in Figure 12 but for lower-tropospheric stability.
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FIG. 14. Statistics for the MLM daily calculations with the seasonal area-mean values satisfying

2.5×10−6 s−1 < D < 4×10−6 s−1 and 16 K <LTS< 22 K. The light solid line shows the cloud frac-

tion conditioned on divergence (top) or lower-tropospheric stability (bottom). The shaded area around the

cloud fraction curve shows the standard error. The dashed lines show the probability density function (PDF)

of divergence and LTS for daily (dark) and seasonal-averaged (light) data. The dark solid lines are the

cumulative cloud fraction integrated from cloud fraction (light solid) upon the PDF for daily data (dark

dashed).

43



FIG. 15. The emergence of the relationship between low-cloud fraction (LCF) and lower-tropospheric

stability (LTS) in different seasons for different regions from the MLM equilibria forced by ERA-40 daily

data. Top: The gray line shows the regression between LCF and LTS based on seasonal area-mean values.

The black short lines denote the local regression for a particular region and season. Bottom: Histogram of

local regression slopes.
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FIG. 16. Top: Distribution of regressions between low-cloud fraction (LCF) and lower-tropospheric sta-

bility (LTS) from randomly sampled points from within four of the KH93 stratocumulus regions (Australia,

Peru, Californian, Namibian) in Figure 2. Bars show results from the MLM equilibria LCF forced with daily

data; the black curve shows the result from sampling the ISCCP data. Four sets of points are drawn from

the 12 years within these geographic regions, each set contains approximately the same number of locations

as the original regions, producing a set of seasonal averages similar to those in Figure 1 (though without

having averaged over multiple years; each seasonal value within the set is drawn from a single year). The

bottom panel shows similar distributions based on six sets of points randomly sampled using vertical motion

and LTS as selection criteria, LTS > 18.55 K (dark line, corresponds to sampling in the light-shaded region

in Figure 2) and LTS > 15 K (light line, corresponds to sampling in the dark-shaded region in Figure 2). All

four distributions are based on 1000 regressions, and binned from -1 to 8 % K−1 in 40 intervals.
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FIG. 17. Least-square regression between low-cloud fraction (LCF) and non-dimensional parameter

βh/(1 − $D) in the season of March, April and May (MAM) at Namibia (top) and the season of June,

July and August (JJA) at Canary (bottom). LCF and βh/(1 − $D) are from MLM equilibrium solutions

forced by ERA-40 daily mean data in 12 years (1990 to 2001).
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