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Abstract.3

Data assimilation aims to smoothly blend incomplete and inaccurate ob-4

servational data with dynamical information from a physical model, and be-5

come an increasingly important tool in understanding and predicting me-6

teorological, oceanographic and climate processes. As space-borne observa-7

tions become more plentiful and space-physics models more sophisticated,8

dynamical processes in the radiation belts can be analyzed using advanced9

data assimilation methods. We use the Extended Kalman filter and obser-10

vations from the Combined Release and Radiation Effects Satellite (CRRES)11

to estimate the lifetime of relativistic electrons during magnetic storms in12

the Earth’s outer radiation belt. The model is a linear parabolic partial dif-13

ferential equation governing the phase-space density. This equation contains14

empirical coefficients that are not well-known and that we wish to estimate,15

along with the density itself. The assimilation method is first verified on model-16

simulated data, which allows us to reliably estimate the characteristic life-17

time of the electrons. We then apply the methodology to CRRES measure-18

ments and show it to be useful in highlighting systematic differences between19

the parameter estimates for storms driven by coronal mass ejections (CMEs)20

and by corotating interaction regions (CIRs), respectively. These differences21

are attributed to the complex, competing effects of acceleration and loss pro-22

cesses during distinct physical regimes. The technique described herein may23

be applied next to constrain more sophisticated radiation belt and ring-current24

models, as well as in other areas of magnetospheric physics.25
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1. Introduction

The radiation belts were discovered by Van Allen et al., [1958], but their structure is still26

poorly described, since satellite observations are often restricted to single-point measure-27

ments and thus have only limited spatial coverage. Therefore, to fill the spatio-temporal28

gaps in their description and thus lead to a better understanding of the dominant dynami-29

cal processes in the radiation belts, physics-based models should be combined with data in30

an optimal way. With more observational data coming from new and existing spacecraft,31

application of advanced data assimilation techniques finally becomes possible, by relying32

on the extensive experience with data assimilation in other geosciences [Bengtsson, 1975].33

In the classical terminology of data assimilation [Bengtsson et al., 1981], the physical34

variables that characterize the state of the system under observation, and typically are35

functions of time and space, are referred to as state variables, especially in the case of a36

discrete state vector with only a few components, or as fields, when the space dependence37

is important and the state vector has a very large number N of components; in numerical38

weather prediction, for instance, N = O(106–107). Determining the distribution of the39

state variables is usually referred to as state or field estimation. The evolution in time40

of the state or field variables is governed by a dynamical model, usually formulated as a41

discretized set of ordinary or partial differential equations. In a typical data assimilation42

scheme, the observational data and dynamically evolving fields are combined into the43

estimated fields by giving them weights that are inversely related to their relative errors44

or uncertainties. The fundamental properties of the system appear in the field equations as45
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parameters. These parameters can be also included in the assimilation process; applying46

this approach to the radiation belts is the focus of the present study.47

In this work, we will use the Kalman filtering algorithm [Kalman, 1960; Kalman and48

Bucy, 1961] to estimate the state of the radiation belts, given by the phase-space density49

(PSD) of relativistic electrons, and several parameters of a dynamic model that governs50

the evolution of the belts in time. The Kalman filter allows one to follow not only the51

evolution of the system’s state and parameters, but it also propagates forward in time52

error estimates of state variables, thus naturally accounting for the system’s evolving53

spatio-temporal uncertainties. For example, within a spatial region or during a time span54

in which the system is dynamically active, it is natural to expect the uncertainties of55

the estimated state to change fairly rapidly, compared to a “quiet regime,” when and56

where these uncertainties might stay fairly constant. In the Kalman filter formulation,57

this information is readily provided by the dynamical evolution of time-dependent error58

covariance matrices. The use of a dynamical model is of fundamental importance in the59

Kalman filter, and sets it aside from other assimilation schemes and ad-hoc data analysis60

techniques.61

The Kalman filter and its various generalizations have been successfully applied in62

various engineering fields and the geosciences, including autonomous or assisted navigation63

systems, as well as atmospheric, oceanic and coupled ocean-atmosphere studies [Ghil et64

al., 1981; Ghil and Malanotte-Rizzoli, 1991; Ghil, 1997; Sun et al., 2002], reanalysis of65

atmospheric data [Todling et al., 1998], and ionospheric modeling [Richmond and Kamide,66

1988; Schunk et al., 2004]. This class of algorithms goes under the name of sequential67

filtering or sequential estimation and they are more and more widely used in operational68
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weather and ocean prediction [Brasseur et al., 1999; Kalnay, 2003]. Sequential filtering69

includes the possibility to constrain uncertain parameters of the physical model [Ghil,70

1997; Galmiche et al., 2003; Kao et al., 2006]. Parameter estimation is more challenging71

than mere state estimation due to additional nonlinearities that arise in the estimation72

process.73

There have been only a few attempts so far to use data assimilation methods to study74

the radiation belts. Rigler et al. [2004] implemented the Kalman filter as part of an75

adaptive identification scheme to determine time-dependent coefficients of an externally76

forced empirical model. In that study, the estimated state was solely comprised of coupling77

coefficients between electron fluxes and solar wind speed. The model was adaptively78

adjusted at each time step, according to the mismatch between its output from external79

forcing and current values of model coefficients on the one hand, and the observed fluxes80

on the other. In contrast, for this study we apply the Kalman filter to estimate the81

dynamical model’s physical fields; in our approach the estimated state consists of the82

state variables but also may include a few important model parameters, at a very low83

computational cost.84

Friedel et al. [2003] assimilated geosynchronous and GPS data by directly inserting85

them into the Salammbo code, which solves the modified Fokker-Planck equation for the86

relativistic electron PSD. Direct insertion consists of replacing the model forecast values87

by the observations, assuming a priori that the observations are exact; the latter is, in88

general, a very crude approximation of the actual state of affairs.89

Naehr and Toffoletto [2005] demonstrated first how the Kalman filter can be applied90

for state estimation in a physics-based radiation belt model driven by radial diffusion;91
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important loss processes, parameterized by the effective electron lifetimes, however, were92

not considered in their work and they used only synthetic observations. In contrast, our93

study uses real data from spacecraft observations in a more realistic radial diffusion model,94

which also accounts for the combined effect of local sources and losses. Moreover, we apply95

an extended Kalman filter to estimate model parameters that describe the net effect of96

source and loss processes, along with an estimation of the model state comprised of the97

relativistic-electron PSD.98

The observational data are taken from the Combined Release and Radiation Effects99

Satellite (CRRES) spacecraft, for 100 consecutive days, starting on July 30, 1990. This100

time interval involves geomagnetic storms with distinctly different behavior: August 25,101

September 11 and October 9 in particular. Previous studies of these storms have provided102

evidence of the complex nature of competing loss and source processes that influence the103

radiation belts [Meredith et al., 2002; Brautigam and Albert, 2000; Iles et al., 2006].104

The three main processes are pitch angle scattering into the atmosphere, radial diffusion,105

and energy diffusion, driven by various wave-particle interactions. In the absence of106

realistic time-dependent 3-D physical models to simulate these processes, various simpler107

approximations, such as radial transport models, are currently used instead.108

Of particular interest is the estimation of the parameters of the acceleration and loss109

processes in such models. These parameters can be computed directly from a quasi-110

linear theory by wave-particle interactions [Lyons et al., 1972; Abel and Thorne, 1998a,b].111

They can be also estimated by analyzing the population of trapped and lost electrons112

in observational data [Thorne et al., 2005b; Selesnick et al., 2003, 2004; Selesnick 2006],113

or by relying on multiple model simulations with various parameter values, to obtain a114
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better qualitative match with the observations [Brautigam and Albert, 2000; Shprits et115

al., 2005].116

Selesnick et al. [2003, 2004] used least-square regression to estimate decay lifetimes that117

minimize the misfit between the observations and model-simulated data on electron pitch-118

angle distributions. In contrast, we employ a radial diffusion model, while approximating119

the diffusion in pitch-angle and energy by an effective lifetime parameter, which accounts120

for the net effect of the loss and source processes. Also, we rely on the Kalman-filter121

approach that naturally combines the dynamically evolving uncertainties in both obser-122

vations and the model, in order to obtain an estimate of electron lifetimes; this estimate is123

optimal within the sequential-estimation framework that we describe in Section 3 below.124

The results from both approaches will be compared in Section 5.125

In the next section, we summarize key properties of the radiation belts and describe126

the model used here to study their variability; the parameters that need to be estimated127

are introduced, too. In Section 3, we review the classical, linear Kalman filter for state128

estimation and the extended Kalman filter required by the nonlinear estimation of our129

model parameters. The results appear in Section 4, first for “identical-twin” experiments130

in which the true evolution of the system is known, and then for actual space-borne131

observational data. The conclusions and future work are discussed in Section 5.132

2. Data and Model

2.1. Outer Radiation Belt Variability

The radiation belts consist of electrons and protons trapped by Earth’s magnetic field133

[Schulz and Lanzerotti, 1974]. Energetic protons form a single radiation belt, being con-134

fined to altitudes below 4 RE, where RE = 6400 km is the nominal Earth radius. Electrons,135
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on the other hand, exhibit a two-belt structure. The inner electron belt is located typically136

between 1.2 and 2.0 RE, while the outer belt extends from 4 to 8 RE. The quiet-time137

region of lower electron fluxes, between 2 and 3 RE, is commonly referred to as the “slot”138

region. The inner belt is very stable and is formed by slow inward diffusion from the outer139

radiation zone, subject to losses due to Coulomb scattering and losses to the atmosphere140

due to to pitch angle scattering by whistler-mode waves [Lyons and Thorne, 1973; Abel141

and Thorne, 1998a,b]. Relativistic electron fluxes in the outer radiation belt are highly142

variable; this variability is due to the competing effects of source and loss processes, both143

of which are forced by solar-wind-driven magnetospheric dynamics.144

The adiabatic motion of energetic charged particles in the Earth’s radiation belts can be145

described by guiding center theory [Roederer, 1970], and consists of three basic periodic146

components: gyro-motion about the Earth’s magnetic field lines, the bounce motion of the147

gyration center up and down a given magnetic field line, and the azimuthal drift of particles148

around the Earth, perpendicular to the meridional planes formed by the magnetic polar149

axis and the magnetic field lines. There are three adiabatic invariants, each associated with150

one of these motions: µ , J , and Φ, respectively. Since adiabatic invariants are canonical151

variables [Landau and Lifshits, 1976], we can describe the evolution of the particles PSD152

in terms of these invariants and the corresponding phases, instead of the more usual space153

and momentum coordinates. By averaging over the gyro, bounce and drift motions, the154

PSD description can be reduced to describing the evolution of the adiabatic invariants155

only.156

Each adiabatic invariant can be violated when the system is subject to fluctuations157

on time scales comparable to or shorter than the associated periodic motion [Schulz and158
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Lanzerotti, 1974]. In the collisionless magnetospheric plasma, wave-particle interactions159

provide the dominant mechanism for violation of the invariants, and thus give rise to160

changes in radiation belt structure. Ultra Low-Frequency (ULF) waves have periods com-161

parable to tens of minutes; the associated violation of Φ leads to radial diffusion. When162

the PSD of radiation belt particles exhibits a positive gradient with increasing radial163

distance, radial diffusion leads to a net inward flux and associated particle acceleration,164

provided that the first two invariants, µ and J , are conserved. Since the power in ULF165

waves is considerably enhanced during magnetic storms [Mathie and Mann, 2000], radial166

diffusion is considered to be a potentially important mechanism to account for the ac-167

celeration of energetic electrons during storm conditions [Elkington et al., 2004; Shprits168

and Thorne, 2004; Shprits et al., 2006a]. However, during the storm’s main phase, losses169

to the magnetopause and consequent outward radial diffusion may deplete the radiation170

belts and cause a very fast loss of electrons [Shprits et al., 2006b].171

Extremely Low-Frequency (ELF) and Very Low-Frequency (VLF) waves cause a vio-172

lation of the invariance of µ and J , leading to pitch-angle scattering to the atmosphere173

[Thorne and Kennel, 1971; Summers and Thorne, 2003], as well as local energy diffusion174

[Horne and Thorne, 1998; Summers et al., 1998; Miyoshi et al., 2003; Horne et al., 2003,175

2005]. These processes provide effective losses and sources of relativistic electrons on time176

scales comparable to those of radial diffusion. During storm-time conditions, the power177

spectral density of ULF waves [Mann et al., 2004], as well as that of ELF and VLF waves178

[Meredith et al., 2000, 2003], are strongly enhanced, and all three adiabatic invariants are179

violated simultaneously.180
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Figure 1a shows the daily averaged relativistic (1MeV) electron fluxes measured by181

the MEA magnetic electron spectrometer [Vampola et al., 1992] flown on the Combined182

Release and Radiation Effects Satellite (CRRES) mission, as a function of L∗-shell, for183

100 days starting on July 30, 1990, i.e. on the day-of-year (DOY) 210. The variable184

L∗ is the distance (in Earth radii) in the equatorial plane, from the center of the Earth185

to the magnetic field line around which the electron moves at time t, assuming that the186

instantaneous magnetic field is adjusted adiabatically to a pure-dipole configuration. In187

this study, the simplified Tsyganenko [1989] T89 magnetic field model has been used to188

derive electron fluxes at a particular L∗ value (from now on, we drop the superscript189

and refer to this variable simply as L). The Kp and Dst indices are commonly used as190

proxies for geomagnetic activity and are shown in Fig. 1b,c; the data are taken from191

the World Data Center for Geomagnetism in Kyoto, Japan, http://swdcdb.kugi.kyoto-192

u.ac.jp/aedir/. The T89 model is specified by Kp and is valid only for relatively modest193

activity levels. Recent improved models of magnetic field include parameterization by Dst194

and solar wind measurements, though the latter is not generally available for the CRRES195

time period.196

The black curve in Fig. 1a is the estimated position of the plasmapause, i.e. of the

outer boundary of the plasmasphere; the latter is a region of the inner magnetosphere

that contains relatively cool (low-energy) and dense plasma, populated by the outflow of

ionospheric plasma along the magnetic field lines. The plasmapause position Lpp can be

approximately estimated, according to Carpenter and Anderson [1992], by

Lpp = 5.6− 0.46Kp(t), (1)
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where Kp(t) is the maximum of Kp over the 24 hr preceding t. As described in Section 3197

below, distinct loss processes operate inside and outside of the plasmasphere, and so we198

account for them separately in the physical model.199

Even though relativistic electron fluxes in the outer belt are highly variable, flux en-200

hancements occur over a broad range of L-values (3.5 ≤ L ≤ 6.5), suggesting that a201

global acceleration mechanism operates over most of this belt [Baker et al., 1994]. Dur-202

ing the period under study there were two very strong storms, as seen in Fig. 1a for203

235 ≤ t ≤ 240 DOY (August 26 storm), and 282 ≤ t ≤ 290 DOY (October 9 storm).204

These two storms are associated with coronal-mass ejections (CMEs); typically they last205

only for several days but still produce intensifications down to the slot region [Meredith206

et al. 2002; Brautigam and Albert, 2000]. There are also recurrent storms associated with207

high-speed solar wind streams that arise in corotating interaction regions (CIRs). These208

somewhat weaker storms may last for more than a week and produce flux increases with209

a 27-day periodicity; see, for instance, the episode at 255 ≤ t ≤ 280 DOY, including the210

September 11 storm [Meredith et al., 2002; Iles et al., 2006]), and at t ≈ 300 DOY in Fig.211

1a.212

The response of the radiation belt fluxes to solar wind variability is still poorly under-213

stood. Reeves et al. [2003] showed that approximately half of all geomagnetic storms214

either result in a net depletion of the outer radiation belt or do not substantially change215

relativistic electron fluxes as compared to pre-storm conditions, while the remaining 50%216

result in a net flux enhancement. Losses result from the collisions of orbitally trapped elec-217

trons with neutral atmospheric particles. Electrons with mirror points for their bounce218

motion that lie below 100 km are lost from the magnetosphere on the time scale of a219
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quarter-bounce period. Resonant wave–particle interactions and resultant pitch angle220

scattering cause a net diffusive transport of electrons into a loss cone. The modeling of221

competing processes of acceleration and loss is described in the next section.222

2.2. Radiation Belt Modeling

Several research groups have developed numerical codes with various levels of detail to

study the governing acceleration and loss mechanisms in the radiation belts [e.g. Bourdarie

et al., 1996; Elkington et al., 2004; Selesnick and Blake, 2000; Brautigam and Albert, 2000;

Miyoshi et al., 2003; Shprits et al., 2005, 2006a]. The time evolution of the relativistic-

electron PSD at a fixed µ and J , f = f(L, t; µ, J), may be described by the following

equation [Shultz and and Lanzerotti, 1974]:

∂f

∂t
= L2 ∂

∂L
(L−2DLL

∂f

∂L
)− f

τL

. (2)

Here the radial diffusion term describes the violation of the third adiabatic invariant223

of motion Φ, and the net effect of sources and losses due to violations of the µ and J224

invariants is modeled by a characteristic lifetime τL.225

The parameters DLL and τL of Eq. (2) depend on the background plasma density, as well

as on the spectral intensity and spatial distribution of VLF and ULF waves; all of these

conditions are extremely difficult to specify accurately from limited point measurements.

In this study we adopt an empirical relationship for the radial diffusion coefficient DLL =

DLL(Kp, L) [Brautigam and Albert, 2000] throughout the outer radiation belt:

DM
LL(Kp, L) = 10(0.506Kp−9.325)L10. (3)

This empirical, data-derived parameterization quantitatively agrees in the interior of the226

radiation belts with the independent theoretical estimates of Perry et al. [2005].227
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The specification for τL is more complicated, due to several competing wave-particle228

interaction mechanisms. Inside the plasmasphere, losses are mostly due to scattering by229

hiss waves, magnetospherically reflecting whistlers and coulomb collisions [Lyons et al.,230

1972; Abel and Thorne, 1998a]; these loss effects lead to lifetimes on the scale of 5–10 days231

at MeV energies. Outside the plasmasphere, chorus emissions produce fast pitch angle232

scattering with lifetimes on the scale of a day [Horne et al., 2005; Albert, 2005; Thorne233

et al. , 2005b]. Electromagnetic ion cyclotron (EMIC) waves could provide even faster234

but very localized losses of electrons with energies ≥ 0.5 MeV on the time scale of hours235

[Thorne and Kennel, 1971; Summers and Thorne, 2003; ; Jordanova et al., 2001].236

In the present study we use two different lifetime parameterizations, inside and outside

the plasmasphere; inside we assume a time-constant τLI , while outside we take

τLO = ζ/Kp(t). (4)

The inner boundary for our simulation f(L = 1) = 0 is taken to represent loss to the237

neutral atmosphere below. The variable outer boundary condition on the PSD is obtained238

from the CRRES observations at L = 7 [Shprits et al., 2006a].239

Figures 2a–c show simulated fluxes from the numerical solution of Eq. (2) using a few240

realistic values of the parameters ζ and τLI in Eq. (4) and DLL given by Eq. (3). It241

is quite obvious that not all features of the observations can be adequately captured by242

fixed model parameters, no matter what combination of parameter values we try. Model243

results with both ζ and τLI equal to 10 days (Fig. 2b) globally overestimate fluxes at all244

L, indicating that these values are unreasonably long. Simulations with ζ = 3 days and245

τLI = 10 or 20 days (Figs. 2a,c) predict better the locations of the peak fluxes and the246

inner boundary of the enhanced fluxes, but fail to reproduce the duration of many storms.247
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These simulations show that better estimates of dynamical model parameters are very248

important for radiation belt modeling. Running the model many times to find a “best249

match” with observations, by using various parameter combinations, is not a practical250

way to achieve such estimates, since these combinations cannot be exhausted when the251

number of state variables or the number of parameters is large. The results in Fig. 2 thus252

indicate the need for more accurate, automated techniques of estimating the dynamical253

model parameters by using an optimized combination of data and models. The Kalman254

filter described in the next section is capable of providing such a combination.255

3. State and Parameter Estimation

3.1. State Estimation and the Kalman Filter

The Kalman filter [Jazwinski, 1970; Gelb, 1974] combines measurements that are irreg-256

ularly distributed in space and time with a physics-based model to estimate the evolution257

of the system’s state in time; both the model and observations may include errors. The258

estimate of the system’s trajectory in its phase space minimizes the mean–squared error.259

We describe here briefly the Kalman filter algorithm in discrete time, following Ghil et al.260

[1981] and Ide et al. [1997].261

For a system of evolution equations, including discretized versions of a partial differential

equation like Eq. (2), the numerical algorithm for advancing the state vector x from time

k∆t to time (k + 1)∆t is:

xf
k = Mk−1x

a
k−1. (5)

Here xk = x(k, ∆t) represents a state column vector, composed of all model variables: for262

our radiation belt model (2) it is the PSD at numerical grid locations in L. The matrix263

D R A F T July 20, 2007, 3:46pm D R A F T



KONDRASHOV ET AL: A KALMAN FILTER TECHNIQUE X - 15

M is obtained by discretizing the linear partial differential operator in Eq. (2) and it264

advances the state vector x in discrete time intervals ∆t.265

Superscripts “f” and “a” refer to a forecast and analysis, respectively, with xa
k being the

best estimate of the state vector at the time k, based on the model and the observations

available so far. The evolution of xt, where superscript “t” refers to “true,” is then

assumed to differ from the model by a random error ε:

xt
k = Mk−1x

t
k−1 + εk. (6)

The “system” or “model” noise ε accounts for the net errors due to inaccurate model266

physics, such as errors in forcing, boundary conditions, numerical discretization, and267

subgrid-scale processes. Commonly, the column vector ε is assumed to be a Gaussian268

white-noise sequence, with mean zero and model-error covariance matrix Q, Eεk = 0 and269

Eεkε
T
l = Qkδkl, where E is the expectation operator and δkl is the Kronecker delta.270

The observations yo
k, where superscript “o” refers to “observed,” of the “true” system

are also perturbed by random noise εo
k:

yo
k = Hkx

t
k + εo

k. (7)

The observation matrix Hk accounts for the fact that usually the dimension of yo
k is less271

than the dimension of xt
k, i.e. at any given time observations are not available for all272

numerical grid locations. In addition, Hk represents transformations that may be needed273

if other variables than the state vector are observed, as well as any required interpolation274

from observation locations to nearby numerical grid points.275

The observational error εo includes both instrumental and sampling error. The latter276

is also called representativeness error and is often due to the measurements being taken277
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pointwise but assumed to be spatially averaged over a numerical grid cell; for our pur-278

poses, significant errors may also arise from inaccuracies associated with the magnetic279

field model. The observational error is also assumed to be Gaussian, white in time, with280

mean zero and given covariance matrix R, Eεo
kε

oT
l = Rkδkl. Moreover, one commonly281

assumes, unless additional information is available, that model error and observational282

error are mutually uncorrelated, Eεo
kε

T
k = 0.283

For our radiation belt model, the observed variable is electron flux J , which is related

linearly to PSD [Rossi and Olbert, 1970]:

J(E, L) = f(E, L)p2. (8)

Here E and p are kinetic energy and momentum of the particles for any prescribed value284

of µ; we assimilate J at L ≤ 5 and observed at numerical grid locations (see Section 4).285

When no observations at all are available at time k∆t, Hk ≡ 0 and xa
k = xf

k . At so-

called update times, when observations are available, we blend forecast and observations

to produce the analysis:

xa
k = xf

k + Kk(y
o
k −Hkx

f
k). (9)

The assumptions about the model and observational noise allow us to follow the time

evolution of the forecast-error and analysis-error covariance matrices,

Pf,a
k ≡ E(xf,a

k − xt
k)(x

f,a
k − xt

k)
T
; (10)

this evolution is given by286

Pf
k = MkP

a
k−1M

T
k + Qk,

Pa
k = (I−KkHk)P

f
k . (11)
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The optimal gain matrix Kk in Eq. (9) is computed by minimizing the analysis error

variance trPa
k, i.e. the expected mean-square error between analysis and the true state.

This Kalman gain matrix represents the optimal weights given to the observations in

updating the model state vector:

Kk = Pf
kH

T
k (HkP

f
kH

T
k + Rk)

−1
. (12)

Equations (11) show that, after an update step, the analysis errors Pa
k are reduced [Ghil

et al., 1981; Ghil, 1997]. Moreover, Eq. (12) shows that the variances of the forecast and

the observations are weighted, roughly speaking, in inverse proportion to their respective

variances [Ghil and Malanotte-Rizzoli, 1991]. The Kalman filter minimizes the expected

error over the entire time interval, even though, due to its sequential nature, the observa-

tions are discarded as soon they are assimilated. When no observations are available at

time k, only the forecast step is performed and

Pa
k = Pf

k . (13)

The Kalman gain is optimal when both the observational and model noise are Gaussian.287

If this is not so, which is quite likely in our case, then the Kalman gain will be suboptimal.288

Still, the identical-twin experiments in Section 4.1 demonstrate that, even in this case, we289

can obtain reliable and robust estimates of both the state and parameters.290

3.2. Parameter Estimation and the Extended Kalman Filter

The Kalman gain Kk is optimal for a linear system, when both M(x) = Mx and291

H(x) = Hx, as in Eqs. (5)–(7); in this case, under the assumptions mentioned in Section292

3.1, the gain is based on the correct estimation of forecast error covariances from initial293
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uncertainties, model errors, and model dynamics. If either M(x) or H(x) or both depend294

nonlinearly on the state vector x, the sequential estimation problem becomes nonlinear.295

The extended Kalman filter (EKF) formulation uses the linearizations M̃ and H̃ of

M(x) and H(x), respectively, about the current state x = xf
k to propagate the error

covariances and compute the Kalman gain matrix:

(M̃)ij =
∂M i

∂x j
, (H̃)ij =

∂H i

∂x j
; (14)

here indices i and j refer to a particular matrix and state vector entry. The full nonlinear296

model is still used to advance the state. The EKF is first-order accurate in many situations297

but may diverge in the presence of strong nonlinearities [Miller et al., 1994; Chin et al.,298

2006].299

A practical way to include estimation of model parameters into the Kalman filter is by300

the so-called state augmentation method [Gelb, 1974; Galmiche et al., 2003; Kao et al.301

2006], in which the parameters are treated as additional state variables. For simplicity,302

let us assume that there is only one model parameter µ (not to be confused with the303

adiabatic invariant of motion): M = M(µ). By analogy with Eqs. (5) and (6), we can304

define equations for evolving the parameter’s “forecast” and “true” values, by assuming,305

in the absence of additional information, a persistence model:306

µf
k = µa

k−1,

µt
k = µt

k−1 + εµ
k . (15)

When additional information is available, Eq. (15) can be generalized to allow for more307

complex spatial and temporal dependence; such dependence may include, for instance, a308

seasonal cycle (e.g., Kondrashov et al. [2005]).309
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Next, we form an augmented state vector x̄, model M̄ and error ε̄:

x̄ =

(
x
µ

)
, M̄ =

(
M(µ) 0

0 1

)
, ε̄ =

(
ε
εµ

)
, (16)

and rewrite our model equations for the augmented system:310

x̄f
k = M̄k−1x̄

a
k−1,

x̄t
k = M̄k−1x

t
k−1 + ε̄k. (17)

The situation of interest is one in which µ itself is not observed, so:

yo
k = (H 0)

(
xt

k

µt
k

)
+ ε0

k = H̄x̄t
k + ε0

k. (18)

The Kalman filter equations for the augmented system become:311

P̄f
k = M̄T

k P̄a
k−1M̄k + Q̄k, (19)

K̄k = P̄f
kH̄

T
k (H̄kP̄

f
kH̄

T
k + Rk)

−1
.

The analysis step for the augmented system involves only observations of the state:

x̄a
k = x̄f

k + K̄k(y
o
k −Hxf

k), (20)

while the augmented error-covariance matrices involve cross-terms between the state vari-

ables and the parameter. Dropping from now on the time subscript k, we have

P̄f,a =

(
Pf,a

xx Pf,a
xµ

Pf,a
µx Pf,a

µµ

)
. (21)

Using the definition of H̄ in Eq. (18), we obtain:

K̄ =

(
Pf

xxH
T

Pf
µxH

T

)
(HPf

xxH
T + R)

−1
. (22)

The augmented model propagates the forecast error of the parameter into the cross-

covariance term Pf
µx. By substituting Eq. (22) into Eq. (20), we can readily see that this
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error propagation enables the EKF to extract information about the parameter from the

state observations and to update the unobserved parameter at the analysis step:

µa = µf + Pf
µxH

T (HPf
xxH

T + R)
−1

(yo −Hxf ). (23)

This formulation can be easily extended to the case when several unknown parameters312

have to be estimated and µ then becomes a vector instead of a scalar [Ghil, 1997].313

We apply the Kalman filter to estimate the lifetime parameters τLI and ζ in Eqs. (2)314

and (4). We did try to estimate τLO directly as well, but experiments with synthetic315

data (similar to those described in Section 4.1), showed that successful estimation of τLO,316

along with τLI , requires observations at a greater resolution in time than available in the317

CRRES data.318

While the model in Eq. (2) is linear in PSD, the augmented system, including the319

lifetime parameters, is nonlinear because of the loss term, in which τL divides the PSD320

f(L, t); therefore our sequential estimation problem becomes nonlinear. An additional321

nonlinearity arises due to the time-dependent position of the plasmapause boundary, as322

we will see in the next section. We adopt, therefore the EKF approach, and linearize M̄323

(as in Eq. 14) around the current values of the augmented state vector formed by the324

PSD state vector and the two parameter values, τLI and ζ.325

It is well known (e.g. Richtmyer and Morton, 1967) that an implicit numerical scheme326

is best in order to solve a “stiff” parabolic partial differential equation, like Eq. (2), with327

diffusion coefficients that vary rapidly in space and time; see Eq. (3). For such problems,328

to achieve a given accuracy, it usually takes less computational time to use an implicit329

method with larger time steps than the explicit scheme, which requires much smaller time330

steps. For our implicit scheme, linearization with respect to the PSD is readily available331
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and it follows from the known coefficients of M. Linearization with respect to the two332

lifetime parameters is more complex, because M̄ depends implicitly on the location of the333

plasmapause. We thus use small perturbations in the parameter values on the right-hand334

side of Eq. (2) and then apply numerical differentiation.335

4. Results and Discussion

4.1. Identical-Twin Experiments

To test the parameter estimation scheme described in Section 3.2, we first conduct336

identical-twin experiments in which both the “true” solution, from which observations337

are drawn, and the forecast are produced by the same model, but with different lifetime338

parameter values. We obtain our “true” electron fluxes from a model run with τLI = 20339

and ζ = 3 days (see Fig. 2a), and form synthetic observations by taking daily averages.340

Our goal is to recover the “true” parameter values by assimilating observations into a341

model with the “incorrect” parameters: τLI = 10 and ζ = 10 days (see Fig. 2b). Numer-342

ical sensitivity experiments (not shown) confirm that other combinations of “true” and343

“incorrect” parameter values did not produce any adverse effects on the convergence of344

the parameter estimation process.345

We start the forecast model with incorrect parameter values and non-zero model error346

εµ. The weights used in updating the parameters are related to the model errors assigned347

to the parameters; see Eqs. (16)–(23). The model error in the parameters should be348

chosen according to how much variation we are willing to allow the estimated parameters349

to have, and also how much information is needed from the observations. Since a smooth350

estimation of the parameters is often required, small error values tend to be a good choice:351
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here we used 2% of their initial values. Data was assimilated only at L ≤ 5 to avoid large352

uncertainties associated with higher L-values.353

In the standard formulation of the Kalman filter, the noise covariances Q and R are354

assumed to be known [Jazwinski, 1970; Gelb, 1974]. This rarely happens in practice and355

usually some simple approximations are made [Dee et al., 1985]. For this study, both356

Q and R are assumed to be diagonal. Local values of the observation and model errors357

are taken to be 10% of the variance of the observed time series and the model-simulated358

ones, respectively. This heuristic approach worked well in the present study. Further359

development of adaptive filters, which estimate Q and R from the data as well [Dee,360

1995], is an active area of research, and we expect to use them in future work on the361

radiation belts.362

Figures 3a,c show both “true” and estimated lifetimes τLI and τLO for our identical-twin363

experiment; a 48-hr window is used in plotting τLO to avoid artificial spikes due to the364

high temporal variability of Kp. The outer-belt lifetime τLO converges to its “true” value365

at ≈ 235 DOY.366

The convergence for ζ, which ultimately determines τLO and is shown in Fig. 3b,367

seems to be influenced strongly by the time-dependent plasmapause position; see Eq.368

(1). The value of ζ quickly drops from 10 days to about 5 in the presence of a strong369

storm at the beginning of the simulation, when the plasmapause is located at L ≤ 4 (see370

Fig. 1a). Subsequently, until t ≈ 230 DOY, the geomagnetic conditions are quieter, the371

plasmapause expands above L = 5, and therefore ζ does not change much. Its estimated372

standard deviation — i.e., the square root of the Pf
ζζ component of the analysis-error373

covariance matrix — gradually increases due to additive model error at each forecast374
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step, while there are no data to assimilate; see Eq. (11). Finally, when a strong storm375

arrives at t ≈ 235 DOY, and the plasmapause drops to L ≈ 3, ζ quickly collapses to its376

“true” value, as observations become plentiful and the uncertainty in ζ decreases; see Eq.377

(23). The convergence of the lifetime τLI , on the other hand, is achieved a few days later,378

when the plasmapause recovers back to L ≈ 5 and only the τLI value can be changed by379

the data (Fig. 3a).380

Once convergence of the estimated parameters has occurred, both ζ and τLI stay locked381

to their correct values within the bounds of their estimated standard deviations (square382

root of Pa
µµ), which become much smaller too (see Fig. 3b). This result shows the robust-383

ness of the EKF algorithm for estimation of highly variable, time-dependent parameters,384

despite strong nonlinearities in the system.385

In Fig. 4 we show how parameter estimation can help prevent Kalman filter divergence,386

at least for identical-twin experiments. In this case, the “true” solution is known, and387

thus we can always compare the estimated error tr(Pa) with the actual error. The black388

line in the figure shows the actual mean-square error for electron fluxes computed from389

state estimation alone, in the model that uses “incorrect” parameter values. This error390

stays much larger than the estimated error (blue line). On the other hand, the actual391

error in the fluxes when using the EKF that estimates both the state and the parameters392

(red line) converges to its estimated value, as the model parameters converge to their393

“true” values (compare with Fig. 3).394

4.2. CRRES Data Assimilation

Finally, we apply the EKF, including parameter estimation, to the CRRES satellite395

data. Here we start on purpose with unreasonable lifetime parameter values — τLI = 1396
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day, and ζ = 20 days — to show that, even in this highly nonlinear problem, convergence397

does not signficantly depend on the initial values of the parameters. Figure 5a shows the398

estimated lifetimes τLI and τLO, the latter being again averaged over a 48-hr window; the399

parameter ζ is shown in Fig. 5b, while the assimilated fluxes are displayed in Fig. 5c.400

As in the case of the identical-twin experiment of Fig. 3, for the first 20 days it is401

τLI that changes by slowly increasing in value as the plasmasphere fills the region within402

which observations are being assimilated (Fig. 5a). The value of ζ changes little during403

this period, while its estimated error [Pa
ζζ ]

1/2 gradually increases due to the addition of404

model error at each forecast step. The situation changes with the arrival of a strong405

storm at t ≈ 235 DOY, when both ζ and τLI adjust dramatically to reach their relatively406

constant values of ζ ≈ 3 and τLI ≈ 8 days.407

Electron fluxes obtained through data assimilation are expected to be closer to their408

actual values than those resulting from either model simulations or observations alone,409

since the assimilation process uses both model and data, and it accounts for errors or410

uncertainties in both. This fact explains certain differences between the assimilated fluxes411

in Fig. 5c and those in either Fig. 1a or Fig. 2, even after the initial interval of parameter412

convergence, i.e. at t ≥ 235 DOY.413

For the remainder of the assimilation run τLI remains in a tight range of 7 ≤ τLI ≤ 9414

days. The values of ζ, on the other hand, undergo intriguing transitions. They increase415

slowly to ζ ≈ 7 days, when a moderate intensity storm starts around t ≈ 260 DOY, and416

remain at that level until a strong storm at t ≈ 285 DOY leads to downward adjustment417

to ζ ≈ 3 days. The variations of ζ within the interval 260 ≤ t ≤ 280 DOY are even more418
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apparent for τLO, which becomes comparable in value to τLI at t ≈ 270 DOY (see Fig.419

5a).420

The two regimes of behavior in the outer belt, for 240 ≤ t ≤ 260 DOY and 260 ≤ t ≤ 280421

DOY, may be associated with differences in lifetime parameters during CME- and CIR-422

driven storms. Another possible explanation for the increased values of both ζ and τLO423

during a CIR storm is the neglect of a local acceleration source in Eq. (2). Such a source424

may be active during CIR-driven storms, which are associated with increased convection425

of hot electrons with an energy of about 100 KeV [Lyons et al., 2005]. If such a source is426

present and has not been included in the model, it could be effectively captured in data427

assimilation by smaller loss estimates.428

Still, the local acceleration by whistler chorus waves is more effective at higher energies429

and higher pitch angles, and loss is more effective at lower energies and pitch angles,430

while we present results only for near-equatorial particles of fixed energy. Ultimately, to431

distinguish between losses and sources one can use theoretical estimates of the pitch angle432

and energy scattering rates [Horne at al., 2005; Shprits et al., 2006c] to parameterize the433

local source term and the lifetime parameter and include both in the estimation process.434

Using results for a modified version of Eq. (2) that would include such a source term, with435

various L-values and statistical models for plasma density [Sheeley et al., 2001] and wave436

intensity [Meredith et al., 2003], one may also attempt to estimate the radial dependence437

of the source, as well as the loss processes.438

In general, lifetime estimates based on the EKF do depend on the assumed radial dif-439

fusion coefficients; see Eq. (3). These estimates will be most sensitive to the values of440

the radial diffusion coefficients where timescales for losses and radial transport are com-441
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parable, around L = 4.5. However, at higher L-values fast radial transport tends to make442

distribution flat (diffusion-dominated region), while at low L-shells losses take over radial443

diffusion (loss-dominated region). In the heart of the radiation belts, diffusion coefficients444

derived by Brautigam and Albert [2000] agree well with the theoretical estimates of Perry445

et al. [2005]. Diffusion coefficients can be included in the parameter estimation procedure,446

and we plan to investigate this possibility in the future.447

5. Conclusions

Our approach to estimating relativistic electron lifetimes is based on recognizing that448

parameters of the phase-space density (PSD) model (2), just like the model state variables,449

are subject to uncertainties. In addition, using model parameters τLI and τLO that are450

constant may not be optimal when the system exhibits distinct physical regimes, like CIR-451

and CME-driven storms in the radiation belts.452

Our identical-twin experiments with the extended Kalman filter (EKF), using synthetic453

data (Figs. 3 and 4), show that model parameter estimation can be successfully included in454

the data assimilation process by using the “state augmentation” approach; the “incorrect”455

model parameters can be driven toward their “correct” values very efficiently by assimi-456

lating model state variables. Doing so reduces the error in electron fluxes, with respect to457

the usual approach, in which the state only is estimated, while the model parameters are458

kept constant. The methodology described and tested here is applicable to more sophisti-459

cated radiation belt and ring current models, as well as in other areas of magnetospheric460

physics. This methodology holds even greater promise for the use of multiple-satellite461

measurements, where using independent observations at different L-shells should allow to462

make parameter estimation more often, thus providing a finer temporal resolution.463
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When applying the EKF to actual CRRES data, we obtained lifetimes inside the plas-464

masphere on the scale of 5–10 days, which is consistent with previous theoretical estimates465

[Lyons et al., 1972; Abel and Thorne, 1998]. Our results are also consistent with the in-466

dependent studies of observational data by Selesnick and associates [2003, 2004, 2006],467

which do not depend on modeling assumptions concerning radial transport and sources.468

In general, the intensity of plasmasphere hiss and associated losses do depend on activity469

levels (Kp), while our parameterization for τLI does not. For low-activity periods, how-470

ever, the decay rates in the plasmasphere are exponential and can indeed be fitted with a471

constant lifetime parameter ≈ 5 days, dependent only on energy [Meredith et al., 2006].472

Since chorus waves outside the plasmasphere produce both local acceleration and local473

loss, the lifetime parameter τLO introduced here should be interpreted as a combined ef-474

fect of local sources and losses, due to resonant wave-particle scattering by various types475

of waves (e.g., chorus, EMIC, and possibly hiss waves in the plumes). Our simulations476

indicate that observations are best reproduced with an effective lifetime parameter τLO477

of 2–3 days, which is comparable to the estimates of Thorne et al. [2005b]. Furthermore,478

our results are consistent with a claim that net effect of sources and losses is different479

during CME- and CIR-dominated storms. Quantifying these differences in greater detail480

by using parameter estimation is left for future research, where we plan to use multiple481

satellites during different parts of the solar cycle and concentrate on more accurate pa-482

rameterizations of electron lifetimes at various energies. These parameterizations may483

be used in particle tracing codes that account quite accurately for the transport of the484

particles, but cannot resolve the violations of the first and second adiabatic invariants, µ485

and J .486
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Figure 1. Radiation belt observations. (a) Daily averaged fluxes of electrons with an en-

ergy of 1 MeV, from CRRES satellite observations; values plotted are log10(flux) in units of

(sr·keV·s·cm2)−1, with the black curve being the empirical plasmapause boundary [Carpenter

and Anderson, 1992]. (b) Kp index (nondimensional), (this index is used to define the position

Lpp of the plasmapause in panel (a)), and (c) Dst index. Both indices are archived by the World

Center for Geomagnetism (see text for details).
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Figure 2. Simulated fluxes of 1-MeV electrons, plotted as log10(flux) in units of

(sr·keV·s·cm2)−1. The simulation uses different lifetime parameterizations outside (τLO =

ζ/Kp(t)) and inside (τLI) the plasmasphere: (a) τLI = 20 days, ζ = 3 days; (b) τLI = 10

days, ζ = 10 days; and (c) τLI = 10 days, ζ = 3 days.
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Figure 3. Parameter estimation in an identical twin-experiment: (a) τLI ; (b) ζ and its

estimated uncertainty range [Pa
ζζ ]

1/2 (black dashed line); and (c) τLO = ζ/Kp (2-day running

mean). Lifetimes are shown as estimated (blue line) and “true” (red line).
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Figure 4. Root-mean-square (RMS) errors in the electron fluxes for the identical-twin experi-

ment of Fig. 3. Black and red lines are for actual errors without and with parameter estimation,

respectively; the blue line is an estimated error given by [tr(Pf
k)]

1/2
.
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Figure 5. Results for parameter estimation with CRRES observations. (a) Estimated life-

times: outside – τLO = ζ/Kp (2-day running mean, red line), and inside – τLI (black line) the

plasmasphere; (b) ζ (blue line) and its estimated uncertainty range [Pa
ζζ ]

1/2 (black dashed line);

and (c) daily log10(electron fluxes) at 1 MeV, in (sr·keV·s·cm2)−1. In panel (c) the black solid

line is the plasmapause and the color scale is the same as in Figs. 1a and 2.
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