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Abstract. We consider a delay differential equation (DDE)

model for El-Niño Southern Oscillation (ENSO) variability.

The model combines two key mechanisms that participate

in ENSO dynamics: delayed negative feedback and seasonal

forcing. We perform stability analyses of the model in the

three-dimensional space of its physically relevant parame-

ters. Our results illustrate the role of these three parameters:

strength of seasonal forcing b, atmosphere-ocean coupling κ,

and propagation period τ of oceanic waves across the Trop-

ical Pacific. Two regimes of variability, stable and unstable,

are separated by a sharp neutral curve in the (b, τ) plane at

constant κ. The detailed structure of the neutral curve be-

comes very irregular and possibly fractal, while individual

trajectories within the unstable region become highly com-

plex and possibly chaotic, as the atmosphere-ocean coupling

κ increases. In the unstable regime, spontaneous transitions

occur in the mean “temperature” (i.e., thermocline depth),

period, and extreme annual values, for purely periodic, sea-

sonal forcing. The model reproduces the Devil’s bleachers

characterizing other ENSO models, such as nonlinear, cou-

pled systems of partial differential equations; some of the

features of this behavior have been documented in general

circulation models, as well as in observations. We expect,

therefore, similar behavior in much more detailed and realis-
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tic models, where it is harder to describe its causes as com-

pletely.
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1 Introduction and motivation

1.1 Key ingredients of ENSO theory

The El-Niño/Southern-Oscillation (ENSO) phenomenon is

the most prominent signal of seasonal-to-interannual climate

variability. It was known for centuries to fishermen along

the west coast of South America, who witnessed a seemingly

sporadic and abrupt warming of the cold, nutrient-rich waters

that support the food chain in those regions; these warmings

caused havoc to their fish harvests (Diaz and Markgraf, 1992;

Philander, 1990). The common occurrence of such warming

shortly after Christmas inspired them to name it El Niño, af-

ter the “Christ child.” Starting in the 1970s, El Niño’s cli-

matic effects were found to be far broader than just its man-

ifestations off the shores of Peru (Diaz and Markgraf, 1992;

Glantz et al., 1991). This realization led to a global aware-

ness of ENSO’s significance, and an impetus to attempt and

improve predictions of exceptionally strong El Niño events

(Latif et al., 1994).
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The following conceptual elements have been shown to

play a determining role in the dynamics of the ENSO phe-

nomenon.

(i) The Bjerknes hypothesis: Bjerknes (1969), who laid

the foundation of modern ENSO research, suggested a pos-

itive feedback as a mechanism for the growth of an internal

instability that could produce large positive anomalies of sea

surface temperatures (SSTs) in the eastern Tropical Pacific.

We use here the climatological meaning of the term anomaly,

i.e., the difference between an instantaneous (or short-term

average) value and the normal (or long-term mean). Us-

ing observations from the International Geophysical Year

(1957-1958), Bjerknes realized that this mechanism must in-

volve air-sea interaction in the tropics. The “chain reaction”

starts with an initial warming of SSTs in the “cold tongue”

that occupies the eastern part of the equatorial Pacific. This

warming causes a weakening of the thermally direct Walker-

cell circulation; this circulation involves air rising over the

warmer SSTs near Indonesia and sinking over the colder

SSTs near Peru. As the trade winds blowing from the east

weaken and thus give way to westerly wind anomalies, the

ensuing local changes in the ocean circulation encourage fur-

ther SST increase. Thus the feedback loop is closed and fur-

ther amplification of the instability is triggered.

(ii) Delayed oceanic wave adjustments: Compensating

for Bjerknes’s positive feedback is a negative feedback in

the system that allows a return to colder conditions in the

basin’s eastern part (Suarez and Schopf, 1988). During the

peak of the cold-tongue warming, called the warm or El Ni ño

phase of ENSO, westerly wind anomalies prevail in the cen-

tral part of the basin. As part of the ocean’s adjustment to

this atmospheric forcing, a Kelvin wave is set up in the tropi-

cal wave guide and carries a warming signal eastward; this

signal deepens the eastern-basin thermocline, which sepa-

rates the warmer, well-mixed surface waters from the colder

waters below, and thus contributes to the positive feedback

described above. Concurrently, slower Rossby waves prop-

agate westward, and are reflected at the basin’s western

boundary, giving rise therewith to an eastward-propagating

Kelvin wave that has a cooling, thermocline-shoaling effect.

Over time, the arrival of this signal erodes the warm event,

ultimately causing a switch to a cold, La Niña phase.

(iii) Seasonal forcing: A growing body of work (Ghil and

Robertson, 2000; Chang et al., 1994, 1995; Jin et al., 1994,

1996; Tziperman et al., 1994, 1995) points to resonances be-

tween the Pacific basin’s intrinsic air-sea oscillator and the

annual cycle as a possible cause for the tendency of warm

events to peak in boreal winter, as well as for ENSO’s in-

triguing mix of temporal regularities and irregularities. The

mechanisms by which this interaction takes place are numer-

ous and intricate and their relative importance is not yet fully

understood (Tziperman et al., 1995; Battisti, 1988).

1.2 Formulation of DDE models

Starting in the 1980s, the effects of delayed feedbacks and ex-

ternal forcing have been studied using the formalism of delay

differential equations (DDE) (see, inter alia, Bhattacharrya

and Ghil (1982); Ghil and Childress (1987) for geoscience

applications, and Hale (1977); Nussbaum (1998) for DDE

theory). Several DDE systems have been suggested as toy

models for ENSO variability. Battisti and Hirst (1989) have

considered the linear autonomous DDE

dT/dt = −αT (t− τ) + T, α > 0, τ > 0. (1)

Here, T represents the sea-surface temperature (SST) aver-

aged over the eastern equatorial Pacific. The first term on

the right-hand side (rhs) of (1) mimics the negative feed-

back due to the oceanic waves, while the second term re-

flects Bjerknes’s positive feedback. As shown in (Battisti

and Hirst, 1989), Eq. (1) reproduces some of the main fea-

tures of a fully nonlinear coupled atmosphere-ocean model

of ENSO dynamics in the tropics (Battisti, 1988; Zebiak and

Cane, 1987).
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Suarez and Schopf (1988) and Battisti and Hirst (1989)

also studied a nonlinear version of (1), in which a cubic non-

linearity is added to the rhs of the equation:

dT/dt = −αT (t− τ) + T − T 3, (2)

where 0 < α < 1 and τ > 0. This system has three steady

states, obtained by finding the roots of the rhs:

T0 = 0, T1,2 = ±(1 − α)1/2.

The so-called inner solution T0 is always unstable, while the

outer solutions T1,2 may be stable or unstable depending on

the parameters (α, τ). If an outer steady state is unstable,

the system exhibits bounded oscillatory dynamics; in (Suarez

and Schopf, 1988) it was shown numerically that a typical

period of such oscillatory solutions is about two times the

delay τ .

The delay equation idea was very successful in explain-

ing the periodic nature of ENSO events. Indeed, the delayed

negative feedback does not let a solution fade away or blow

up, as in the ordinary differential equation (ODE) case with

τ = 0, and thus creates an internal oscillator with period de-

pending on the delay and particular form of the equation’s

rhs. DDE modeling has also emphasized the importance of

nonlinear interactions in shaping the complex dynamics of

the ENSO cycle. At the same time, many important details

of ENSO variability still had to be explained.

First, a delayed oscillator similar to (1) or (2) typically

has periodic solutions with well-defined periods. However,

the occurrence of ENSO events is irregular and can only be

approximated very coarsely by a periodic function. Second,

El-Niño events always peak during the Northern Hemisphere

(boreal) winter, hence their name; such phase locking cannot

be explained by a purely internal delayed oscillator. Third,

the value of the period produced by the delay equations devi-

ates significantly from actual ENSO interevent times of 2–7

years. The delay τ , which is the sum of the basin-transit

times of the westward Rossby and eastward Kelvin waves,

can be roughly estimated to lie in the range of 6–8 months.

Accordingly, model (2) suggests a period of 1.5–2 years, at

most, for the repeating warm events; this is about half the

dominant ENSO recurrence time.

Tziperman et al. (1994) have demonstrated that these dis-

crepancies can be removed — still within the DDE frame-

work — by considering nonlinear interactions between the

internal oscillator and the external periodic forcing by the

seasonal cycle. These authors also introduced a more re-

alistic type of nonlinear coupling between atmosphere and

ocean to reflect the fact that the delayed negative feedback

saturates as the absolute value of the key dependent variable

T increases; note that in (1) the feedback is linearly propor-

tional to the delayed state variable T (t− τ). Munnich et al.

(1991) studied an iterated-map model of ENSO and made a

detailed comparison between cubic and sigmoid nonlineari-

ties. As a result, the sigmoid type of nonlinearity was cho-

sen in (Tziperman et al., 1994), resulting in the periodically

forced, nonlinear DDE

dT/dt = −α tanh [κT (t− τ1)]

+ β tanh [κT (t− τ2)] + γ cos(2 π t). (3)

Model (3) was shown to have solutions that possess an in-

teger period, are quasiperiodic, or exhibit chaotic behavior,

depending on the parameter values. The increase of solution

complexity — from period one, to integer but higher period,

and on — to quasiperiodicity and chaos — is caused by the

increase of the atmosphere-ocean coupling parameter κ. The

study (Tziperman et al., 1994) also demonstrated that this

forced DDE system exhibits period locking, when the exter-

nal, “explicit” oscillator wins the competition with the inter-

nal, delayed one, causing the system to stick to an integer

period; see also the more detailed analysis of phase locking

in the intermediate coupled model (ICM) of Jin et al. (1994;

1996).

To summarize our motivation for the choice of a “toy

model,” work during the past 30 years has shown that ENSO



4 M. Ghil et al.: A delay differential model of ENSO variability

dynamics is governed, by and large, by the interplay of

several nonlinear mechanisms that can be studied in sim-

ple forced DDE models. Such models provide a convenient

paradigm for explaining interannual ENSO variability and

shed new light on its dynamical properties. So far, though,

DDE model studies of ENSO have been limited to linear sta-

bility analysis of steady-state solutions, which are not typical

in forced systems, case studies of particular trajectories, or

one-dimensional scenarios of transition to chaos, varying a

single parameter while the others are kept fixed. A major ob-

stacle for the complete bifurcation and sensitivity analysis of

such DDE models lies in the complex nature of DDEs, whose

numerical and analytical treatment is much harder than that

of their ODE counterparts.

In this work we take several steps toward a comprehensive

analysis of DDE models relevant for ENSO phenomenol-

ogy. In doing so, we also wish to illustrate the complexity

of phase-parameter space structure for even such a simple

model of climate dynamics.

In Section 2, we formulate our DDE model, provide ba-

sic theoretical results for this type of DDEs, present the nu-

merical integration method used, and describe several solu-

tion types and their possible physical interpretation. In Sec-

tion 3, we proceed to explore fully solution behavior over

a broad range of the model’s three most physically relevant

parameters. We reproduce several dynamical solution fea-

tures and bifurcation scenarios previously reported in the lit-

erature for both simpler (Saunders and Ghil, 2001) and more

detailed (Jin et al., 1994, 1996; Tziperman et al., 1994, 1995;

Ghil and Robertson, 2000; Neelin et al., 1994, 1998; Dijk-

stra, 2005) models, report new ones, and describe the cor-

responding three-dimensional (3-D) regime diagram. This

3-D regime diagram includes large regions of very smooth

parameter dependence, as well as regions of very sensitive

dependence on the parameters; the neutral surface separat-

ing simpler from more complex behavior exhibits rich and

apparently fractal patterns.

The discussion in Section 4 highlights the possibility of

spontaneous, intrinsic transitions between the presence or

absence of intraseasonal, higher-frequency fluctuations, as

well as of interdecadal, lower-frequency variability. Such

higher- and lower-frequency variability accompanies the sea-

sonal and interannual oscillations that dominate our model

solutions. This coexistence of variabilities on several time

scales affects not only the mean and period of the solutions,

but also the distribution of extreme warm and cold events.

An illustration of the complexity “burst” caused by in-

troducing a scalar delay in a simple ODE is given in Ap-

pendix A. Appendix B contains the proof of a key theoret-

ical result presented in Sect. 2, while Appendix C provides

details on numerical procedures for DDEs.

2 Model and numerical integration method

2.1 Model formulation and parameters

We consider a nonlinear DDE with additive, periodic forcing,

dh(t)
dt

= −a tanh [κh(t− τ)] + b cos(2π ω t); (4)

here t ≥ 0 and the parameters a, κ, τ, b, andω are all real and

positive. Equation (4) is a simplified one-delay version of the

two-delay model considered by Tziperman et al. (1994); it

mimics two mechanisms essential for ENSO variability: de-

layed negative feedback via the function tanh(κ z) and peri-

odic external forcing. As we shall see, these two mechanisms

suffice to generate very rich behavior that includes several

important features of more detailed models and of observa-

tional data sets. Including the positive Bjerkness feedback

(Philander, 1990; Bjerknes, 1969; Neelin et al., 1994, 1998)

is left for future work.

The function h(t) in (4) represents the thermocline

depth deviations from the annual mean in the Eastern

Pacific; accordingly, it can also be roughly interpreted as

the regional SST, since a deeper thermocline corresponds

to less upwelling of cold waters, and hence higher SST,
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and vice versa. The thermocline depth is affected by the

wind-forced, eastward Kelvin and westward Rossby oceanic

waves. The waves’ delayed effects are modeled by the

function tanh [κh(t− τ)]; the delay τ is due to the finite

wave velocity and corresponds roughly to the combined

basin-transit time of the Kelvin and Rossby waves. The

particular form of the delayed nonlinearity plays a very

important role in the behavior of a DDE model. Munnich et

al. (1991) provide a physical justification for the monotone,

sigmoid nonlinearity we adopt. The parameter κ, which

is the linear slope of tanh(κ z) at the origin, reflects the

strength of the atmosphere-ocean coupling. The forcing

term represents the seasonal cycle in the trade winds.

The model (4) is fully determined by its five parameters:

feedback delay τ , atmosphere-ocean coupling strength κ,

feedback amplitude a, forcing frequency ω, and forcing am-

plitude b. By an appropriate rescaling of time t and depen-

dent variable h, we let ω = 1 and a = 1. The other three

parameters may vary, reflecting different physical conditions

of ENSO evolution. We consider here the following ranges

of these parameters: 0 ≤ τ ≤ 2 yr, 0 < κ < ∞, 0 ≤ b <∞.

To completely specify the DDE model (4) we need to pre-

scribe some initial “history,” i.e. the behavior of h(t) on the

interval [−τ, 0) (Hale, 1977). In most of the numerical ex-

periments below we assume h(t) ≡ 1, −τ ≤ t < 0, i.e.

we start with a warm year. Numerical experiments with al-

ternative specifications of the initial history suggest that this

choice does not affect our qualitative conclusions.

2.2 Basic theoretical results

To develop some intuition about the dynamics of Eq. (4), we

consider two limiting cases. In the absence of the feedback,

a = 0, the model becomes a simple ODE and hence has only

a sinusoidal solution with period 1. One expects to observe

the same behavior for b/a � 1. In the absence of forcing,

b = 0, we obtain a well-studied DDE

ḣ(t) = −g [h(t− τ)] , g(z) = tanh(κ z). (5)

The character of the solutions of this equation depends

strongly on the delay τ . For small delays, one expects to

see behavior reminiscent of the corresponding ODE with

zero delay; the general validity of such “small-delay expecta-

tions” is analyzed in detail in (Bodnar, 2004). For larger de-

lays the nonlinear feedback might produce more complex dy-

namics. These heuristic intuitions happen to be true: Eq. (5)

has an asymptotic solution that is identically zero for τ ≤ τ0,

and admits periodic solutions with period 4τ for τ > τ0,

where the critical delay is τ0 = π/(2 κ) (Cao, 1996; Nuss-

baum, 1979; Chow and Walter, 1988). In addition, it is

known that the null solution is the only stable solution for

τ ≤ τ0. At τ = τ0 the system undergoes a Hopf bifur-

cation, and the trivial steady state transfers its stability to a

periodic solution. Among other solutions, an important role

is played by the so-called slow oscillating solutions, whose

zeros are separated by a distance of at least the delay τ .

In particular, Chow and Walther (1988) showed that peri-

odic solutions with period 4 τ and the symmetry condition

−h(t) = h(t− 2 τ) are exponentially asymptotically stable;

that is, any other solution will approach one of these solu-

tions at an exponential rate. Moreover, for τ > τ0, these so-

lutions may be the only stable ones (Chow and Walter, 1988).

These results can help explain the observed near-

periodicity of ENSO variability. If one takes the delay

τ to equal approximately the transit time of the traveling

ocean waves, namely 6 to 8 months, then the 4 τ internal

period of the ENSO oscillator becomes 2–3 years. This

remark, together with our further observations in Sect. 2.4,

provides a good justification for the observed quasi-biennial

oscillation in Tropical Pacific SSTs and trade winds (Diaz

and Markgraf, 1992; Philander, 1990; Jiang et al., 1995;

Ghil et al., 2002).
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Below we summarize basic theoretical results about

Eq. (4). Following the traditional framework (Hale,

1977; Nussbaum, 1998), we consider the Banach

space X = C([−τ, 0),R) of continuous functions

h : [−τ, 0) → R and define the norm for h ∈ X

as

‖ h ‖= sup {|h(t)|, t ∈ [−τ, 0)} ,

where | · | denotes the absolute value in R. For convenience,

we reformulate the DDE initial-value problem (IVP) in its

rescaled form:

dh(t)
dt

= − tanh [κh(t− τ)] + b cos(2π t), t ≥ 0, (6)

h(t) = φ(t), t ∈ [−τ, 0), φ(t) ∈ X. (7)

Proposition 1 (Existence, uniqueness, continuous depen-

dence) For any fixed positive triplet (τ, κ, b), the IVP (6)-(7)

has a unique solution h(t) on [0, ∞). This solution depends

continuously on the initial data φ(t), delay τ and the rhs of

(6) considered as a continuous map f : [0, T ) × X → R,

for any finite T .

Proof. See Appendix B.

From Proposition 1 it follows, in particular, that the sys-

tem (6)-(7) has a unique solution for all time, which depends

continuously on the model parameters (τ, κ, b) for any fi-

nite time. This result implies that any discontinuity in the

solution profile as a function of the model parameters indi-

cates the existence of an unstable solution that separates the

attractor basins of two stable solutions.

Our numerical experiments suggest, furthermore, that all

stable solutions of (6)-(7) are bounded and have an infinite

number of zeros.

2.3 Numerical integration

The results in this study are based on numerical integration of

the DDE (6)-(7). We emphasize that there are important dif-

ferences between numerical integration of DDEs and ODEs.

The first important difference is in the requisite initial data.

The solution of a system of ODEs is determined by its value

at the initial point t = t0. When integrating a DDE, terms

like h(t − τ) may represent values of the solution at points

prior to the initial point. Because of this, the given initial

data must include not only h(t0), but also a “history” of the

values h(t) for all t prior to t0 in the interval that extends as

far back at the largest delay.

Another important issue in solving DDEs arises when a

delayed value of the argument falls within the current inte-

gration step. In order to avoid limiting the step size to be

smaller than the smallest delay, or, alternatively, to avoid ex-

trapolating the previous solution, an iterative procedure must

be used to obtain successive approximations of the delayed

solution that will yield a satisfactory local error estimate. The

implementation of this iterative procedure affects profoundly

the performance of a DDE solver.

These and other specific features of DDE numerical in-

tegration require development of special software and of-

ten the problem-specific modification of such software. We

used here the Fortran 90/95 DDE solver dde solver of

Shampine and Thompson (2006), available at http://www.

radford.edu/∼thompson/ffddes/. This solver implements a

(5,6) pair of continuously embedded, explicit Runge-Kutta-

Sarafyan methods (Corwin et al., 1997). Technical details of

dde solver, as well as a brief overview of other available

DDE solvers are given in Appendix C.

The numerical simulations in this paper require very long

integration intervals, leading to prohibitive storage require-

ments. This difficulty led us to incorporate several new

options in dde solver; they are also described in Ap-

pendix C.

2.4 Examples of model dynamics

In this subsection we illustrate typical solutions of the prob-

lem (6)-(7) and comment on physically relevant aspects of



M. Ghil et al.: A delay differential model of ENSO variability 7

0 1 2 3 4 5 6 7 8 9 10
Time

a

b

c

d

e

f

Fig. 1. Examples of DDE model solutions. Model parameters are

κ = 100 and b = 1, while κ increases from curve (a) to curve (f) as

follows: (a) τ = 0.01, (b) τ = 0.025, (c) τ = 0.15, (d) τ = 0.45,

(e) τ = 0.995, and (f) τ = 1.

these solutions. All experiments shown here use the constant

initial data φ ≡ 1. Figure 1 shows six trajectories obtained

by fixing b = 1, κ = 100 and varying the delay τ over two

orders of magnitude, from τ = 10−2 to τ = 1, with τ in-

creasing from bottom to top in the figure. The sequence of

changes in solution type illustrated in Fig. 1 is typical for any

choice of (b, κ) as τ increases.

For a small delay, τ < π/(2 κ), we have a periodic so-

lution with period 1 (curve a); here the internal oscillator

is completely dominated by the seasonal forcing. When the

delay increases, the effect of the internal oscillator becomes

visible: small wiggles, in the form of amplitude-modulated

oscillations with a period of 4 τ , emerge as the trajectory

crosses the zero line. However, these wiggles do not affect

the overall period, which is still unity. The wiggle ampli-

tude grows with τ (curve b) and eventually wins over the

seasonal oscillations, resulting in period doubling (curve c).

Further increase of τ results in the model passing through

a sequence of bifurcations that produce solution behavior of

considerable interest for understanding ENSO variability.

Some of these types of solution behavior are illustrated

further in Fig. 2. Panel (a) (κ = 5, τ = 0.65) shows the

occurrence of “low-h,” or cold, events every fourth seasonal

cycle. Note that negative values of h correspond to the boreal

(Northern Hemisphere) winter, that is to the upwelling sea-

son — December-January-February — in the eastern Trop-

ical Pacific; in the present, highly idealized model, we can

associate the extreme negative values with large-amplitude

cold events, or La Niñas. This solution pattern loses its regu-

larity when the atmosphere-ocean coupling increases: Panel

b (κ = 100, τ = 0.58) shows irregular occurrence of large

cold events with the interevent time varying from 3 to 7 cy-

cles.

In panel c (κ = 50, τ = 0.42) we observe alternately and

irregularly occurring warm El-Niño and cold La Niña events:

the “high-h” events occur with a period of about 4 years and

random magnitude. Panel d (κ = 500, τ = 0.005) shows

another interesting type of behavior: bursts of intraseasonal

oscillations of random amplitude superimposed on regular,

period-one dynamics. This pattern is reminiscent of Madden-

Julian oscillations (Madden and Julian, 1971, 1972, 1994)

or westerly-wind bursts (Gebbie et al., 2007; Harrison and

Giese, 1988; Verbickas, 1998; Delcroix et al., 1993). The

solution in panel e (κ = 50, τ = 0.508) demonstrates sus-

tained interdecadal variability in the absence of any exter-

nal source of such variability. The solution pattern illustrates

spontaneous changes in the long-term annual mean, as well

as in the distribution of positive and negative extremes, with

respect to both time and amplitude.

3 Critical transitions

3.1 Numerical characterization of solution behavior

In this section we focus on the onset of instabilities in the

model (6)-(7). Taking a “metric” approach to the problem,

we study the change in several statistics of a trajectory as
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Time

b)

a)

c)

d)

e)

Fig. 2. Noteworthy solution patterns of relevance to ENSO dynam-

ics; seasonal forcing amplitude b = 1. a) Regularly occurring cold

(low-h) events, or La Niñas (κ = 5, τ = 0.65); b) irregular cold

events (κ = 100, τ = 0.58); c) irregular alternations of warm (El

Niño, high-h) and cold events (κ = 50, τ = 0.42); d) intraseasonal

activity reminiscent of Madden-Julian oscillations or westerly-wind

bursts (κ = 500, τ = 0.005); and (e) interdecadal variability in the

annual mean and in the relative amplitude of warm and cold events

(κ = 50, τ = 0.508).

the model parameters change. This approach is complemen-

tary to the “topological” one, which forms the basis for the

stability analysis of dynamical systems (Andronov and Pon-

tryagin, 1937; Katok and Hasselblatt, 1995). In the latter, one

studies the topological structure of the system’s attractor(s),

i.e. a combination of points, circles, tori, or more compli-

cated objects. The motivation for this approach comes from

noting that topologically equivalent solutions can be mapped

onto each other using an appropriate diffeomorphism, i.e. a

one-to-one, continuously differentiable map. Hence, consid-

ering topologically equivalent classes rather than all individ-

ual solutions is enough for studying the system’s qualitative

behavior. From a practical point of view, though, metric

properties of a solution might be as important as its topolog-

ical description or more: think of living in a region with con-

stant air temperature of –10◦C vs. 20◦C. Furthermore, metric

properties are also much easier to study, in simple models, as

well as in full, 3-D general circulation models (GCMs) and

in observational data sets.

Technically, we proceed in the following way. For each

fixed triplet of parameters (b, κ, τ) we find a numerical ap-

proximation ĥi ≡ ĥ(ti) of the model solution h(t) on a

grid G = {ti}i=1,...,N , ti ∈ [0, Tmax] using the Fortran

90 DDE solver dde solver of Shampine and Thompson

(2006) (see also Appendix C). We only consider the latter

part of each solution, ti > Tmin > 0, in order to avoid any

transient effects; to simplify notations, we assume from now

on that t1 = Tmin. Typical parameters for our numerical

experiments are Tmax = 104, Tmax − Tmin = 103, time

step δ = ti − ti−1 = 10−3, and a numerical precision of

ε = 10−4. We have also verified some of the results with a

precision up to 10−12, a time step of 10−4, and over time in-

tervals up to Tmax−Tmin = 104 in order to ascertain that the

reported phenomena are not caused or affected by numerical

errors.

We report results for the following trajectory statistics:

maximum value M = maxi ĥi; mean value E =
∑

i ĥi/N ,

where N is the maximal integer less than (Tmax − Tmin)/δ;

and mean of positive values E+ =
∑

i ĥi1ĥi>0/
∑

i 1ĥi>0,

where 1A is the characteristic function of the set A, identi-

cally equal to one for all points in A and zero outside of A.

Furthermore, we have computed, but do not show here, the

trajectory variance, the mean of negative values, and upper

90% and 95% quantiles; the results are very similar for all

the statistics we have examined.

We also computed an approximation to the period of a so-

lution. Specifically, for any positive integer ∆ we define the
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∆-discrepancy

R∆ =

∑N
i=∆+1

(
ĥi − ĥi−∆

)2

(N − ∆)V ar(ĥ)
, (8)

V ar(ĥ) =
1
N

N∑
i=1

(
ĥi − h̄

)2

, h̄ =
1
N

N∑
i=1

ĥi.

If ĥi ≡ h(ti), for a periodic solution h with period P = δ∆,

we have R∆ = 0. In numerical experiments, we can only

guarantee that the ∆-discrepancy of a periodic solution is

small enough: R∆ < rε = 4 ε2/V ar(ĥ), where ε is the ab-

solute numerical precision. We call near-period the minimal

number P = δ∆ such that

R∆ < rη and R∆ < R∆±1

for some prescribed 0 < η � 1. The first condition ensures

that the ∆-discrepancyR∆ is small enough, while the second

one guarantees that R∆ is a local minimum as a function

of ∆. The following proposition follows readily from the

definition of P .

Proposition 2 (Convergence theorem). The near-period P
converges to the actual period T of a continuous periodic

function h(t) when the numerical step δ and nominal accu-

racy ε decrease: limδ→0, ε→0 P = T.

The continuity requirement in the hypothesis is too re-

strictive for this statement, but it suffices for our purpose,

since solutions of model (6), for a given triplet (b, τ, κ), are

smooth. The rate of convergence in Proposition 2 depends

strongly on the period structure of h(t). The rate is high for

functions with “simple” periods, e.g. with a single local max-

imum within the period T , and may be arbitrarily low in the

general case; e.g. for h = h1 + γ h2, where h1 has period

T/2, h2 period T , and γ is small enough, the convergence is

quite slow.

To summarize, the near-period P approximates the actual

period T for periodic functions. The functional P can also

be defined for certain functions that are not periodic. For
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Fig. 3. Near-period P as a function of delay τ for fixed b = 0.03,

heavy solid segments; dashed straight lines correspond to P =

4 τ k, k = 1, 2, .... The near-period is always a multiple of 4 τ

close to an integer.

instance, this may be the case for a quasiperiodic function

h(t) = p1(t)+p2(t),where each pi(t) is periodic and the two

periods, T1 and T2, are rationally independent. It is also the

case for a near-periodic function h(t) = p0(t)+p1(t), where

p0(t) is periodic, and p1(t) has sufficiently small amplitude.

As we shall see, the period approximation P is quite helpful

in understanding the structure of our model’s solution set.

3.2 Small forcing amplitude and frequency locking

We mentioned in Sect. 2.2 that, without external forcing

(b = 0), the nontrivial stable solutions of the model (6)-(7)

are periodic with period 4 τ . When the external forcing is

small, b � 1, the dynamical system tries to retain this prop-

erty. Figure 3 shows the near-period P as a function of the

delay τ for fixed b = 0.03 and κ = 100. Here rη = R1,

that is we compare the ∆-discrepancy R∆ with the one-step

discrepancy R1; the latter measures the degree of continuity

of our discrete-time approximation to h(t). Straight dashed

lines in the figure correspond to P = 4 τ k for positive inte-

ger k. One can see that the solution’s near-period is always a
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Fig. 4. Devil’s bleachers: period index k = P/(4 τ ) as a function

of forcing amplitude b and delay τ . Notice the presence of very

long periods, of 100 years and more, in the color bar and figure.

multiple of 4 τ and always close to an integer. This state of

affairs is a natural compromise between the internal period

4 τ and the driving period 1, a compromise rendered possi-

ble by the internal oscillator’s nonlinearity.

More generally, Fig. 4 shows the map of the period in-

dex k = P/(4 τ) in the b–τ plane for 0 < b < 0.03,

0 < τ < 0.22. Here one immediately recognizes the so-

called Devil’s bleachers scenario of transition to chaos, doc-

umented in other ENSO models, including both ICMs (Jin

et al., 1994, 1996; Tziperman et al., 1994, 1995; Ghil and

Robertson, 2000) and GCMs (Ghil and Robertson, 2000), as

well as in certain observations (Ghil and Robertson, 2000;

Yanai and Li, 1994). The periodically forced model (6) ex-

hibits the web of resonances that characterizes coupled os-

cillators, although the “external oscillator” quickly wins over

the internal one as the amplitude b of the forcing increases.

For b = 0.1 (not shown) the near-period plot looks simi-

lar to the one shown in Fig. 3, but P takes only integer val-

ues. When the forcing amplitude increases further, the near-

period P , as well as the actual period T , is locked solely to

integer values.

3.3 Onset of the instabilities

Tziperman et al. (1994) reported that the onset of chaotic

behavior in their two-delay, periodically forced DDE model

is associated with the increase of the atmosphere-ocean cou-

pling κ; Munnich et al. (1991) made a similar observation

for an iterated-map model of ENSO. We explore this tran-

sition to chaos in our model over its entire, 3-D parameter

space.

First, we compute in Fig. 5 the trajectory maximum M as

a function of the parameters b and τ for increasing values

of κ. For small values of coupling (top panel) we have a

smooth map, monotonously increasing in b and periodic with

period 1 in τ . As the coupling increases, the map loses its

monotonicity in b and periodicity in τ for large values of τ ,

but it is still smooth. For κ ≈ 2 (middle panel), a neutral

curve f(b, τ) = 0 emerges that separates a smooth region (to

the right of the curve), where we still observe monotonicity

in b and periodicity in τ , from a region with rough behavior

of M . The gradient of M(b, τ) is quite sharp across this

neutral curve.

Further increase of the coupling results in a qualitative

change in the maximum map. The neutral curve, which be-

comes sharp and rough, separates two regions with very dif-

ferent behavior of M(b, τ) (bottom panel). To the right of

the curve, the map M(b, τ) is still smooth, periodic in τ and

monotonic in b. To the left, one sees discontinuities that pro-

duce rough and complicated patterns. The mean position of

the neutral curve f(b, τ) = 0 quickly converges to a fixed

profile, although its detailed shape at smaller scales contin-

ues to change with increasing κ. The limiting profile is close

to the one observed for κ = 11 (bottom panel).

3.4 Unstable behavior

In this subsection we illustrate the model’s parametric in-

stabilities using the four trajectory statistics introduced in

Sect. 3.1: maximum M , mean E, mean of positive values
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Fig. 5. Maximum map M = M(b, τ ). Top: κ = 0.5, middle:

κ = 2, and bottom: κ = 11. Notice the onset of instabilities and

emergence of a neutral curve f(b, τ ) = 0 that separates the smooth

from the unstable regions.

E+, and near-period P . Figure 6 shows a plot of these statis-

tics in a rectangle of the plane (b, τ) for fixed κ = 10. The

neutral curve of Fig. 5c crosses this rectangle from its bot-

tom left corner to the central point on its right edge; thus

the bottom right region of each panel corresponds to smooth

behavior of each statistic map, while the top left region cor-

responds to rough behavior. This figure illustrates the fol-

lowing points:

The maximum map M(b, τ) (Fig. 6a) shows, among other

instabilities, a pronounced jump along a mainly horizontal

curve in the (b, τ) plane. In the vicinity of this curve, an ar-

bitrarily small increase in τ causes a 200–300% jump (from

0.25 to 0.5–0.8) in M . A pair of trajectories on either side of

this transition is shown below in Fig. 9.

The mean map E(b, τ) (Fig. 6b). To emphasize the para-

metric instabilities, we show here log10 |E|. Deviations of

E from 0 reflect the trajectory’s asymmetry; hence the larger

values of this map indicate asymmetric solutions. In this ex-

periment, we use a numerical precision of 10−4, so that val-

ues of log10 |E| < −4 effectively correspond to symmetric

trajectories, E = 0. One can see that the symmetry, charac-

teristic for trajectories from the smooth region (bottom right

part), breaks across the neutral curve. In the unstable re-

gion, the magnitude of the asymmetry is very intermittent;

it ranges over three orders of magnitude, taking its maximal

value in the region that corresponds to the jump in the trajec-

tory maximum, cf. panel (a).

The mean of positive values E+(b, τ) (Fig. 6c), by com-

parison with the maximum map in panel (a), shows that cer-

tain internal instabilities may affect trajectory shape without

affecting the behavior of extremes. For instance, the maxi-

mum mapM(b, τ) is smooth within the neighborhood of the

point (b = 1.5, τ = 0.49), although the map E+(b, τ) ex-

hibits a discontinuity across this neighborhood. In fact, one

arrives at the same conclusion by comparing the maximum

map to the mean map, cf. panels (a) and (b), respectively.
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Fig. 6. Trajectory statistics plots for κ = 10, as a function of forcing amplitude b and delay τ : a) maximum map, M(b, τ ); b) mean map,

log |E(b, τ )|; c) mean of positive values, E+(b, τ ); and d) near-period map, P(b, τ ).

The near-period map P(b, τ) (Fig. 6d). The near-period

is varying over the interval [0, 27] in this map. As we have

noticed, not all of these values correspond to trajectories that

are actually periodic, rather than just nearly so (see Sect. 3.1)

. The large constant regions, though, do reflect the actual

periods; as a rule, they correspond to small values of P . Ex-

amples include: P = 1, within the smooth part of the map

(bottom right); P = 2 within the middle horizontal tongue;

P = 3 within the top right part; and P = 5 in a small tongue

that touches the left margin of the plot at (b = 1, τ = 0.44).

Figure 7 shows the same plots of solution statistics over a

rectangle of the plane (κ, τ), for a fixed value b = 1; it il-

lustrates the onset and development of instabilities as a func-

tion of the coupling parameter κ. Comments similar to those

above, which concern the behavior of individual maps and

the connections between them, apply to this set of maps as

well.

Figure 8 shows the maximum and mean maps for κ = 100.

The increase in the atmosphere-ocean coupling, with its as-

sociated nonlinearity, amplifies the model’s instabilities and

leads to more complex dynamics that is quite chaotic. The

rigorous verification of the chaotic properties is left, how-

ever, for future work.

Figure 9 shows three examples of change in solution be-
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Fig. 7. Solution statistics plots for b = 1, as a function of coupling parameter κ and delay τ . Same panels as in Fig. 6.

havior across the neutral curve that separates smooth from

rougher behavior. In all three cases shown, one trajectory

(dashed line) has period one and lies within the smooth part

of the parameter space, in the immediate vicinity of the neu-

tral curve, while the other trajectory (solid line) corresponds

to a point in parameter space that is quite close to the first

one but on the other side of the neutral curve.

Panel (a) illustrates transition to quasiperiodic behavior

with a “carrier wave” of period near 8, alternating smoothly 3

warm and 3 cold events, separated by one “normal” year. In

panel (b) we see single large El Niños alternating with sin-

gle large La Niñas, separated by 3 normal years. Panel (c)

exhibits interdecadal variability, like in Fig. 2e, except that

the transitions between warm and cold “decades” is sharper

here, and the spells of El Niños and La Niñas even longer (a

dozen years here vs. roughly ten there).

4 Discussion

We have considered a toy model for ENSO variability that

is governed by a delay differential equation (DDE) with a

single, fixed delay and periodic forcing. Thus, we follow

a line of research pioneered by Suarez and Schopf (1988),

Battisti and Hirst (1989), and Tziperman et al. (1994), who

have shown that DDE models can effectively capture com-

plex phenomena found in much more detailed ENSO mod-
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Fig. 8. Solution statistics plots for κ = 100: a) maximum map, M(b, τ ); and b) mean map, log |E(b, τ )|.

els, as well as in observational data sets. DDE models are

very simple and, at the same time, exhibit rich and complex

behavior. Stability and bifurcation analysis for such models

can be carried out analytically only to some extent, but nu-

merical methods are being actively developed (Baker, 2000;

Baker et al., 1995; Engelborghs et al., 2001), and we have

not yet taken full advantage here of either approach.

To initiate stability and bifurcation analysis of ENSO-

related DDE models, we started here with a descriptive nu-

merical exploration of Eqs. (6)-(7) over a wide range of phys-

ically relevant parameter values. We studied parameter de-

pendence of various trajectory statistics, and report the exis-

tence of a large domain in parameter space where the statis-

tics maps are strikingly discontinuous. The local continuous-

dependence theorem (Proposition 1) suggests, at least, that

the reported discontinuities in global solutions point to the

existence of unstable solutions of Eqs. (6)-(7); the complex

discontinuity patterns (see Figs. 6 and 7) lead us to suspect

the presence of a rich family of unstable solutions that under-

lie a complicated attractor. It would be interesting to study in

greater detail the unstable solutions and understand their role

in shaping the system dynamics.

Summarizing the model results in terms of their relevance

for ENSO dynamics, we emphasize the following observa-

tions. A simple DDE model (6)-(7) with a single delay re-

produces the Devil’s staircase scenario documented in other

ENSO models, including ICMs and GCMs, as well as in ob-

servations (Jin et al., 1994, 1996; Tziperman et al., 1994,

1995; Ghil and Robertson, 2000). The model illustrates, in

simplest possible terms, the role of the distinct parameters:

strength of seasonal forcing b vs. ocean-atmosphere coupling

κ and transit time τ of oceanic waves across the Tropical

Pacific. We find spontaneous transitions in mean thermo-

cline depth, and hence in sea surface temperature (SST), as

well as in extreme annual values that occur for purely pe-

riodic, seasonal forcing. The model generates intraseasonal

oscillations of various periods and amplitudes, as well as in-

terdecadal variability. The former result might suggest that

Madden-Julian oscillations (Madden and Julian, 1971, 1972,

1994) and westerly wind bursts (Gebbie et al., 2007; Harri-

son and Giese, 1988; Verbickas, 1998; Delcroix et al., 1993)

in the Tropical Pacific are affected by ENSO’s interannual

modes at least as much as they affect them in turn. The lat-

ter result likewise suggests that interdecadal variability in the

extratropical, thermohaline circulation (Dijkstra, 2005; Dijk-

stra and Ghil, 2005) might also interfere constructively with
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Fig. 9. Examples of instabilities across the neutral curve that sepa-

rates smooth from rough behavior; at b = 1; see Fig. 5. The dashed

blue curve shows a period-1 trajectory on the smooth side of the

neutral curve; the solid red curve shows a trajectory immediately

across the neutral curve, in the rough-solution domain.

ENSO’s intrinsic variability on this time scale.

A sharp neutral curve in the (b−τ ) plane separates smooth

parameter dependence in the solutions’ map of “metrics”

(Taylor, 2001; Fuglestvedt et al., 2003) from “rough” behav-

ior. We expect such separation between regions of smooth

and rough dependence of solution metrics on parameters in

much more detailed and realistic models, where it is harder

to describe its causes as completely.

Finally, it appears that, even in as simple a model as our

DDE, the mean, extrema and periodicity of solutions can

change (a) spontaneously, without any change in the exter-

nal forcing; and (b) one of these characteristics can change

considerably, while others change but very little. Further-

more, certain parts of parameter space involve only small

and smooth changes, while others involve large and sudden

ones. It is quite conceivable that such behavior might arise in

intermediate climate models (Jin et al., 1996; Neelin et al.,

1994, 1998) and GCMs (Murphy et al., 2004; Stainforth et

al., 2005).

Appendix A

A simple example of DDE complexity

In his classical book (Hale, 1977) on functional differential

equations, Jack Hale remarks that systematic study of dif-

ferential equations with dependence on the past started with

the work of Volterra on predator-prey models and viscoelas-

ticity at the beginning of the 20th century. DDEs have thus

been actively studied and applied for almost a century. Still,

they are a relatively new modeling tool when compared to

ODEs, and their theory and numerical analysis are much less

developed than for ODEs. To develop the reader’s intuition

for DDEs, we discuss in this appendix a simple autonomous

ODE and the corresponding DDE obtained by introducing a

fixed time delay; our goal is to illustrate how this apparently

innocuous modification complicates the solution set of the

equation and renders its analytical and numerical study more

elaborate.

We start with the linear, scalar ODE

ẋ(t) = αx(t). (A1)

Assuming a solution of the form x = c eλ t, we substitute it

in (A1) to find its characteristic equation

λ = α.
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This equation allows us to find all possible functions of the

given form that satisfy (A1). Clearly, fixing an initial con-

dition x(0) = x0 leaves only one solution with c = x0.

This example illustrates an important general property of au-

tonomous ODEs: their characteristic equations are polyno-

mials in λ and thus have a finite set of (complex-valued) so-

lutions that can be easily found. As a result, the finite set of

solutions to (A1) can also be described easily.

Let us introduce now a delay τ into Eq. (A1):

ẋ(t) = αx(t− τ). (A2)

This modification implies that it takes some finite time τ for

changes in the model state x(t) to affect its rate of change

ẋ(t). Such an assumption makes sense in many applica-

tions, with numerous specific examples given in the Intro-

duction to Hale (1977), and in Kolmanovskii and Nosov

(1986). Proceeding as before, we assume a solution of the

form x = c eλ t and obtain the characteristic equation

λ eλ τ = α. (A3)

The fact that not all exponential terms cancel out in (A3)

changes dramatically the solution set of this characteristic

equation. It can be shown that (A3) has an infinite number of

complex solutions; hence there exists an infinite number of

functions that satisfy Eq. (A2) (Hale, 1977; Falbo, 1995). A

general solution to (A2) is given by (Falbo, 1995):

x(t) = C0 e
−t/τ + C1 e

r0 t + C2 e
r1 t + C3 e

r t

+
∞∑

k=1

epk t [C1k cos(qk t) + C2k sin(qk t)] . (A4)

Here pk ± i qk are complex solutions of (A3), C1k and C2k

are arbitrary constants, and C0, C1, C2, C3 depend on the

values of α and τ : for α < −1/(τ e), Ci = 0, i = 0, 1, 2, 3;

for α = −1/(τ e), C0 is arbitrary, and Ci = 0, i = 1, 2, 3;

for −1/(τ e) < α < 0, C0 = C3 = 0, C1, C2 are arbitrary,

and r0, r1 are the real roots of (A3); finally forα > 0,Ci = 0

for i = 0, 1, 2, C3 is arbitrary, and r is the only real root of

(A3). Accordingly, this simple autonomous linear DDE may

have increasing, decreasing, and oscillating solutions.

The “burst” of complexity in the solution set of (A2) com-

pared to that of (A1) is pervasive in the DDE realm. Solving

characteristic equations arising from DDEs is typically quite

involved and requires usually some general results on equa-

tions that mix polynomial and exponential terms (see, e.g.,

Appendix A in Hale (1977)). Stability and bifurcation stud-

ies for DDEs face a similar “burst” of complexity, compared

to ODEs.

Numerical exploration of DDEs is also considerably more

complicated than for ODEs. The question of discontinuities

in the solutions’ derivatives is crucial: Because general nu-

merical methods for both ODEs and DDEs are intended for

problems with solutions that have several continuous deriva-

tives, discontinuities in low-order derivatives (up to the order

of the integration method) require special attention. Such

discontinuities are not all that rare for ODEs, but they are al-

most always present for DDEs, since the first derivative of the

history function at the initial point is almost always different

from the first derivative of the solution there. Moreover, dis-

continuities are a much more serious matter for DDEs than

they are for ODEs because they propagate: the smoothness of

the derivative ẋ at the current time t depends on the smooth-

ness of the solution x at past times in the interval t− τ .

This difficulty may be illustrated using our very simple

example

ẋ(t) = x(t− 1), (A5)

where we set, without loss of generality, τ = α = 1. For

this equation x(k+1)(t) = x(k)(t − 1), where x(k) denotes

the k-th derivative. In general, if there is a discontinuity of

order k at a time t∗, meaning that x(k) has a jump at t = t∗,

then as t crosses the value t∗ + 1, there is a discontinuity in

x(k+1) because of the term x(t−1). With multiple delays τi,

a discontinuity at time t∗ propagates to the times

t∗ + τ1, t
∗ + τ2, . . . , t

∗ + τk,
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and each of these discontinuities in turn propagates. If there

is a discontinuity of order k at time t∗, the discontinuity at

each of the times t∗ + τj is at least of order k + 1. Because

the effect of a delay appears in a higher-order derivative, the

solution does become smoother as the integration proceeds.

This “generalized smoothing” proves to be quite important

to the numerical solution of DDEs.

To illustrate these statements, suppose we wish to solve

Eq. (A5) with history x(t) ≡ 1 for t ≤ 0. On the interval

0 ≤ t ≤ 1 the solution is x(t − 1) = 1 because t − 1 ≤ 0.

Thus, the DDE on this interval reduces to the ODE ẋ(t) = 1

with initial value x(0) = 1. We solve this problem to obtain

x(t) = t+ 1 for 0 ≤ t ≤ 1. Notice that this solution exhibits

a typical discontinuity in its first derivative at t = 0 because

it is zero to the left of the origin and unity to the right. Now

that we know the solution for t ≤ 1, we can reduce the DDE

on the interval 1 ≤ t ≤ 2 to an ODE ẋ = (t − 1) + 1 = t

with initial value x(1) = 2 and solve this problem to find

that x(t) = 0.5t2 +1.5 on this interval. The first derivative is

continuous at t = 1, but there is a discontinuity in the second

derivative. In general, the solution of the DDE on the interval

[k, k + 1] is a polynomial of degree k + 1 and the solution

has a discontinuity of order k + 1 at time t = k.

In order for a solver to account for these specific features

of DDEs and to solve them efficiently, accurately and reli-

ably, there must be a great deal of care taken “under the

hood” of the solver. Discontinuities need be tracked only

up to the order of the integration method, since higher-order

discontinuities do not affect the performance of the solver,

i.e. its procedures for error estimation and step size control.

Our solver of choice, dde solver, tracks discontinuities

explicitly and includes them as integration grid points, in or-

der to avoid interpolating across them. For problems with

constant delays, it is possible to build the necessary “discon-

tinuity tree” in advance and to step exactly to each point in

the tree.

For problems with state-dependent delays, the discon-

tinuity times are not known in advance. In this case,

dde solver tracks discontinuities using root finding, in

conjunction with the primary integration method’s underly-

ing polynomial interpolants, to locate the discontinuities and

restart the integration at each such point. Some other avail-

able solvers handle discontinuity propagation differently; but

the best solvers do take special precautions of one kind or

another, since ignoring discontinuities can significantly af-

fect the reliability of a DDE solver. We refer in this context

also to several distinct approaches to the numerical solution

of Boolean delay equations (Dee and Ghil, 1984; Ghil and

Mullhaupt, 1985; Saunders and Ghil, 2001; Zaliapin et al.,

2003).

Appendix B

Proof of Proposition 1

Consider the IVP (6)-(7), with the rhs of the DDE (6) denoted

by

F(t, h(·)) = − tanh [κh(·)] + b cos(2 π t).

Existence of the solution to this problem on [0, T ] for some

T > 0 readily follows from the continuity of F(t, h) and

the general existence theorem for DDEs (Hale (1977), The-

orem 2.1, p. 41). Moreover, Nussbaum (Nussbaum (1998),

Theorem 1, p. 3) remarks that if there exist constants A and

B such that ‖ F(t, h) ‖≤ A ‖ h ‖ +B for all (t, h) ∈ R×X

then one can choose T = ∞. Since | tanh(κ z)| ≤ κ |z|, the

choice of A = κ and B = b ensures the solution’s existence

on [0,∞).

Uniqueness could be derived from the Lipschitz property

of F(t, h) in h and the general uniqueness theorem (Hale

(1977), Theorem 2.3, p. 42). However, for our system the

uniqueness can be established in a simpler way. Indeed, as-

sume that x(t) and y(t) are solutions of (6)-(7) on [0, T ],

with rhs F(t, h(t− τ)) and the initial condition φ(t). Then,
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for 0 < t ≤ τ ,

x(t) − y(t) =
∫ t

0

[F(s, x(s − τ) −F(s, y(s− τ)
]
ds

=
∫ t

0

(
tanh[κ y(s− τ)] − tanh[κx(s− τ)]

)
ds

=
∫ t−τ

−τ

(
tanh[κ y(u)] − tanh[κx(u)]

)
du ≡ 0. (B1)

Thus, the solutions x and y are identical up to t = τ > 0.

The uniqueness is proven by successively advancing in time

by intervals of length τ .

Continuous dependence on initial conditions and the rhs

of (6) for any finite T follows from the existence and unique-

ness and the general continuous dependence theorem (Hale

(1977), Theorem 2.2, p. 41). To show the continuous de-

pendence on the delay τ , also for finite T , we consider the

sequence τk → τ , k → ∞, and for any τk introduce the time

scale change: sk = t τ/τk. Then,

h(t− τk) = h
(τk
τ

(sk − τ)
)
≡ hk(sk − τ),

and one finds

d

dsk
hk(sk) = −τk

τ
Aκ [hk(sk − τ)] + b cos

(
2 π

sk τk
τ

)
.

Clearly, the rhs of this system converges to F as k → ∞.

This shows that a small change in the delay τ can be consid-

ered as a small change of the rhs of the Eq. (6) with the same

delay. Hence, continuous dependence on the rhs implies con-

tinuous dependence on the delay.

Appendix C

DDE solvers

C1 Our solver of choice: dde solver

The DDE solver dde solver (Shampine and Thompson,

2006) was used to perform the numerical experiments re-

ported in this paper; dde solver is a Fortran 90/95 ex-

tension of its Fortran 77 predecessor dklag6 (Corwin et

al., 1997). Both dde solver and dklag6 implement a

(5,6) pair of continuously embedded, explicit Runge-Kutta-

Sarafyan methods. We refer to (Corwin et al., 1997) for the

coefficients and precise details of the methods used, and to

(Shampine, 1994) for a discussion of continuously embedded

Runge-Kutta methods. Both methods in the pair are based

on piecewise-polynomial approximants, which are used for

error estimation and step size selection, to handle the neces-

sary interpolations for delayed solution values, and to track

derivative discontinuities that are propagated by the system

delays, while the sixth-order method is used to perform the

actual integration.

As discussed in (Shampine and Thompson, 2006),

dde solver was designed to solve systems of DDEs with

state-dependent delays in as “user-friendly” a fashion as

possible, while at the same time retaining and extending

the solution capabilities of dklag6. Our solver was also

designed so that usage approaches the convenience of the

MATLAB (2007) DDE solvers dde23 and ddesd. For

example, storage management is handled automatically by

the solver, thus relieving the user of the necessity to supply

work arrays whose sizes are not known in advance. Several

options are available for supplying necessary information

about the problem and for dealing with its special character-

istics. All options have carefully chosen defaults that can be

changed by the user. These include the ability to supply vec-

tors or functions to define the delays and the initial solution

history, the ability to specify points corresponding to known

derivative or solution discontinuities, tracking delay-induced

derivative discontinuities, the ability to cope with small

delays, the ability to handle state-dependent events (e.g.,

times at which it is desirable to make qualitative changes or

parameter changes in the underlying system of DDEs), and

the ability to solve so-called neutral DDEs, which contain

delayed derivatives. The solver builds and returns a Fortran

90 solution structure that may be used for various tasks, e.g.,

for plotting purposes. An interpolation module uses this

structure, for example, to perform additional interpolations
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requested by the user.

The numerical studies in this paper led us to incorporate

several new options in dde solver. By default, the solver

retains the entire solution history. The numerical simulations

in this paper, though, require very long integration intervals,

leading to prohibitive storage requirements. We added, there-

fore, an option to have the solver trim points from the solu-

tion history queue that precede the largest delay. A related

option was added to allow the user to provide a module to

process solution information before it is discarded, thus re-

taining the ability for user interpolation.

The dde solver with these added options is available

at http://www.radford.edu/∼thompson/ffddes/. In addition to

the solver, a variety of example programs can also be found

there; they may be used as convenient templates for other

problems. This solver is a Fortran 90/95 compliant self-

contained module with no restrictions on its use. In par-

ticular, it is not compiler dependent and has been used suc-

cessfully with most of the available F90/F95 compilers, in-

cluding, for example, g95, Lahey LF90, Lahey-Fujitsu LF95,

Salford FTN95, SUNf95, and Compaq.

C2 Other DDE solvers

Other capable DDE software is available. Some notewor-

thy solvers include archi, ddverk, dde23, and ddesd.

Like dde solver, the first three of these solvers imple-

ment pairs of continuously embedded, explicit Runge-Kutta

methods. Thus, archi (Paul, 1995) is based on a (4,5) pair,

and allows the user to specify either extrapolation or iter-

ative evaluation of implicit formulas. The solver ddverk

(Enright and Hayashi, 1997) is based on a (5,6) pair and it

handles small and vanishing delays iteratively. Defect er-

ror control is used to detect suspected derivative discontinu-

ities, locate them and use special interpolants when stepping

over them. The two solvers dde23 (Shampine and Thomp-

son, 2001) and ddesd (Shampine, 2005) are available in

the MATLAB problem solving environment; dde23 is based

on a (2,3) pair and is applicable to DDEs with constant de-

lays. It is worth noting that the dde23 user interface led

to many of the design decisions used in dde solver. The

solver ddesd incorporates novel methods based on control

of the solution residual and is intended for systems with state-

dependent delays. In addition to these solvers, two other

popular and well-known tools include the DDE-BIFTOOL

package (Engelborghs et al., 2001) and the XPPAUT pack-

age (Ermentrout, 2002). Each of these packages contains a

variety of tools that are useful for analyzing delayed dynam-

ical systems.
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Latif, M., Barnett, T. P., Flügel, M., Graham, N. E., Xu, J.-S., and

Zebiak, S. E.: A review of ENSO prediction studies, Clim. Dyn.,

9, 167–179, 1994.

Madden, R. A. and Julian, P. R.: Description of a 40–50 day oscil-

lation in the zonal wind in the tropical Pacific, J. Atmos. Sci., 28,

702-708, 1971.

Madden, R. A. and Julian, P. R.: Description of global-scale circu-

lation cells in the tropics with a 40–50 day period, J. Atmos. Sci.,

29, 1109-1123, 1972.

Madden, R. A. and Julian, P. R.: Observations of the 40–50-day

tropical oscillation — A review, Mon. Wea. Rev., 122(5), 814-

37, 1994.

MATLAB 7.4: The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA

01760, 2007.

Munnich, M., Cane, M., and Zebiak, S. E.: A study of self-excited

oscillations of the tropical ocean-atmosphere system. Part II:

Nonlinear cases, J. Atmos. Sci., 48 (10), 1238-1248, 1991.

Murphy J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S.,

Webb, M. J., Collins, M.: Quantification of modelling uncertain-

ties in a large ensemble of climate change simulations, Nature,

430(7001), 768-772, 2004.

Neelin, J. D., Latif, M., and Jin, F.-F.: Dynamics of coupled

ocean-atmosphere models: the tropical problem, Ann. Rev. Fluid

Mech., 26, 617-659, 1994.

Neelin, J. D., Battisti, D. S., Hirst, A. C., Jin, F.-F., Wakata, Y.,

Yamagata, T., and Zebiak, S.: ENSO Theory, J. Geophys. Res.,

103(C7), 14261-14290, 1998.

Nussbaum, R. D.: Uniqueness and nonuniqueness for periodic so-
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