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Dynamique (CNRS and IPSL), Ecole Normale Supérieure, F-75231 Paris Cedex 05, FRANCE



Abstract

A statistical learning method called random forests is applied to the prediction of tran-

sitions between weather regimes of wintertime Northern Hemisphere (NH) atmospheric low-

frequency variability. A dataset composed of 55 winters of NH 700-mb geopotential height

anomalies is used in the present study. A mixture model finds that the three Gaussian com-

ponents that were statistically significant in earlier work are robust; they are the Pacific–

North American (PNA) regime, its approximate reverse (the reverse PNA, or RNA), and

the blocked phase of the North Atlantic Oscillation (BNAO). The most significant and

robust transitions in the Markov chain generated by these regimes are PNA → BNAO,

PNA → RNA and BNAO → PNA. The break of a regime and subsequent onset of an-

other one is forecast for these three transitions. Taking the relative costs of false positives

and false negatives into account, the random-forests method shows useful forecasting skill.

The calculations are carried out in the phase space spanned by a few leading empirical or-

thogonal functions of dataset variability. Plots of estimated response functions to a given

predictor confirm the crucial influence of the exit angle on a preferred transition path. This

result points to the dynamic origin of the transitions.

1



1 Introduction and motivation

Numerous studies of atmospheric observations have shown that midlatitude low-frequency

variability (LFV) is characterized by the existence of large-scale, persistent and recurrent

flow patterns, also called weather regimes. Weather regimes can be objectively identified in

model results, as well as in observations, using various classification or clustering methods

(see Table 1 in Ghil and Robertson 2002).

Extended-range weather prediction depends in a crucial way on skill at forecasting the

duration of a persistent anomaly that is under way at initial forecast time, and the subsequent

onset of another persistent anomaly, after the break of the current one (Ghil 1987). Legras

and Ghil (1985) first suggested that weather regimes might be associated with unstable

fixed points of atmospheric dynamics. Kimoto and Ghil (1993b) and Weeks et al. (1997)

developed further this conjecture by outlining the possible role of a heteroclinic orbit in

giving rise to regime transitions. Both hetero- and homoclinic orbits are hard to compute

exactly, because of their existence at isolated parameter values only. Still, they can strongly

influence the behavior of the system at neighboring parameter values (Ghil and Childress

1987).

Hetero- and homoclinic orbits were shown to play an important role in the interannual

and interdecadal LFV of the midlatitude ocean’s wind-driven circulation (Meacham 2000;

Chang et al. 2001; Nadiga and Luce 2001; Simonnet et al. 2003a,b, 2005). Crommelin

(2002, 2003) explored in detail the role of hetero- and homoclinic orbits in a low-order and

an intermediate-order model of the extratropical atmosphere, respectively. These coarse-

grained features of the LFV may be better understood by using reduced models, which have

considerably fewer degrees of freedom. Such models can be derived from either observational

or simulated datasets (Majda et al. 2003; Franzke et al. 2005; Kravtsov et al. 2005), and have

been shown to accurately represent both linear and nonlinear aspects of LFV (Kondrashov
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et al. 2005, 2006), provided the effect of higher-frequency, synoptic transients is suitably

parameterized as stochastic forcing.

D’Andrea and Vautard (2001, 2002) found a good correspondence between their low-

order model’s quasi-stationary states and the regimes of the quasi-geostrophic, three-layer

(QG3) model of Marshall and Molteni (1993). Kondrashov et al. (2006) showed that one of

the QG3 model’s regimes is indeed associated with the unstable fixed point of the reduced

model obtained by the multilevel regression method of Kravtsov et al. (2005).

Despite better observational and theoretical understanding of weather regimes, the fore-

casting of regime breaks and subsequent onsets still presents a challenge for general circula-

tion models (GCMs) and operational systems. Kimoto et al. (1992) examined the temporal

variability of the skill of operational medium-range forecasts in three operational models:

the Japan Meteorological Agency’s (JMA) global spectral model, and those of the European

Centre for Medium-Range Weather Forecasts (ECMWF) and the National Meteorological

Center (NMC). During the period under study, the forecast skill of the three models ex-

hibited considerable low-frequency variability and showed a pronounced temporal minimum

during transitions from zonal to blocked flow over the North Pacific. D’Andrea et al. (1998)

have reviewed the performance of 15 GCMs and found them to generally underestimate the

number and duration of atmospheric blocking episodes, in agreement with previous work.

More recently, Pelly and Hoskins (2003) emphasized the importance of transitions from

and to a blocked state in operational forecasts over Europe, and found that such forecasts

in the ECMWF Ensemble Prediction System still have limited skill beyond a lead time of

6 days. Palmer et al. (2007) highlighted the substantial and continuing under-prediction

of blocking episodes in leading operational models (their Fig. 3) and emphasized that the

number and severity of such episodes play a key role in climate change and its socioeconomic

effects.
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Vannitsem (2001) suggested a hybrid clustering method that combines hierarchical clus-

tering of phase-space position with predictability considerations using Lyapunov exponents;

see Legras and Ghil (1985) and Ghil and Childress (1987, Sect. 6.4) for the distinction be-

tween regime predictability and pointwise predictability, and Table 1 in Ghil and Robertson

(2002) for clustering methods based on either position or velocity in phase space. Vannit-

sem’s hybrid method produces well-separated clusters with distinct instability properties in

the QG3 model, and medium-range predictability of the clusters beyond that obtained by

hierarchical clustering alone (Trevisan 1995).

The present work builds on results of Deloncle et al. (2007), who showed considerable

skill in forecasting regime breaks and subsequent onsets from the output of the QG3 model,

by using a statistical learning method called random forests (Breiman 2001). If at least part

of this skill carried over to actual atmospheric regimes, the method could help improve the

toolbox of the medium-range forecaster.

Kondrashov et al. (2004) analyzed in detail a long-time integration of this model, and

showed that several regime transitions were characterized by preferential directions, which

fall within narrow solid angles in a low-dimensional phase space. These preferred paths

are tangent to the vectors pointing from a regime centroid to the exit points, and can

be identified as maxima in the joint probability density function (PDF) of two angles on

the unit sphere around the centroid. By applying the same analysis to the Lorenz (1963)

model, Kondrashov et al. (2004) concluded that the observed narrow maxima in the PDF

of the regime exit angles in the QG3 model are likely to be determined by the dynamical

properties of the underlying nonlinear system of equations (Guckenheimer and Holmes 1983;

Ghil and Childress 1987, Sect. 5.4). These properties include the linearly stable and unstable

directions associated with the steady states.

Selten and Branstator (2004) used a different approach to find preferred transition direc-
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tions by analyzing the QG3 model’s mean tendencies in a low-dimensional subspace. These

authors related their three weather regimes to the slow phases of their 20-day QG3 oscilla-

tory mode, and also showed that preferred transition paths between regimes do exist. Ghil

and Robertson (2002) had already highlighted the connection between regimes and intrasea-

sonal oscillations and its potential importance for medium-range forecasting. The results of

Selten and Branstator (2004) differ in this respect somewhat from those of Kondrashov et al.

(2004), where two of the four weather regimes were found to correspond to the slow phases of

their 37-day oscillatory mode; the latter authors also found a 19-day oscillation with a very

similar spatial pattern, although these two oscillations were not phase-locked. Kondrashov

et al.’s (2006) reduced-model analysis showed that the 37-day oscillation is associated with

the least-damped eigenmodes of this model, linearized either about its climatological state

or about its unique steady state, while the 20-day mode is strongly damped.

Following Kimoto and Ghil (1993b), Crommelin (2004) used an angular PDF to determine

flow regimes in the reanalysis dataset of the National Centers of Enviromental Prediction

(NCEP) and National Center for Atmospheric Research (NCAR) for the NH circulation

(1948–2000). This methodology is based on angular distance in a reduced phase space as a

measure of similarity between flow patterns, as opposed to the Euclidian distance used by

Kimoto and Ghil (1993a), Kondrashov et al. (2004), and in this study. Crommelin (2004)

exploited asymmetries in the transition probability matrix of the Markov chain associated

with a partition of the reduced phase space to detect a preferred, closed path on the unit

sphere in this space. This preferential cycle of transitions alternates between states with

zonal symmetry and meridionally oriented anomalies, in agreement with the oscillatory mode

found by Kondrashov et al. (2004) in the QG3 model.

In another study of preferred regimes in actual atmospheric data, Monahan et al. (2001)

applied a nonlinear generalization of principal component analysis to the NCEP-NCAR
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Reanalysis dataset. They obtained three regimes, labeled A, G and R, which resemble well

those of Cheng and Wallace (1993) and of Smyth et al. (1999). The preferred transition route

between these regimes follows a curved path in their reduced phase space, which involves

certain similarities with Crommelin’s (2004) most significant cycle.

Despite the differences in methodology and datasets, Monahan et al. (2001), Vannitsem

(2001), Crommelin (2004), Kondrashov et al. (2004), and Selten and Branstator (2004)

all provide evidence on preferred transition routes in the atmospheric LFV’s phase space.

This evidence reinforces the conjecture that weather regimes represent a coarse-grained and

predictable component of the atmosphere (Mo and Ghil 1988; Ghil et al. 1991). Deloncle et

al. (2007) showed that good predictability of regime transitions in the QG3 model can be

obtained by utilizing Kondrashov et al.’s (2004) information on preferred transition paths

within the framework of novel statistical learning methods.

We apply the methodology of Deloncle et al. (2007) to obtain the preferred transition

paths between weather regimes in the wintertime geopotential heights from the 1948–2003

NCEP-NCAR reanalysis (Kalnay et al. 1996). The random-forests method is then applied

to study the extended-range predictability of regime transitions (Ghil and Robertson 2002;

Deloncle et al. 2007).

The purpose of the paper is twofold: (i) to test on actual atmospheric data the usefulness

of extended forecasts conditioned on a subset of initial states; and (ii) the role of preferential

directions of regime exit in such extended forecasts. The paper is organized as follows.

In Sect. 2, we describe the data and identify robust weather regimes by Gaussian mixture

modeling (Smyth et al. 1999; Kondrashov et al. 2004), as well as highly significant transitions

in the Markov chain of these regimes. The preferred transition paths (Sect. 3.1) allow us

to define an efficient set of predictor variables for the study of long-term predictability with

statistical learning techniques (Sect. 3.2). The results for regime transition forecasts are
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described in Sect. 4, and followed by a summary and discussion in Sect. 5.

2 Weather regimes and transitions

2.1 Data

The dataset for this analysis consists of NH wintertime geopotential heights. The data are

based on the NCEP-NCAR reanalysis (Kalnay et al. 1996) for the years 1948–2003 and

cover the NH in space and 55 winters that are 90-day long, from 1 December 1948 till 28

February 2003; including 13 leap years yields a sample of 4963 maps, defined on a 5◦ × 5◦

grid. To examine robust features of the observations phase-space structure we reduce the

dataset’s dimensionality: empirical orthogonal function (EOF) analysis is applied to the

unfiltered 700-hPa level height anomalies, with data points being weighted by the square

root of the cosine of their latitude. The choice of the 700-hPa level, as opposed to 500 hPa

in Monahan et al. (2001) and Crommelin (2004), is motivated in part by our concern for

actual prediction: as shown by Namias (1953, 1968), this level represents a good compromise

between intrinsic variability of the free atmosphere (best captured by the 500-hPa level) and

surface influences (best reflected by the 1000-hPa level).

The ten leading EOFs capture 60% of the variance of the dataset: the first mode captures

9.9%, the second one 8.4%, the third one 7.5%, and the tenth one 3.1%; the cumulative

variance described by the four leading EOFs equals 32%. The spatial patterns associated

with the first and second EOFs (not shown here) are very similar to to those found in Kimoto

and Ghil (1993a); see Fig. 6 there. Analysis of the geopotential height field at the 250-hPa

and 500-hPa levels (not shown) reveals spatial EOF patterns that resemble well the ones

at the 700-hPa level, but with a finer structure present at the lower pressure levels. This
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similarity indicates a predominantly barotropic structure of the LFV in the reanalysis. The

fact that this structure dominates even the leading EOFs of the unfiltered data is due, as

shown by Kimoto and Ghil (1993a), to the LFV’s far exceeding the synoptic-scale variability.

2.2 Weather regimes

Weather regimes have been associated with regions of higher PDF on the system’s attractor.

In order to objectively identify weather regimes in our data, we apply the Gaussian mixture

model of Smyth et al. (1999) and Kondrashov et al. (2004). The Gaussian mixture model

uses a linear combination of k Gaussian density functions to approximate the system’s PDF.

For a given number d of leading EOFs, it provides a number of clusters k and the cluster

centroids in a d-dimensional subspace of the model’s phase space. We associate each cluster

with a weather regime of our dataset.

The mixture model has a built-in criterion for determining the optimal number of clusters

supported by the data. This criterion is based on the cross-validated log-likelihood: the

higher its algebraic value for a given dimension d, the more likely it is that k is the correct

number of clusters for that d. Our results (not shown) indicate there is a clear maximum at

k = 3 for various numbers d of leading EOFs; this result is the same as that of Smyth et

al. (1999) for the 44 winters from 1 December 1949 to 31 March 1993. Therefore we choose

k = 3 as the optimal number of clusters for our dataset.

The PDF based on the mixture model for d = 3 and k = 3 is shown in Fig. 1a, in the

phase plane
Figure 1

spanned by principal components (PCs) 1 and 2, while the anomaly maps of

the clusters are shown in Figs. 1b–d. The left column of Fig. 1 shows results for the full

dataset (1948–2003). We conducted, furthermore, the same analysis for the two half-data

sets, years 1948–1975 and 1976–2003, to examine the robustness of the cluster analysis. The
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results for the latter data set are presented in the right column of Fig.1; the three cluster

centroids and their covariance structures are very similar between the left and right columns.

All PCs are normalized by the standard deviation of PC-1. This normalization is chosen

merely so that the system’s trajectory in reduced phase space scale properly, since the

variance captured by each EOF is different (see previous subsection). None of our results

are sensitive to this choice of normalization factor.

The size of the clusters is determined by choosing the length of the semi-axes of the

covariance ellipsoid around each cluster centroid; in Fig. 1a this length corresponds to 1.5

of the standard deviation in each direction. A data point is assigned to the weather regime

if it lies within the corresponding ellipsoid. However, each data point can have a degree of

membership in several clusters, depending on its position with respect to the centroid and

the weight of the cluster (Smyth et al. 1999). If a data point belongs to several ellipsoids,

we assign it to a single cluster, according to the maximum probability value given by the

mixture model.

The anomaly maps of the clusters are shown in Figs. 1b–d; they are very similar to those

obtained by Cheng and Wallace (1993), Smyth et al. (1999), and Monahan et al. (2001). We

denoted these three regimes, therefore, by (b) PNA , (c) BNAO and (d) RNA, following the

labels given by Smyth et al. (1999). These spatial patterns have several prominent and easily

identifiable features. Thus the BNAO map – blocked phase of the North Atlantic Oscillation

(NAO) – exhibits a strong high over southern Greenland, while the PNA or Pacific–North-

American pattern is characterized by an intensification of the Pacific jet stream and an

enhancement of the climatological mean ridge over the Rockies; the latter lead to below-

average heights in the Central North Pacific, and above-average heights over the Northwest

of the United States and western Canada. The RNA, or (approximately) reversed PNA

map, possesses a distinctive ridge over the Gulf of Alaska. In the North Atlantic region, both
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the PNA and the RNA pattern contain features of a zonal NAO (ZNAO) cluster, found

usually in analyses of the Atlantic sector alone, but not in hemispheric regimes.

2.3 Significant transitions

Given the clustering results of Sect. 2.2, we can determine the Markov chain of transitions

between the three regimes. We define a regime episode as the subset of consecutive sample

points (days) along the model trajectory that fall within a given cluster (Mo and Ghil 1988;

Kimoto and Ghil 1993b; Kondrashov et al. 2004). Table 1 shows the number of distinct

episodes in
Table 1

each regime and the total number of days spent in the regime for scaling factors

of 1.5 and 1.75. A total number of 3490 days (70%) out of the entire 4963 days belong to

one of the large-size clusters (1.75σ), while for the smaller clusters (1.5σ) the total regime

population is of about 2800 days (57%).

We define regime transition simply as the passage from one regime episode to another.

The number of unclassified days that is allowed between the regime episodes varies according

to cluster size, but is not constrained by our methodology. For the smaller-size clusters

the mean transition times are shown in Table 1b, and there are 96 PNA → BNAO, 107

PNA→ RNA, and 112 BNAO → PNA transitions, respectively.

Table 2 shows transition probabilities between the clusters using the sequence of regime

episodes
Table 2

along the trajectory, counting also self-transitions. Monte-Carlo simulation was

applied to provide a statistical significance test for the elements of the transition matrix,

following Vautard et al. (1990). The test is designed to take into account the difference

in size between regimes and uses random shuffling of the sequence of regime episodes in

the model simulation, subject to the constraint of the number of episodes in each regime

being fixed and equal to the one in Table 1. The transition probabilities between regimes
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that are higher or lower than the Monte Carlo result at the 95% level appear in Table 2 in

bold or italics, respectively. Note that each row in the table sums to unity, for both cluster

sizes being reported (whether 1.5σ or 1.75σ). The transitions that are highly significant for

both cluster sizes are shown as a double arrow in Fig. 2a, while
Figure 2

the transition that is only

significant for the larger cluster is shown as a single arrow.

The transition probabilities and their significance are fairly similar for the small and large

clusters. We find that three transitions are significantly higher against random shuffling for

both cluster sizes: PNA→ BNAO, PNA→ RNA, and BNAO → PNA. It is interesting

to note that both transitions from PNA are significant, and that there are no significant

transitions between BNAO and RNA. Transition RNA→ PNA is significant only for the

larger clusters, which could be due to the smaller dataset for 1.5σ.

Monahan et al. (2001) obtained similar results: their nonlinear principal component

analysis yielded three preferred regimes A, R and G, which closely resemble those of Smyth

et al. (1999) and correspond toRNA, PNA andBNAO in this study, respectively. Monahan

et al. (2001) also found that direct transitions between regimes A and G are rare, and that

transitions between these regimes occur via a regime that resembles the PNA.

Crommelin (2004) applied yet another methodology to examine preferred paths of regime

transitions in NH winter geopotential height data. He projected the system’s trajectory

onto the unit sphere in the reduced phase space spanned by the three leading EOFs, and

utilized angular distance, which is equivalent to pattern correlation, to classify regimes as

regions of angular PDF maxima on this sphere. Among five flow regimes examined by

Crommelin (2004), reasonable agreement exists between his regime A and our PNA, his

E and our BNAO, and (in the Pacific sector) a combination of his C and D and our

RNA. Using various regular partitions on the unit sphere, Crommelin (2004) calculated

then the associated Markov chain transition matrix, following the work of Pasmanter and
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Timmermann (2003). The antisymmetric part of this matrix is associated with preferred

transition cycles, as opposed to the symmetric part of this matrix, presumably corresponding

to diffusive flow in the reduced phase space. The best agreement between the Crommelins

results and ours is found for a particular partition of the unit sphere into four cells (see

Fig. 6d in his paper), for which the cycle 4 → 2 → 1 → 3 is highly significant and can be

associated with the path BNAO → PNA → RNA of this study, while lower significance

was obtained for the path between his cells 3 and 4 (RNA→ BNAO).

2.4 Preferred transition paths

Kondrashov et al. (2004) refined the Markov chain representation of regime transitions for

the QG3 model by finding that most of the highly significant regime breaks (see again Table 2)

occur within one or two narrow solid angles in phase space — the preferred exit paths. These

solid angles are formed by the regime exit vectors in a three-dimensional (3-D) subspace of the

model’s phase space. The exit vector is defined to point from the cluster centroid to the exit

point, which is the mid-point between two consecutive trajectory points that lie on the op-

posite sides of the cluster boundary. In the 3-D subspace spanned by EOFs 1–3, with coordi-

nates (x,y,z), each exit vector is uniquely defined by two angles: tan φ = y/x, 0 < φ < 2π, and

tan θ = z/
√

(x2 + y2), –π/2 < θ < π/2.

Following Kondrashov et al. (2004), we compute two-dimensional (2-D) PDF distribu-

tions of the exit angles in the (φ, θ) coordinates for all of the regime episodes using a Gaussian

kernel estimator (Silverman 1986). This estimator approximates a PDF by assigning a lo-

calized kernel density function of a given shape (Gaussian in our case) to each data point.

The PDF estimate at any point in phase space is then given by the sum of these kernel

density functions. We use the data-adaptive version of the kernel estimator (Kimoto and
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Ghil 1993a) and modify it to account for the periodic nature of the PDF in the φ direction.

Figures 2b–d show the exit-angle PDFs of the three significant transitions (thick arrows in

Fig. 2a) for the smaller-size clusters (1.5σ, left column) and the larger-size clusters (1.75σ,

right column), obtained with an adaptively estimated kernel window width ≈ π/6 for all

cases. Black asterisks indicate PDF maxima and correspond to the preferred exit direction,

while black diamonds correspond to the straight line that connects the two cluster centroids

in question. The preferred exit directions and shape of exit-angle PDFs are similar for the

smaller (1.5σ) and larger (1.75σ) clusters. Thus, these features of the preferred transition

paths appear to be statistically robust.

Note that the preferred directions of transition lean away from the line connecting origin

and destination clusters, which is in general agreement with Kondrashov et al.’s (2004)

results for the QG3 model. By applying the same analysis to the Lorenz (1963) model,

Kondrashov et al. (2004) showed that such feature of exit-angle PDF can be explained by

the geometry of the model’s attractor and is related to its unstable and stable manifolds.

Inspection of Fig. 2 shows that the PDF for the PNA → BNAO transition has one

sharp maximum; in contrast BNAO → PNA is more bimodal in nature and less compact,

while PNA → RNA is quite diffuse and the noisiest one among the three highly signifi-

cant transitions. These differences in the angular PDFs for pairwise transitions will have

important consequences for long-range prediction, as we will see in Sect. 4.

3 Forecasting methodology
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3.1 Predictants and predictors

For the purpose of studying transitions between weather regimes it is useful to consider

any data point in terms of individual “events.” For a particular transition between origin

and destination regimes, the “event” is defined as the system’s trajectory exiting the origin

cluster on the next day, and entering the destination cluster sometime in the future, without

entering any other regime. Any other data point will be a ”non-event,” which includes

points not leaving the origin cluster next day, or reaching another regime than its specified

destination. Thus, forecasting a transition means to classify all points in the origin cluster

between ”events” and ”non-events.” Our predictant is thus the assignment of a particular

data point to one of two possible classes, using a set of predictors.

Following Deloncle et al. (2007), we base our predictors on the position and the velocity

of a trajectory at a given data point. In order to exploit the preferential paths of regime

transitions, as defined by Kondrashov et al. (2004) and in Sect. 2.4 here, we use the

spherical coordinates (r, ψ, ϕ) centered on the origin regime’s centroid and with the polar

axis aligned with the preferred transition path, as defined by the PDF maxima for regime

exit angles; see Fig. 2 here and in Deloncle et al. (2007). In these modified coordinates, a

value of ψ = π/2 means the state vector is perfectly aligned with the preferred exit vector

(marked by asterisks in Fig. 2), while a value of ψ = −π/2 indicates that it is in the

opposite direction. The coordinate r is the distance to the center of the regime centroid.

The cartesian velocity components (dx/dt, dy/dt, dz/dt) given by the model are expressed

in the spherical coordinate system by (vr, vψ, vϕ). In summary, our predictors are the six

scalars associated, in the modified spherical coordinates, with the daily data points and their

velocities (r, ψ, ϕ, vr, vψ, vϕ).
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3.2 Random forests

Random forests is an extension of classification and regression trees (CART); it is described in

greater detail in Breiman (2001). Deloncle et al. (2007) applied random forests to forecasting

weather regime transitions in a simulated dataset of Kondrashov et al. (2004), obtained by

running the QG3 model (Marshall and Molteni 1993; D’Andrea and Vautard 2001). We

build on this work by considering weather regimes and transitions obtained from our NH

observational dataset, described in Sect. 2.1–2.3. The goal is to assign a given data point

to a class based on information contained in a set of predictors. In our case, there are only

two classes of binary response variable: either there is a designated regime transition next

day or not, classified as an event or a non-event.

A random forest is an ensemble of CARTs. Each tree is based on a recursive partitioning

of the data set. The partitioning of the data at each step is determined by minimizing a loss

function that captures the amount of heterogeneity remaining after a partition is constructed;

the sum of errors squared at that step is a special case of such a loss function.

With a categorical outcome, there are two popular loss functions. Both take as their

arguments the proportions of categorical variable, computed for each node as the tree is

grown. Because each partition of the data is chosen so that the loss function is minimized,

the overall tree is a product of a node-by-node, stagewise minimization.

One loss function is the “entropy”:

φ(p) = −p log(p)− (1− p) log(1− p), (1)

where p is the proportion of the categorical response in a given tree node. For example, if

there are 20 events and 30 non-events in a node, p for events is 0.40. The other option is the

Gini index:
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φ(p) = p (1− p). (2)

Both functions are concave, having minima at p = 0 and p = 1 and a maximum at

p = 0.5. Entropy and the Gini index generally give very similar results when there are only

two response categories. The Gini index is preferred in this case and we use it here.

Random forests is based on an ensemble of trees, and thus involves many passes through

a given dataset. The method is motived in part by the well-known tendency of CARTs to

overfit the data and it uses a bootstrap procedure to avoid this overfitting. Imagine there is

a data set of 1000 observations. Before a classification tree is grown, random forests takes a

random sample of 1000 with replacement from the data set. Included in the sample of 1000

will likely be some duplicates and even triplicates. On average, about a third of the original

1000 observations will by chance not be included in this sample. The classification tree is

built with this sample, and the observations not included serve as a test sample for this tree.

To enhance the quality of the test samples, random forests alters the CART algorithm

in one additional manner. When each partition of the data is determined, only a random

sample (without replacement) of predictors is used. For example, if there are 50 predictors,

any given partition might be determined by the best performing predictor in a random

sample of 5. By growing trees that rely on random samples of predictors, independence

across the trees is increased.

The sampling process is repeated for each classification tree in the random forest. Each

time, a new random sample with replacement from the original data is drawn and serves as

the training data. Each time, the data not chosen serves as the test data. The classifications

of observations in the test data are used to arrive at fitted values. Each time an observation

is a member of a test sample, the assigned class is recorded. Then, for each observation, a

“vote” is taken over these results, and the class with the most votes is the class assigned,
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and become the fitted value for that observation.

This procedure represents a forecasting scheme, since classification votes are based only

on the test data, and thus the final classification error does represent the actual forecasting

error. The most credible measures of model performance (discussed in Sect. 4.2), such as

forecasting errors in the contingency table and importance of predictors, are assessed from

held-out test data as well.

Overfitting can be damaging in two ways. First, it can lead to overly optimistic measures

of how the model fits the data. In addition, the statistical model itself may not generalize

well to other datasets. Averaging across test sample results through the voting procedure

mitigates overfitting. The averaging is made more effective because of the random sampling

of predictors from tree to tree. Such averaging can effectively cancel out the idiosyncractic

features of particular trees. Indeed, if the number of trees were to increase without limit,

Breiman et al. (1984) have proved that the estimate of the classification error is statistically

consistent in a rigorous mathematical sense: thus, random forests does not overfit.

Random forests provides several ways in which the relative costs of false negatives and

false positives can be introduced. Perhaps the simplest way is to require more or less than

a majority vote when averaging for the purposes of classification. For example, if false

negatives are less costly than false positives, one might require a “veto-resistant majority”

of two-thirds before a case is classified as a positive. We adopt an alternative method by

oversampling the true positives when the training sample is drawn: the fitting process will

then respond more to these observations. This is a better approach then altering the vote

threshold because each tree can then adjust to the differential costs directly, rather than

trying to adjust the results at the end.

The implications of using differential costs in random forests for forecasting regime transi-

tions are discussed in the next section. In the meteorological literature, Roulston and Smith
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(2004) have recently studied the issues of cost–loss ratio, tolerance to false alarms, and the

relative value of a probabilistic weather forecast. In short, classifying points by a simple-

majority vote assumes that the costs of false positives and false negatives are the same; in

practice, this may not be the best choice. The approach used in this paper systematically

gives more weight to observations in which a transition does occur, so that if these events

are improperly classified as non-events the costs are larger.

In summary, random forests have several features that make the algorithm attractive

for our purposes. First, for the kinds of highly nonlinear and noisy relationships analyzed

in this paper, there are no classifiers to date that consistently classify and forecast more

accurately (Breiman, 2001). Second, since random forests does not overfit, measures of

forecasting performance and features of the model itself will generalize well to new random

samples from the same population. Third, as we shall see in the next section, random forests

provides instructive plots of the relationships between inputs and outputs, i.e. predictors

and responses.

4 Forecasting results

4.1 Transition forecast skill

The random-forests method is now applied to forecast the three significant transitions iden-

tified in Sect. 2.3: PNA → BNAO, PNA → RNA, and BNAO → PNA (see again Fig.

2). For any given transition and point belonging to the origin cluster, we forecast the regime

transition to the specified destination cluster, by classifying it on each given day as an event

or a non-event. As discussed in Sect. 3.2, random forests classifies each point based on the

held-out data, and so its results are cross-validated. To evaluate such forecasts it is useful to
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consider a contingency table, which provides information about user and model classification

errors made in the process.
Table 3

The rows of Table 3 condition on observed outcomes, and the columns condition on

forecasted outcomes. The cells a and d on the diagonal correspond to the true forecasts;

see also Table 1 in Deloncle et al. (2007). The off-diagonal cells correspond to one of two

kinds of forecasting errors: the false positives and the false negatives. Forecasts falling in

cell b, above the diagonal, are false positives: a transition is predicted but does not occur.

Forecasts falling in cell c are false negatives: a transition is not predicted but it does occur.

For each row, the proportions of errors shown in the far right column capture mistakes made

by the model: given the actual outcome, what did the model forecast? For each column, the

proportions of errors shown in the bottom row capture errors made when the model is put

to use: given a forecast, what was the actual outcome?

The contingency Tables 4a–c correspond to forecasting results for PNA → BNAO,

PNA→ RNA and BNAO → PNA transitions, respectively.
Table 4

In each cell, the first number

results when the cost ratio of false negatives to false positives is 1 to 1. This is the default

ratio; it means that falsely forecasting a transition has the same cost as failing to forecast

when a transition does occur.

The default ratio of 1:1 is arbitrary and may not be the most appropriate one should

results such as the present ones be used in actual decision making. Cost ratios should be

determined by the individuals or organizations intending to use the results, and random

forests can use any prescribed ratio.

Arguably, false negatives in forecasting rare weather events are more costly than false

positives. A good example of this cost was the very strong December 2003 storm over

Western Europe: failure to correctly forecast transition between zonal and blocked flow over

Northern Europe resulted in very large economic losses.
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The second number in each cell of Table 4 corresponds to the cost ratio of 1:8. It implies

that falsely forecasting a transition has one-eighth the cost of failing to forecast when a

transition occurs, i.e. “missing” a transition is 8 times more costly then a “false alarm.” The

cost ratio is introduced into the algorithm by an appropriate oversampling of the observed

transitions when drawing the random sample to construct each tree (see Sect. 3.2). This

ratio is imposed only as a target and, given the random sampling, the actual ratio of false

negatives to false positives will only approximate the cost ratio specified.

We turn first to the PNA → BNAO case, which will illustrate patterns across Tables

4a–c. Transitions between the two regimes are fairly rare: they occur approximately 10% of

the time. Hence forecasting such transitions is likely to be difficult. Indeed, when the cost

ratio is 1:1, the model produces false positives (transitions that did not occur) only about

1% of the time, but false negatives (missed transitions) about 55% of the time. The result

for user error, though, is larger for forecasts of no-transitions but smaller for forecasts of a

transition occurring, 5% and 19%, respectively. Even more unbalanced results can be seen

for the other two transitions (Tables 4b and 4c).

An overall measure of forecasting skill is given by H, the Heidke Skill Score (HSS) (Von

Storch and Zwiers 1999):

H =
S − Sr
N − Sr

; (3)

S is the number of correct forecasts, Sr the number of correct forecasts that would follow

from just using the mode of the marginal distribution of the response, and N the number

of observations. The score H can be used to compare improvement of forecasting skill with

the available predictors over the skill expected by pure chance. A flawless model with given

predictors would achieve a score of 1, whereas a value of 0 means the model predictors have

no forecasting skill whatsoever.
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An estimate of H can be given in terms of the numbers a, b, c, d introduced in Table 3:

H =
2(ad− bc)

(a+ b)(b+ d) + (a+ c)(c+ d)
. (4)

For our regime transition forecast in Table 4a, we find H = 0.54. Thus, random forests

using a 1:1 cost ratio does 54% better when it takes the information contained in the six

predictors into account than forecasts derived only from the marginal distribution of the

PNA→ BNAO transition.

The second number in each cell of Table 4 is obtained when using the target 1:8 cost

ratio. The ratio of misses to false alarms is actually quite close to the intended value: 11:88

for PNA→ BNAO, 18:136 for PNA→ RNA, and 17:136 for BNAO → PNA. Using this

ratio, random forests forecasts transitions far more successfully: the forecasts are correct

89% of the time for the PNA→ BNAO transition, 83% of the time for the PNA→ RNA

transition, and 85% of the time for the BNAO → PNA transition.

The necessary tradeoff is that random forests now forecasts the absence of a transition

somewhat less well than for the 1:1 cost ratio: forecasting skill for no transition has declined

to 92%, 88% and 80% for Tables 4a, 4b, and 4c, respectively, which is still quite high. One

thus obtains precisely the tradeoff desired when the cost of false negatives is several times

the cost of false positives.

4.2 Relative importance of predictors

To learn which predictors contribute most to forecasting skill, we use the importance plots

in Fig. 3. For each plot the horizontal axis represents the decrease in the proportion of

transitions correctly forecasted when the variable on the vertical axis is prevented from
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participating in the forecasting process. More specifically, the classification errors are still

based on majority vote over the trees in held-out data, but now with the values of each

predictor being shuffled in a random order in those data. The overall increase in forecasting

errors (more specifically model error in Tables 3 and 4) when each predictor is shuffled shows

how much forecasting skill is lost. If a particular predictor is not helpful at all, there is no

loss in forecasting skill and vice-versa.

The results are shown in Fig. 3
Figure 3

for the forecasts that used the target cost ratio of 1:8

(see above); similar results were obtained with the default cost ratio of 1:1 (not shown).

For all transitions two or three predictors are much more important than the rest, and the

radial velocity vr is the most important one of all. Deloncle et al. (2007) showed, for a QG3

model simulation, that the importance of vr is due to transition points moving out of the

cluster with a radial velocity larger that the radial velocity of the other points. The angular

predictor ψ is the second most important one for PNA → BNAO and the third one for

PNA→ RNA; we recall that ψ measures alignment with the preferred exit angle. The PDF

peak of regime exit angles for the PNA→ BNAO transition is much narrower than for the

other two; see again Fig. 2. This may explain why ψ is somewhat less important for the

PNA → RNA and BNAO → PNA transitions, with ϕ being the second most important

predictor for BNAO → PNA. These two transitions are more complex, which leads to more

predictors being of some importance than for the PNA→ BNAO transition. We will return

to the question of difference in predictor importance when discussing the partial-dependence

plots below.

Partial-dependence plots (Hastie et al. 2001) show the relationship between a given

predictor and the response averaged over the joint values of the other predictors. In effect,

the role of the other predictors is integrated out over the tree structure. Let us say predictor

variable w has N distinct values. We construct N new datasets, each of which has the
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same values for all predictors except w, while the value of w is fixed and characterizes the

set under consideration. Then we forecast our response variable with random forests for

each of these N datasets, and determine proportions of trees that respectively forecast event

and non-event. It is common to plot the results of this calculation against the N values of

w, in log-odds units or “logits.” The log-odds equal the logarithm of the ratio between a

probability p and its complement q = 1− p, in the present case between that of a transition

having occurred for each dataset and its complement.

The partial dependence plots for the two leading predictors in each transition are plotted

in Fig. 4. On the vertical axis is the likelihood of the transition in question, in logits, while

on the horizontal axis are values of the predictor.
Figure 4

The dependency curves are rather smooth,

with a clear maximum at which a transition is most likely to occur. There is a consistently

rapid increase in the chances of a transition as the predictor vr crosses the origin, that is

as the point starts moving outwards from the regime. Such behavior of vr is in agreement

with results of Deloncle et al. (2007) for the QG3 model and with its importance (see Fig.

3). Likewise, there are rapid increases in the chances of a transition when vψ (shown for

PNA→ RNA in Fig. 4d) crosses its zero, indicating that the point starts moving towards

the preferred exit direction.

The response function for ψ (shown for PNA → BNAO in Fig. 4b, but common for

other transitions as well) changes far less dramatically, but reaches its maximum value at

π/2 for the preferred exit direction, as expected. Among all the transitions, PNA→ BNAO

has the narrowest range of important values of ψ. This is consistent with having a narrower

PDF peak of regime exit angles than for PNA→ RNA and BNAO → PNA, and with the

latter two having a lower detection rate of transitions, as shown in Table 3.

Taken together, these results indicate the velocity vector along the trajectory has to be

directed outwards for transition to occur, and to lie close to the preferred transition path,
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located by the maximum in the PDF of regime exit angles. These results are consistent with

the conclusions of Kondrashov et al. (2004, 2006) and Deloncle et al. (2007); they confirm the

inhomogeneity of the transitions in phase space and the crucial role of a preferred direction

as a useful predictor.

The broad peak of ϕ near π for the BNAO → PNA transition (Fig. 4f) and the high

importance of this predictor (Fig. 3c), indicate how the exit-angle PDF’s shape can influence

the prediction process. This feature is probably due to the complex pattern of the exit-angle

PDF, with its pronounced bimodality and the extensive ridge of the main peak seen in Fig.

2d. How the unique features of exit-angle PDF affect the importance of ϕ and ψ as predictors

is revealed further by examining the scatter plot of transition angles, shown in Figure 5.
Figure 5

The

PNA→ BNAO transition has a very uniform distribution in ϕ, but is extremely one-sided

with respect to ψ, in agreement with having peak at π/2 in Fig. 4a. The PNA → RNA

transition is less compact in ψ, which leads to a lower importance of this predictor, as seen in

Fig. 3b. The transition BNAO → PNA stands on its own: its angle distribution is broader

in ψ, but quite compact in ϕ, with an apparent peak around ϕ = π, in agreement with Figs.

3c and 4f.

4.3 Regime-based medium-range forecasts

We now use the random forests to construct medium-range weather forecasts based on

anomalies in the subspace spanned by the three leading EOFs. For a transition from Regime

A to Regime B, we will consider only Regime A episodes after which such a transition does

take place and we initiate forecasts on all days of any such episode. The current study fo-

cuses on forecasting single-regime outcomes and not multiple transitions. When using such

a subsample of initial states, our statistical forecasts will still be penalized for both misses
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and false alarms, but rewarded for pinpointing correctly transition days. Including the rest

of the regime episodes in the forecast would penalize the method for false alarms only. Still,

Deloncle et al. (2007) did carry out multiple-transition predictions for the QG3 model with

promising results, and we intend to evaluate such predictions for observational data in future

studies.

Given all regime episodes (i.e. passages through Regime A) for which an actual transition

to Regime B did occur, we count all the days during such an episode as part of our sample

for the transition A → B. There are thus a total of 405 days for 96 transitions PNA →

BNAO, 461 days for 107 transitions PNA→ RNA, and 383 days for 112 BNAO → PNA

transitions, respectively (see Sect. 2.3). The total number of forecasted transitions that are

included in this study sample are 43 (114) for PNA→ BNAO, 28(121) for PNA→ RNA,

and 33 (133) for BNAO → PNA transition, where the numbers correspond to the 1:1(1:8),

cost ratio respectively; compare these numbers with those in Table 4, for the number of

transitions forecasted for all regime episodes.

Recall from Secs. 3.2 and 4.1 that random forests provide us a cross-validated forecast

on whether the transition will take place on any given day within Regime A episodes or not.

In addition, we will use statistical information on the mean residence time τA in the origin

Regime A and τB in the destination Regime B, as well as mean transition time τAB between

these regimes (see Table 1). These time scales, along with the transition forecasts, provide

us information on where we expect the trajectory of the system to be at any given lead time,

as sketched in Fig. 6.
Figure 6

At initial forecast time t = t0, assume we have been in Regime A for a time τ 0
A. The

standard Markov chain forecast (Ghil 1987; Mo and Ghil 1987; Fraedrich 1988; Kimoto

and Ghil 1993b) shown in Fig. 6a, assumes the trajectory will persist in Regime A for a

time τA − τ 0
A, where τ 0

A is the time already spent in Regime A at epoch t = t0, and will
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then transition to Regime B with probability pAB or to Regime C with probability pAC .

The expected trajectory is shown (double solid line) as a weighted average with these two

weights, pAB and pAC , between the mean anomalies X
′
AB for time τAB (dash-dotted line)

and of X
′
B for time τB, on the one hand, and of X

′
AC for time τAC (dashed line) and X

′
C

for time τC , on the other; both the trajectory passing through Regime B and that passing

through Regime C revert to climatology after time τAB + τB or τAC + τC , respectively. The

“mean” transition patterns X
′
AB and X

′
AC between regimes, like τAB and τAC , are calculated

from the observed history of transitions. The light solid line shows the actual evolution of

the anomalies in the NH reanalysis.

The random-forests forecast shown in Fig. 6b, like the Markov-chain forecast in Fig. 6a,

uses the actual anomaly X
′
(t0) at initial forecast time; afterwards, though, the predicted

trajectories differ. If there is a forecast of transition to Regime B, the expected trajectory

follows, from this epoch on, X
′
AB for a time τAB and, afterwards, X

′
B for a time τB (dotted

line). This trajectory, too, reverts to climatology after time τAB + τB. If no transition to

Regime B is forecast at t = t0, the forecast assumes that the trajectory (dash-dotted line)

will remain in Regime A for a time τA− τ 0
A, followed by X

′
AB for a time τAB and, afterwards,

X
′
B for a time τB, finally returning to climatology. The damped-persistence forecast at time

t = t0 is shown by the dashed line in both panels.

For baseline comparison, we use damped-persistence forecasts based on fitting an AR(1)

model to the time series of each of the three leading PCs; this model damps initial anomalies

exponentially to climatology, with the corresponding decorrelation time scales, which are

≈ 15 days for all three leading PCs. Damped persistence is the optimal persistence forecast

in least-square error and is quite difficult to beat for medium-to-long-range weather forecasts.
Figure 7

In Fig. 7 we present the error variance of forecasts, normalized by the climatological

variance, in the subspace of the three leading EOFs. Since we focus here on predicting the
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state of the atmosphere being in a particular regime, but not its detailed behavior, both

forecast and verification time series are averaged over a time interval equal to a given lead

time, i.e., we concentrate on the mean evolution of errors. For short lead times damped

persistence provides a more accurate forecast, since the system’s trajectory “remembers”

the initial data, albeit less and less precisely, while the random-forests prediction relies on

average patterns.

The random-forests forecast, however, becomes more accurate than damped persistence

at lead times of roughly 7 − 10 days, when information about the detailed initial state

has been lost; this behavior holds for all three transitions. The mean-square error of the

damped-persistence forecast can exceed the climatological variance in the medium range but,

as expected, all forecast errors slowly converge to the climatological value as the lead time

exceeds roughly one month. The quadratic forecast error depends but little on the cost ratio

considered, although for the default ratio of 1:1 (dash-dotted line) it is slightly higher than

for the 1:8 cost ratio (heavy solid line in Fig. 7) over a short lead time, of up to 5 days.

The improvement of our random-forests forecasts over both climatology and damped

persistence — beyond 10 days and out to a month, especially for the PNA → BNAO

transition — is quite noticeable. Winkler et al. (2001) compared the skill of their linear

inverse model (LIM) forecasts, suitably smoothed, with those of NCEP’s medium-range

forecast model and found it to be competitive. At the same time, our statistical forecasts

seem to be at least as good when considering a particular, statistically significant transition,

conditioned on a subset of initial states within a given regime; when started in the PNA

regime, our forecast are better than theirs: compare our Fig. 7 with their Fig. 8, which does

not include damped persistence among the skill scores to beat.

27



5 Summary and discussion

Kondrashov et al. (2004) showed that certain weather regime transitions in the QG3 model

are characterized by preferred exit directions in the model’s phase space. Deloncle et al.

(2007) in turn used predictors connected to these preferred directions to forecast the regime

breaks extracted from a long model simulation by relying on two statistical methods. En-

couraged by their results, we studied medium-to-long-range prediction of large-scale, mid-

latitude flow patterns in NH atmospheric data using the NCEP-NCAR reanalysis dataset for

the 55 three-month winters of 1948–2003 (Sect. 2.1). In Sect. 2.2 we showed that there are

three significant weather regimes in a low-dimensional subspace spanned by the three lead-

ing EOFs of the dataset’s variability. The three clusters (see Fig. 1 and Table 1) are PNA

— the Pacific–North-American pattern, BNAO — the blocked phase of the North Atlantic

Oscillation (NAO), and RNA — the (approximately) reversed PNA pattern. These three

regimes are in good agreement with the observational results of Cheng and Wallace (1993),

using hierarchical clustering, and those of Smyth et al. (1999), using a Gaussian mixture

model for a NH dataset of 44 winters (1949–1993).

In Sect. 2.3 we identified three significant transitions in the Markov chain between these

weather regimes (Ghil 1987; Mo and Ghil 1988; Molteni et al. 1990; Kimoto and Ghil 1993b):

PNA→ BNAO, PNA→ RNA and BNAO → PNA; see Table 2. Following Kondrashov

et al. (2004), we determined preferential directions in which the system’s trajectory in phase

space leaves the regimes by computing PDFs of the exit angles on the unit sphere centered on

each cluster’s centroid (Sect. 2.4, Fig. 2). Based on the results of Deloncle et al. (2007), we

used this information about preferred exit directions to construct a set of predictors in Sect.

3.1, and applied the random-forests method (Sect. 3.2) to study predictability of significant

regime transitions in Sect. 4.

Predicting these regime transitions presents a challenge because they are relatively rare
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events; see Tables 2 and 3. For such events, the detection rate is likely to be relatively low

or, in other words, the statistical model error can be quite high. However, when the relative

costs of failing to detect rare events is high, random forests can improve forecasting skill for

those events. One consequence is a decrease in forecasting skill for the common events, but

this is quite tolerable when errors in forecasting common events are less costly.

The choice of which cost ratio to use, whether 1:1 for failures to predict vs. false alarms

or different, depends on the context in which the forecasting results will be used; see also

Roulston and Smith (2004). It is often the case that a failure to correctly forecast rare and

extreme weather events, such as the December 2003 storm over Western Europe, can lead

to very large costs. Considerable forecast skill for rare transitions was obtained even when

the cost ratio was taken equal to 1:1; this skill was further increased when using a cost ratio

of 1:8, cf. Table 4.

Computing importance (Fig. 3) and partial-dependence (Fig. 4) plots confirmed that a

transition is more likely to occur for trajectory segments that are aligned with the preferred

regime exit directions. In partial agreement with the results of Deloncle et al. (2007), the

radial velocity component vr along such a direction is the dominant predictor for all the

highly significant transitions in our NH data. We also found that the influence of ψ, the

angle formed by the exit vector with the preferred exit direction, is greater when the preferred

transition paths are confined within a fairly sharp solid angle, like for the PNA→ BNAO

transition, and smaller for more diffuse PDFs of regime exit angles (Figs. 2 and 5). Unique

features of the exit-angle PDFs, such as bimodality and an extended ridge for the main peak

in the case of the BNAO → PNA transition, can lead to an increased significance of ϕ —

the angle complementary to ψ in our spherical coordinates.

Given the practical interest of medium-to-long-range forecasts, we went further than De-

loncle et al. (2007) in formulating an algorithm that produces not only categorical forecasts
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of specific regime transitions (event) or not (non-event), but actual expected trajectories up

to 30 days. This algorithm takes into account — besides the categorical, random-forests

based forecast of a transition — also the anomalies and residence times associated with the

regimes and the transitions between them (Fig. 6). Comparing the skill of this novel al-

gorithm with the baseline standard of damped persistence (Fig. 7) yields very encouraging

results for the single-transition case.

Noting these results, though, is not the same as proposing the present algorithm, as

it stands, for operational use. A major restriction for its practical use is the algorithm’s

conditional nature: it beats damped persistence, and probably LIM (Winkler et al. 2001),

only for initial states within a given regime, especially PNA. Still, there are various ways

in which such an algorithm can be combined with detailed dynamical forecasts of numerical

weather prediction models, and even with LIM predictions, to improve upon the current

regime transition skill of the numerical methods. At least one way to do so is to “assimilate”

the statistical forecast into the numerical model, and thus provide large-scale guidance to

the latter (Strong et al. 1995).

These results provide further support for the Legras and Ghil (1985) conjecture that (i)

certain atmospheric-flow regimes are associated with unstable fixed points in the flows’ phase

space; and, hence, (ii) exit from such regimes and subsequent transitions to other regimes

originate along preferred directions of unstable growth of perturbations.
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Tables

Table 1a,b. Regime statistics for two cluster sizes: (a) Number of episodes for, and days

in, each cluster; and (b) mean residence time in each cluster and mean duration of

transition between clusters. The cluster size is determined by the scaling factor of the

standard deviation σ along each semi-major axis.

a) Size PNA BNAO RNA Total

1.5σ Episodes 288 231 250 769

Days 1209 799 799 2807

1.75σ Episodes 303 241 267 811

Days 1516 959 1015 3490

b) Duration (days) PNA BNAO RNA

PNA 4.19 1.72 2.02

BNAO 2.95 3.42 2.08

RNA 2.58 3.27 3.20
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Table 2. Transition probabilities estimated using the mixture model, with row and column

corresponding to origin and destination, respectively. Transitions that are significantly

higher at the 95% level with respect to 10,000 random shuffles of the sequence of regime

episodes are in bold, while entries that are italicized are significantly lower at the 95% level

for the same test. The entries in the table are for clusters of size 1.5σ and 1.75σ, in this

order. Not all rows sum exactly to 1.00 because of round-off effects.

1.5σ/1.75σ PNA BNAO RNA

PNA 0.30/0.25 0.34/0.36 0.37/0.39

BNAO 0.49/0.48 0.26/0.24 0.25/0.28

RNA 0.36/0.43 0.30/0.27 0.34/0.30
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Table 3. Definition of a 2× 2 contingency table. The observations (actual category) of the

points are in the rows and the forecasts in the columns. The values of a, b, c, d represent

the numbers of each case obtained on the assessment data set. Thus, true forecasts are on

the diagonal and correspond to true negatives a and true positives d. The incorrectly

classified points are off the diagonal and consist in the false positives (false alarms) b and

the false negatives (misses) c

Non-event forecasted Event forecasted Model Error

Non-event observed a (true negatives) b (false alarms) b/(a+ b)

Event observed c (misses) d (true postives) c/(c+ d)

User Error c/(a+ c) b/(b+ d)
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Table 4. Contingency table with random-forests algorithm for the transition (a)

PNA→ BNAO, (b) PNA→ RNA, and (c) BNAO → PNA; 3000 trees were used with

two variables selected at random evaluated for each split. Results are shown for two

different ratios of false negatives to false positives: 1st number is for the 1:1 default ratio,

while the 2nd number (in parentheses) is for a 1:8 cost ratio.

a)PNA→ BNAO

1:1 (1:8) cost ratio No transition forecasted Transition forecasted Model Error

No transition observed 1103 (1025) 10 (88) 0.01 (0.08)

Transition observed 53 (11) 43 (85) 0.55 (0.11)

User Error 0.05 (0.01) 0.19 (0.51)

b) PNA→ RNA

1:1 (1:8) cost ratio No transition forecasted Transition forecasted Model Error

No transition observed 1095 (966) 7 (136) 0.01 (0.12)

Transition observed 80 (18) 27 (89) 0.75 (0.17)

User Error 0.07 (0.02) 0.21 (0.60)

c)BNAO → PNA

1:1 (1:8) cost ratio No transition forecasted Transition forecasted Model Error

No transition observed 679 (551) 8 (136) 0.01 (0.20)

Transition observed 79 (17) 33 (95) 0.71 (0.15)

User Error 0.1 (0.03) 0.20 (0.59)
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Figure captions

Fig. 1: Probability density function (PDF) of the 700-hPa geopotential height anomaly

field and cluster centroids: left panels for the years 1948–2003, and right panels for

the years 1976–2003. (a) PDF estimated by the mixture model for d = 3 and k =

3 and projected onto the plane spanned by PC-1 and PC-2; 20 contour levels are

used and the heavy ellipses correspond to semi-axes equal to 1.5σ in each principal

direction. (b–d) Mixture model centroids showing geopotential height anomaly maps:

b) PNA; c) BNAO; and d) RNA. Negative contours are dotted and land masses are

shaded; twenty contour levels between maximum and minimum values are used, with

the following intervals (in m): b) 4.6, c) 6.2, and d) 6.1.

Fig. 2: Transition diagram and preferred-transition directions for our NH weather regimes.

(a) Transition diagram and 2-D PDF of regime exit angles for the 1.5σ (left column)

and 1.75σ (right column) clusters: (b) PNA → BNAO; (c) PNA → RNA; and (d)

BNAO → PNA. The contour interval for all panels is equal to 0.2 in nondimensional

units; black asterisks indicate preferred transition path, and black diamonds correspond

to the straight line that connects the two cluster centroids in question.

Fig. 3: Relative importance of the predictors: (a) PNA→ BNAO; (b) PNA→ RNA; and

(c) BNAO → PNA. The plot shows the decrease in detection rate when a variable

is shuffled; this decline measures the importance of each variable in the forecasting

process.

Fig. 4: Partial-dependence plots for the two most important predictors: (a) vr and (b) ψ

for PNA → BNAO; (c) vr and (d) vψ for PNA → RNA; and (e) vr and (f) ϕ for

BNAO → PNA. The ordinate measures the marginal probability of event detection

with respect to the high-impact variable; the velocities are in normalized units per day.
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Fig. 5: Scatter plot of regime exit angles in transformed coordinates for the 1.5σ clusters:

(a) PNA → BNAO; (b) PNA → RNA; and (c) BNAO → PNA. The value of

ψ = π/2 corresponds to the exit vector being aligned with the preferred direction path

(the PDF maxima shown in Figs. 2b–d).

Fig. 6: Sketch of statistical forecast scheme: (a) Markov chain, and (b) random forests.

Here X
′
A, X

′
B and so on indicate mean anomalies in regimes A, B, etc., while τA, τB and

so on indicate expected residence times in these regimes; indices AB and AC indicate

the corresponding transitions. Markov chain: double solid line is for anomaly forecast

originating in Regime A; dotted and dash-dotted lines are for Regime C and Regime

B transitions, respectively. Random forests: dotted line is anomaly trajectory when

transition to Regime B is forecast, while dash-dotted line is a “no–transition” forecast.

In both panels (a) and (b), the damped-persistence forecast is shown by the dashed

line, and the actual trajectory is the light solid line.

Fig. 7: Normalized error variance of forecasts as a function of lead time: (a) PNA →

BNAO; (b) PNA → RNA; and (c) BNAO → PNA. Random forests: heavy dash-

dotted line for default cost ratio 1:1 and heavy solid line for 1:8 cost ratio; damped

persistence (DP) forecasts (light dashed line) and climatology forecasts (light solid).

43



b) PNA 
 180° W 

 150° W 

 120° W 

  90° W 

  60° W 

  30° W 
   0°   

  30° E 

  60° E 

  90° E 

 120° E 

 150° E 
 180° E 

c) BNAO
 180° W 

 150° W 

 120° W 

  90° W 

  60° W 

  30° W 
   0°   

  30° E 

  60° E 

  90° E 

 120° E 

 150° E 
 180° E 

d) RNA 
 180° W 

 150° W 

 120° W 

  90° W 

  60° W 

  30° W 
   0°   

  30° E 

  60° E 

  90° E 

 120° E 

 150° E 
 180° E 

PC!1
PC
!2

PNA

RNA
BNAO

a) Mixture PDF

!2 0 2
!2

!1

0

1

2

 180° W 
 150° W 

 120° W 

  90° W 

  60° W 

  30° W 
   0°   

  30° E 

  60° E 

  90° E 

 120° E 

 150° E 
 180° E 

 180° W 
 150° W 

 120° W 

  90° W 

  60° W 

  30° W 
   0°   

  30° E 

  60° E 

  90° E 

 120° E 

 150° E 
 180° E 

 180° W 
 150° W 

 120° W 

  90° W 

  60° W 

  30° W 
   0°   

  30° E 

  60° E 

  90° E 

 120° E 

 150° E 
 180° E 

PC!1

PC
!2

PNA
RNA

BNAO

!2 0 2
!2

!1

0

1

2

Figure 1: Probability density function (PDF) of the 700-hPa geopotential height anomaly
field and cluster centroids: left panels for the years 1948–2003, and right panels for the years
1976–2003. (a) PDF estimated by the mixture model for d = 3 and k = 3 and projected
onto the plane spanned by PC-1 and PC-2; 20 contour levels are used and the heavy ellipses
correspond to semi-axes equal to 1.5σ in each principal direction. (b–d) Mixture model
centroids showing geopotential height anomaly maps: b) PNA; c) BNAO; and d) RNA.
Negative contours are dotted and land masses are shaded; twenty contour levels between
maximum and minimum values are used, with the following intervals (in m): b) 4.6, c) 6.2,
and d) 6.1.
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Figure 2: Transition diagram and preferred-transition directions for our NH weather regimes.
(a) Transition diagram and 2-D PDF of regime exit angles for the 1.5σ (left column) and
1.75σ (right column) clusters: (b) PNA→ BNAO; (c) PNA→ RNA; and (d) BNAO →
PNA. The contour interval for all panels is equal to 0.2 in nondimensional units; black
asterisks indicate preferred transition path, and black diamonds correspond to the straight
line that connects the two cluster centroids in question.
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Figure 3: Relative importance of the predictors: (a) PNA → BNAO; (b) PNA → RNA;
and (c) BNAO → PNA. The plot shows the decrease in detection rate when a variable is
shuffled; this decline measures the importance of each variable in the forecasting process.
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Figure 4: Partial-dependence plots for the two most important predictors: (a) vr and (b)
ψ for PNA → BNAO; (c) vr and (d) vψ for PNA → RNA; and (e) vr and (f) ϕ for
BNAO → PNA. The ordinate measures the marginal probability of event detection with
respect to the high-impact variable; the velocities are in normalized units per day.
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Figure 5: Scatter plot of regime exit angles in transformed coordinates for the 1.5σ clusters:
(a) PNA → BNAO; (b) PNA → RNA; and (c) BNAO → PNA. The value of ψ = π/2
corresponds to the exit vector being aligned with the preferred direction path (the PDF
maxima shown in Figs. 2b–d).
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Figure 6: Sketch of statistical forecast scheme: (a) Markov chain, and (b) random forests.
Here X

′
A, X

′
B and so on indicate mean anomalies in regimes A, B, etc., while τA, τB and

so on indicate expected residence times in these regimes; indices AB and AC indicate the
corresponding transitions. Markov chain: double solid line is for anomaly forecast originating
in Regime A; dotted and dash-dotted lines are for Regime C and Regime B transitions,
respectively. Random forests: dotted line is anomaly trajectory when transition to Regime
B is forecast, while dash-dotted line is a “no–transition” forecast. In both panels (a) and
(b), the damped-persistence forecast is shown by the dashed line, and the actual trajectory
is the light solid line.

49



0 10 20 $00%2
0%&
0%'
0%(

1

)*ad tim* 1da2s)

5r
ro

r 8
ar

ia
nc

*

a) PNA!>BNAO

RB 1C1
RB 1C(
DP

0 10 20 $00%2
0%&
0%'
0%(

1

)*ad tim* 1da2s)
5r

ro
r 8

ar
ia

nc
*

b) PNA!>RNA

RB 1C1
RB 1C(
DP

0 10 20 $00%2
0%&
0%'
0%(

1

)*ad tim* 1da2s)

5r
ro

r 8
ar

ia
nc

*

c) BNAO!>PNA

RB 1C1
RB 1C(
DP

Figure 7: Normalized error variance of forecasts as a function of lead time: (a) PNA →
BNAO; (b) PNA → RNA; and (c) BNAO → PNA. Random forests: heavy dash-dotted
line for default cost ratio 1:1 and heavy solid line for 1:8 cost ratio; damped persistence (DP)
forecasts (light dashed line) and climatology forecasts (light solid).

50


